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Abstract: The present work of review collects and evidences the main results of our previous
papers on the optimization of fractionated radiotherapy protocols. The problem under investigation
is presented here in a unitary framework as a nonlinear programming application that aims to
determine the optimal schemes of dose fractionation commonly used in external beam radiotherapy.
The radiation responses of tumor and normal tissues are described by means of the linear quadratic
model. We formulate a nonlinear, non-convex optimization problem including two quadratic
constraints to limit the collateral normal tissue damages and linear box constraints on the fractional
dose sizes. The general problem is decomposed into two subproblems: (1) analytical determination
of the optimal fraction dose sizes as a function of the model parameters for arbitrarily fixed
treatment lengths; and (2) numerical determination of the optimal fraction number, and of the
optimal treatment time, in different parameter settings. After establishing the boundedness of the
optimal number of fractions, we investigate by numerical simulation the optimal solution behavior for
experimentally meaningful parameter ranges, recognizing the crucial role of some parameters, such as
the radiosensitivity ratio, in determining the optimality of hypo- or equi-fractionated treatments.
Our results agree with findings of the theoretical and clinical literature.

Keywords: cancer radiotherapy optimization; linear-quadratic model; nonlinear programming

1. Introduction

The common goal in cancer treatments is to achieve the best compromise between treatment
efficacy and safety. Among the methods for cancer management, fractionated radiotherapy has a
major clinical role as a component of multi-modality therapy or even as the sole treatment modality.
External beam radiation therapy (EBRT) is usually administered in daily fractions, and it aims to
maximize the overall radiation damage to the tumor, while preserving the surrounding healthy
tissue. At the same time, dose fractionation allows the repair of normal tissues while hindering
the effects of tumor repopulation. Therefore, the determination of suitable radiation treatments is
intrinsically associated to the solution of constrained optimization problems. Methods for radiotherapy
optimization highly contribute to improving the outcome of cancer radiation treatment and have been
the object of many studies in recent years. These methods span several techniques: from experimental
techniques that use chemical agents enhancing the tumor response or reducing the normal tissue
response [1,2], to empirical and/or numerical procedures for the optimization of protocols with respect
to the fraction size and to the overall treatment time [3–5], up to model-based applications of optimal
control providing the optimal time–dose scheme of radiation administration (EBRT) [6–9] or the
optimal volume distributions of the radiation (intensity modulated radiotherapy, IMRT) [10,11].
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Here, we overview the results of our work aimed to solve a general radiotherapy problem
formulated in the framework of the optimization of time–dose fractionation protocols and based on
the linear-quadratic (LQ) model of cell survival [6,12,13]. The LQ model expresses the relation between
a single dose of radiation d (Gy) and the fraction of cells that survive the irradiation, S, as

S = exp(−αd− βd2) ,

where the parameters α and β represent the intrinsic radiosensitivity of the cell population. The linear
term accounts for lethal non repairable DNA lesions, while the quadratic term represents the lethal
effect of the misrepair of DNA double-strand breaks [14]. The argument of the exponential represents
the effect of instantaneous cell killing following a single irradiation. However, when multiple radiation
sessions are delivered other fractionation/protraction effects have to be taken into account, as done in
the extended version of the LQ model proposed by Brenner et al. [15] (LQR model). Processes included
in the LQR model are the compensatory repopulation owing to the regrowth of cells surviving
irradiation, the repair of the radiation damage, and the resensitization mechanisms (i.e., redistribution
of cells across the cell-cycle phases plus reoxygenation).

Many theoretical studies for radiotherapy optimization based on the LQ and LQR models have
been proposed in the literature over the last 35 years. An up to date list of such interesting papers can be
found in [9]. Here, we rather mention the “intriguing” scientific debate concerning the appropriateness
of the LQ model for the description of the radiation response of cell populations, especially when large
radiation doses are delivered. Indeed, recent technological advances in radiotherapy, such as IMRT or
stereotactic body radiation therapy (SBRT), made possible the use of larger-than-conventional doses
per fraction. Thus, the LQ model has been much discussed [16,17], but in the end accepted for two main
reasons [18]: “(1) the standard LQ model is an approximation to more exact, but more complex models; (2) the
LQ formalism works fine at doses per fraction below about 15–20 Gy, while at higher doses per fraction, more exact
models are available and should be used”. A modified LQ model, specifically proposed to provide a better
fit to data of radiation dose–response curves at high fractional doses, is the linear-quadratic-linear
(LQ-L) model [19,20]. A more recent alternative to the LQ model providing an accurate estimation of
the probability of tumor cell survival at high doses is based on accounting for the microdosimetric
distribution in irradiated cells [21].

However, the LQ model continues to be extensively used in view of its simple formalism derived
from biophysical principles and of its flexibility in representing the radiation response of different kinds
of tissues for a clinically meaningful dose range. Some examples of very recent works (both theoretical
and clinical) based on the LQ formalism are [22–26]. We also quote Brown [23] for the following very
original defense of the LQ model “in a light-hearted manner”:

If you want to cure a tumor
Then finish radiation sooner
Give it 3× 20 Grays
And cut the time to just 5 days.
To figure dose just use LQ
With terms that are but two.
No need to add more bits
As the patient data already fits.
So keep it simple with nothing new
Just stick with straight LQ.

In Section 2, we formulate a general optimal radiotherapy problem assuming the LQ model for the
description of cell radiation response. The first part of the present work (Sections 3 and 4) is dedicated to
the description of the analytical results obtained in [7,8] and related to the determination of the optimal
fractionation of the radiation dose for a fixed (but arbitrary) treatment time. The second part (Section 5)
concerns the problem of finding, besides the dose sizes, the optimal dose number, i.e., the optimal
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treatment length [9]. Numerical simulations for different tumor classes and for wide variations of the
tumor parameters are presented in Section 6. Our computational results confirm recent findings of
the theoretical and clinical literature showing the crucial role of some parameters, such as the tumor
radiosensitivity ratio, in determining the optimality of different fractionated radiation schemes.

2. A general Optimal Radiotherapy Problem

We describe here the radiation-induced response of homogeneous cell populations by the LQ
model [13] and we include the effects of lethal/sublethal instantaneous radiation damages and cell
repopulation [5,15,27,28]. We consider fractionated radiation treatments in which the total dose is
subdivided into n fractions administered as one fraction per day to the patient, leaving treatment
breaks at the weekends according to the usual medical practice. Denoting by di ≥ 0, i = 1, 2, . . . , n,
the fractional dose given at ith day, the cumulated effect of the instantaneous lethal damage is

E1 = α
n

∑
i=1

di + β
n

∑
i=1

d2
i , (1)

where α and β are the (strictly positive) LQ constants characterizing the intrinsic radiosensitivity of the
population. The sublethal damage caused by incomplete repair is modeled as

E2 = 2βe−γ
n

∑
i=2

di−1di , (2)

where γ is the ratio of the inter-fraction time interval ∆ and the repair time τR. In Equation (2),
the interaction between fractional doses more than one day apart is neglected since we assume ∆ = 24
h and the literature reports τR ≈ 4.0 h as the typical value of the repair time [5].

Finally, cell repopulation is modeled by the exponential law with exponent

E3 =
ln(2)

TP

(
T − TK

)
H(T − TK) , (3)

where T = T(n) is the overall treatment time (i.e., the number of days between the 1st and the
last dose), TP is the population doubling time, Tk is the starting time of compensatory proliferation
(kick-off time), and H(·) is the unitary step Heaviside function. Therefore, the fraction of surviving
cells is

S = exp(−E1 − E2 + E3) . (4)

The model in Equation (4) is used to describe the response to radiation of the tumor, as well as
of the early and late responding normal tissues. In the following, the quantities in Equations (1)–(3)
related to the early and late tissues response are indexed by subscripts “e” and “l”, respectively.

Our goal is to minimize the fraction of surviving tumor cells S, and in particular its logarithm,
initially with respect to the fractional dose sizes, then also with respect to their number. At the same
time, suitable constraints on the maximal admissible damage to normal tissues have to be taken into
account. Considering only the interaction between two consecutive fractions as non-negligible (γl = 6,
γe = 48 [5]), the constraints take the form

− ln(Se) = E1e + E2e − E3e ≤ Ce , −ln(Sl) = E1l + E2l ≤ Cl , (5)

where Ce and Cl denote the logarithmic maximal damage to the early and late responding
tissue, respectively, and cell repopulation has been neglected for the late responding tissue.
Additional constraints and specific simplifying assumptions are also considered and explained in
detail in the following sections.
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3. Optimization Over a Single Week of Treatment

In the present section (as well as in Section 4), we assume that the period of radiation treatment
administration consists of an integer number of weeks, ω, and that treatment breaks are left at each
weekend according to the standard medical practice. The total number of delivered fractions n and the
overall treatment time T of the Equations (1)–(3) become

n = 5ω, T = 7ω− 3 days. (6)

We assume that ω, and then the overall treatment time T, is assigned. Then, the optimization
problem considered here is to minimize the logarithm of the tumor surviving fraction S with respect to
the fractional dose sizes only. Noting that E3 does not depend on the doses, the problem is equivalent
to that of minimizing the quantity −E1 − E2. To simplify the optimization problem, we also assume
that the cumulative damages to normal tissues, Ce and Cl , are equi-distributed over the ω treatment
weeks. This choice allows us to reformulate the problem over a single week of treatment, thus reducing
the number of variables and, at the same time, to strengthen the constraints on the normal tissue
damage. The obtained solution is then repeated for each treatment week.

Let us introduce the notations

ρ =
α

β
, ρe =

αe

βe
, ρl =

αl
βl

, he =
Ce + E3e

ωβe
, hl =

Cl
ωβl

. (7)

We observe that the radiosensitivity ratios are in general greater than 1 Gy either for tumors and
for normal tissues. Typical values of ρ reported in the literature range from about 2–3 to 50 Gy or more,
whereas for the early and late normal tissues it is ρe > ρl [4,29,30]. Let us now define the 5-dimensional
vector d with components di, i = 1, . . . , 5. The constraints in Equation (5) can be written in the form

ge(d) = ρe

5

∑
i=1

di +
5

∑
i=1

d2
i + 2e−γe

5

∑
i=2

di−1di − he ≤ 0 , (8)

gl(d) = ρl

5

∑
i=1

di +
5

∑
i=1

d2
i + 2e−γl

5

∑
i=2

di−1di − hl ≤ 0 , (9)

and we can formulate the optimization problem to be solved over a single treatment week.

Problem 1. Minimize the function

J(d) = −ρ
5

∑
i=1

di −
5

∑
i=1

d2
i − 2e−γ

5

∑
i=2

di−1di (10)

on the admissible set

D = {d ∈ R5| ge(d) ≤ 0 , gl(d) ≤ 0 , gi(d) = −di ≤ 0 , i = 1, . . . , 5} . (11)

It is important to note that Problem 1 certainly admits some optimal solutions in view of the
Weierstrass theorem [31]. As the problem is not convex, the set of solution candidates is found by
means of the Karush–Kuhn–Tucker necessary conditions of optimality. Theorems 1 and 2, reported here
without demonstrations (see the complete proofs in [7]), illustrate how these candidates are structured,
evidencing how they can be grouped into classes of equivalent, i.e., providing the same value of J,
extremal solutions. The equivalence of the elements within each class is easily understood noticing
that J, ge, gl depends only on the quantities ∑5

i=1 di, ∑5
i=1 d2

i , and ∑5
i=2 di−1di.



Information 2020, 11, 313 5 of 24

Theorem 1. There are 25 possible structures for the solutions d of Problem 1, including the trivial vector d = 0.
The non-trivial solutions may be grouped into 10 mutually exclusive classes, as reported in Table 1. The classes
are characterized by the number of non-zero doses, as well as by the number of consecutive non-zero doses.
The possible structures in each class are equivalent, in that they have the same size of the non-zero doses and then
give the same value of the cost function J.

Table 1. Classes of equivalent structures for the extremals of Problem 1.

Class Representative Number Elements

d(1) (A(1) 0 0 0 0) 5
(A(1) 0 0 0 0), (0 A(1) 0 0 0),
(0 0 A(1) 0 0), (0 0 0 A(1) 0),
(0 0 0 0 A(1))

d(2) (0 A(2) 0 A(2) 0) 6
(A(2) 0 A(2) 0 0), (A(2) 0 0 A(2) 0),
(A(2) 0 0 0 A(2)), (0 A(2) 0 A(2) 0),
(0 A(2) 0 0 A(2)), (0 0 A(2) 0 A(2))

d(3) (A(3) 0 A(3) 0 A(3)) 1 (A(3) 0 A(3) 0 A(3))

d(4) (0 B(4) B(4) 0 0) 4 (B(4) B(4) 0 0 0), (0 B(4) B(4) 0 0),
(0 0 B(4) B(4) 0), (0 0 0 B(4) B(4))

d(5) (A(5) 0 B(5) B(5) 0) 6
(A(5) 0 B(5) B(5) 0), (0 A(5) 0 B(5) B(5)),
(A(5) 0 0 B(5) B(5)), (B(5) B(5) 0 A(5) 0),
(B(5) B(5) 0 0 A(5)), (0 B(5) B(5) 0 A(5))

d(6) (0 C(6) D(6) C(6) 0) 3 (0 C(6) D(6) C(6) 0), (C(6) D(6) C(6) 0 0),
(0 0 C(6) D(6) C(6))

d(7) (B(7) B(7) 0 B(7) B(7)) 1 (B(7) B(7) 0 B(7) B(7))

d(8) (C(8) D(8) C(8) 0 A(8)) 2 (C(8) D(8) C(8) 0 A(8)), (A(8) 0 C(8) D(8) C(8))

d(9) (E(9) F(9) F(9) E(9) 0) 2 (E(9) F(9) F(9) E(9) 0), (0 E(9) F(9) F(9) E(9))

d(10) (G(10) H(10) I(10) H(10) G(10)) 1 (G(10) H(10) I(10) H(10) G(10))

Proof. A formal proof can be found in [7]. The values of the non-zero doses in Table 1 depend on ρ, γ,
ρe, γe, ρl , and γl through the Lagrangian multipliers in a rather complicated manner. If the interaction
between adjacent fractions is absent or negligible, explicit expressions of the non-zero fraction doses
can be given in terms of the normal tissue parameters only, as it is shown below.

Since the parameters γ, γe, and γl are very large for the majority of tumors and normal tissues,
the repair process can be considered completed within the interfraction interval ∆, which means that
the incomplete repair term can be disregarded in the model formulation. Under this assumption,
the solutions reduce to only five mutually exclusive classes of (equivalent) solutions, having simple
component expressions in terms of the model parameters. Then, the following results hold [7].

Theorem 2. In the absence of the incomplete repair term, there are at most five different extremal candidates of
Problem 1 given by the following representative structures:

(A(1) 0 0 0 0), (A(2)A(2) 0 0 0), (A(3)A(3)A(3) 0 0), (A(4)A(4)A(4)A(4) 0), (A(5)A(5)A(5)A(5)A(5)),

where
A(i) = min{A(i)

e , A(i)
l } , i = 1, . . . , 5 , (12)

and

A(i)
e = −ρe

2
+

√(ρe

2

)2
+

he

i
, A(i)

l = −ρl
2
+

√(ρl
2

)2
+

hl
i

, i = 1, . . . , 5 . (13)
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Proof. A detailed proof of this result based on solving the Karush–Kuhn–Tucker system of necessary
optimality conditions, is reported in [7]. In the present simpler, but practically meaningful, case of
negligible interaction among dose fractions, a geometrical interpretation of the extremal solutions
can be given and it is qualitatively illustrated by Figure 1 for n = 2 and 3. It can be noticed that
the expressions of the boundaries of Equations (8) and (9) represent hyperspheres with centers on
the five-dimensional bisect line at di = −ρe/2, di = −ρl/2, for any i. Then, the problem extremals
lie on the positive portions of the boundaries of ge(d), gl(d), and precisely of the most restrictive
constraint boundary (see Equation (12)) as shown in the left panel of Figure 1. Increasing n, the set
of candidates is enriched with additional structures, as illustrated in the right panel of Figure 1 for
the simplified situation of a single prevalent quadratic constraint (for instance gl(d)). The examples
of Figure 1 can be considered representative of the more complex situation depicted by Theorem 1
(problem including dose interaction). Then, the problem geometry is similar to that of Figure 1 except
for the fact that Equations (8)–(10) have elliptic contours, which makes the extremal set wider and the
problem resolution more complicated.

de(1) = {(Ae(1) 0), (0 Ae(1))}
de(2) = {(Ae(2) Ae(2))}

(A l(
2) A l(

2) )

(A e
(2) A e

(2) )

(Al(1) 0)
(Ae(1) 0)

(0 Ae(1))

(0 Al(1))

d1

d2

− r"
# , −

r"
#

− r%
# , −

r%
#

ge(d)=0

gl(d)=0

dl(1) = {(Al(1) 0), (0 Al(1))}
dl

(2) = {(Al
(2) Al

(2))}

(Al
(1) 0 0) (0 Al (1) 0)

(0
0A

l(1
) )

d1 d2

d3

(A
l(2

) A l(2
) 0)

(0
A l

(2)
 A l(2) )(A

l (2) 0 A
l (2))

(Al
(3)Al

(3)Al
(3))

dl
(1) = {(Al

(1) 0 0), (0 Al
(1) 0), (0 0 Al

(1))}
dl

(2) = {(Al
(2) Al

(2) 0), (0 Al
(2) Al

(2)), (Al
(2) 0 Al

(2))}
dl

(3) = {(Al
(3) Al

(3) Al
(3))}

gl(d) = 0

Figure 1. Qualitative geometrical representation illustrating Theorem 2 for n = 2 and n = 3.

We remind that ρe > ρl and we notice from Figure 1 that the admissibility of the structures of
Theorem 2 depends on the relative position of the early and late constraint boundaries, i.e., on he and
hl . Moreover, since the level surfaces of the cost function in Equation (10) are again hyperspheres with
(fixed) center on the bisect line at di = −ρ/2, i = 1, . . . 5, aligned with the early and late boundary
centers, the optimum among the five structures depends on the value of ρ with respect to ρe and
ρl . Denoting by d(i)e and d(i)l , i = 1, . . . , 5, the vectors with i non-zero entries equal to A(i)

e and A(i)
l ,

respectively, we define the quantity

v =
(he − hl)

2

(ρe − ρl)(ρehl − ρlhe)
, (14)

which, as suggested by the geometrical interpretation of Figure 1, determines whether the early or
instead the late constraint is prevalent. Here follows a sketch of the solutions for the simplified problem
without incomplete repair term.

Theorem 3. In the absence of the incomplete repair term, Problem 1 admits a unique optimal solution, apart
from the previously mentioned equivalence of the structures in each class, when ρ 6= ρl and ρ 6= ρe. Table 2
reports the optimal solutions for ρ 6= ρl and ρ 6= ρe, while Table 3 reports the optimal solutions for ρ = ρl and
ρ = ρe.
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Table 2. Optimal solutions to Problem 1 for ρ 6= ρl and ρ 6= ρe.

ρ < ρl ρl < ρ < ρe ρ > ρe

he − hl ≤ 0 d(1)e d(1)e d(5)e

v ≤ 1 d(1)e d(1)e d(5)e

he − hl > 0 1 < v < 5 d(1)l d([v]+1)
e d(5)e

v ≥ 5 d(1)l d(5)l d(5)l

Table 3. Optimal solutions to Problem 1 for ρ = ρl and ρ = ρe.

ρ = ρl ρ = ρe

he − hl ≤ 0 d(1)e d(1)e , d(2)e , d(3)e , d(4)e , d(5)e

v ≤ 1 d(1)e d(1)e , d(2)e , d(3)e , d(4)e , d(5)e

he − hl > 0 1 < v < 5 d(1)l , . . . , d([v])l d([v]+1)
e , . . . , d(5)e

v ≥ 5 d(1)l , d(2)l , d(3)l , d(4)l , d(5)l d(5)l

Proof. A rigorous proof is reported in [7] and it basically consists in expressing the cost function
for any extremal point provided by Theorem 2 in terms of model parameters and in comparing its
values. We remark that the result of this comparison depends on the value of ρ with respect to ρe

and ρl . Reminding that the cost function level surfaces are concentric hyperspheres, the geometrical
interpretation of the problem can give a hint on the optimal solution. Moreover, we note that, when v
is an integer number between 1 and 5, then, for suitable ρ, the optimal solution is such that d(v)e = d(v)l ,
i.e., these vectors satisfy simultaneously the early and the late constraints with the equality sign.

In Tables 2 and 3, it emerges how the tumor radiosensitivity ratio ρ determines the kind of
optimal fractionation scheme. Indeed, hypofractionation is convenient for small ρ, whereas the optimal
fractionation tends to be uniform for large ρ. This result formalizes in mathematical terms and confirms
previous observations [32,33]. Other papers have then reported expressions of the optimal solution for
similar problems in a form substantially equivalent to Equation (13) [11,34–38].

We consider now some applications that further specialize the previous results in terms of the
important practical situation of prevalent late constraint.

Since the radiation-induced damages to healthy tissues cannot be directly measured, it is common
to evaluate them as the damages produced by a reference radiotherapy protocol according to a chosen
dose–response model [3,5]. Then, it is useful to introduce the Biologically Effective Dose (BED) defined
as the total radiation dose proportional to the logarithmic cell kill that globally produces the same
damage of a given protocol [39]. Using subscripts “e” and “l” as done previously, the maximal tolerable
damages caused to normal tissue are expressed as Ce = αeBEDe and Cl = αlBEDl . We set as the
reference scheme, the conventional equi-fractionated scheme (one fraction/day, five fractions/week),
with n̄ fractions of size d̄ over the time T̄. Thus, we can write

Ce = αeBEDe = n̄αed̄
(

1 +
d̄
ρe

)
− ln(2)

TPe
(T̄ − TKe)H(T̄ − TKe), (15)

Cl = αlBEDl = n̄αl d̄
(

1 +
d̄
ρl

)
. (16)
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To simplify the comparisons of the numerical results for Problem 1 with data of real clinical
protocols, we take as a reference protocol a radiotherapy scheme that includes an integer number of
weeks, ω̄, with n̄ = 5ω̄. From Equation (7), for the maximal weekly damages, we have

he = ρe5d̄
(

1 +
d̄
ρe

)
, hl = ρl5d̄

(
1 +

d̄
ρl

)
. (17)

From Equation (17), it is easy to verify that he > hl , since ρe > ρl , and that v = 5 (see Equation (14)).
It has been shown in [7] (see Th. 6) that, for he > hl , v ≥ 5, the late constraint gl(d) dominates over
ge(d) and the optimal solution is d(1)l when ρ < ρl or d(5)l when ρ > ρl .

We performed numerical simulations to verify the previous results and compare them to the
relevant literature. The normal tissue parameters, for which rather homogeneous estimates are
available, were set to ρl = 3 Gy, ρe = 10 Gy, αe = 0.35 Gy−1, Tke = 7 days, and Tpe = 2.5
days [3,5]. To quantify hl and he, we considered a reference radiotherapy protocol and computed the
damages it produces on normal tissues according to Equation (17). In particular, the “strong standard”
fractionation schedule 35F× 2Gy = 70Gy/46 days (ω̄ = 7, d̄ = 2 Gy) yields BEDl = 116.7 Gy and
BEDe = 53.1 Gy [5,27]. Table 4 reports the optimal solutions as ρ changes in a meaningful value range.
For a comparison with the literature, Table 5 focuses on ρ = 1.5 Gy and ρ = 10 Gy, typically associated
to slowly proliferating tumors (prostate) and fast proliferating tumors (head and neck, lung).

Table 4. Numerical solutions to Problem 1 in the absence of incomplete repair for ρ ∈ [1.5, 20] Gy.
hl = 50.0 Gy2, he = 120.0 Gy2 computed by Equation (17) with d̄ = 2 Gy. d̂: optimal solution; D:
optimal total dose.

ρ Optimal Solution d̂
Optimal Values at d̂

D −J gl ge
(Gy) (Gy) (Gy) (Gy2) (Gy2)

[1.5, 3) (5.7284 0 0 0 0) 5.7284 [41.407, 50.000) 0 −29.901

3

(5.7284 0 0 0 0) 5.7284

50.000 0

−29.901
(3.7202 3.7202 0 0 0) 7.4403 −17.918

(2.8493 2.8493 2.8493 0 0) 8.5480 −10.164
(2.3406 2.3406 2.3406 2.3406 0) 9.3623 −4.464

(2.0000 2.0000 2.0000 2.0000 2.0000) 10.0000 0

(3, 20] (2.0000 2.0000 2.0000 2.0000 2.0000) 10.0000 (50.000, 220.000] 0 0

Table 5. Comparison of LCK, BEDl and BEDe between the reference protocol (ω̄ = 7, d̄ = 2 Gy) and
the optimal solution to Problem 1 in the absence of incomplete repair. Parameters: ρ = 1.5 Gy, α = 0.1
Gy−1, TP = 40 days, and Tk = 300 days; ρ = 10 Gy, α = 0.35 Gy−1, TP = 3 days, and Tk = 21 days.

Optimal Values at d̂ Reference Protocol Values

ρ Optimal Solution d̂ LCK BEDl BEDe LCK BEDl BEDe
(Gy) (Gy) (Gy) (Gy) (Gy)

1.5 (5.7284 0 0 0 0) 8.392 116.667 32.175 7.093 116.667 53.105

10 (2.0000 2.0000 2.0000 2.0000 2.0000) 10.260 116.667 53.105 10.260 116.667 53.105

Table 5 includes the computation of a quantity often used to evaluate the treatment efficacy, i.e.,
the tumor “log cell kill” (LCK) defined by LCK = log10(1/S) and given by

LCK = log10(e) (E1 + E2 − E3) , (18)
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with S as in Equation (4) and E2 = 0, E1, and E3 as in Equations (1) and (3). As expected, for ρ = 10 Gy,
the optimal solution coincides with the corresponding reference protocol. Conversely, when ρ = 1.5
Gy, the optimal solution is not uniform and it consists of a single fractional dose of amplitude higher
than the conventional (reference) value. Thus, in agreement with several literature results, we find
that, when ρ < ρl , the optimum is given by hypo-fractionated protocols (see, e.g., [5,28,32,33]).

A remark can be made about the normal tissue constraints considered in the present study. In the
problem formulation, only two kinds of healthy tissue reactions, early and late, were taken into account.
Moreover, the radiation response of tissues is considered homogeneous disregarding the spatial or
inter-individual differences. Although simplistic, this representation of surrounding organs at risk
is thought to capture the essential aspects in the optimization of traditional radiotherapy schedules
and it actually is most commonly considered in the literature. However, expressing the damages
as in Equations (1)–(5), we assumed that the normal tissues receive the same amount of radiation,
i.e., the same fraction doses di, of the tumor, which is not very realistic. Indeed, modern techniques
make increasingly feasible to deliver high fractions to the tumor while reducing the fractions to the
surrounding tissues by spatially modulating the radiation intensity. While modeling such remarkable
aspects is beyond the scope of the present work, it can be interesting to give an idea of some resulting
effects on the optimal solutions. In [7], this was done by introducing a global coefficient, f ∈ (0, 1),
to represent, on average, the attenuation of the dose received by normal tissues with respect to the
tumor. Then, the effective fractional doses acting on normal tissues are f di, i = 1, . . . , 5, in the related
constraint expressions, i.e., in all the damage terms of Equation (5), or f d̄ in the expressions of Ce, Cl
computed by the reference protocol as in Equations (15) and (16). Moreover, to get expressions of ge(d),
gl(d) of the kind in Equations (8) and (9), we have to redefine accordingly the notation related to the
normal tissue parameters (see also [7]). In particular, we upgrade the notation in Equation (7) setting

ρe =
αe

f βe
, ρl =

αl
f βl

, he =
Ce + E3e

f 2ωβe
, hl =

Cl
f 2ωβl

. (19)

The optimal solutions of Problem 1 computed with f = 0.3 are reported in Table 6 for a comparison
with the results of Table 4 where f = 1. In the simulation of Table 6, the reference fraction dose d̄ = 2 Gy
is left unchanged, but the maximal damages Ce and Cl are computed from Equations (15) and (16)
using f d̄ instead of d̄. Then, the limits he, hl are evaluated from Equation (19) obtaining expressions
formally identical to Equation (17), provided that the parameters ρe, ρl are given as in Equation (19).

The optimal solutions are found to be structurally identical to those of Table 4, but the solution
pattern appears to be shifted towards higher ρ values (so allowing hypofractionation also for tumors
with relatively high ρ, ρ < 10 Gy in the example), while larger optimal doses are permitted in
hypofractionated schemes.

Table 6. Numerical solutions to Problem 1 in the absence of incomplete repair. Actual dose to normal
tissue reduced by a factor f = 0.3, resulting in hl = 120.0 Gy2 and he = 353.3 Gy2. Optimal solutions
for ρ ∈ [1.5, 50] Gy. d̂, optimal solution; D, optimal total dose.

ρ Optimal Solution d̂
Optimal Values at d̂

D −J gl ge
(Gy) (Gy) (Gy) (Gy2) (Gy2)

[1.5, 10) (7.0416 0 0 0 0) 7.0416 [60.146, 120.000) 0 −69.030

10

(7.0416 0 0 0 0) 7.0416

120.000 0

−69.030
(4.2195 4.2195 0 0 0) 8.4391 −36.421

(3.0623 3.0623 3.0623 0 0) 9.1868 −18.975
(2.4162 2.4162 2.4162 2.4162 0) 9.6648 −7.822

(2.0000 2.0000 2.0000 2.0000 2.0000) 10.0000 0

(10, 50] (2.0000 2.0000 2.0000 2.0000 2.0000) 10.0000 (120.000, 520.000] 0 0
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4. Introduction of an Upper Bound on the Daily Fractional Dose

A single fraction dose per week was found to be optimal for slowly proliferating tumors,
either taking into account the sublethal damage due to incomplete repair or not [7]. Then, if the
maximal tolerable damages to normal tissues are computed on the basis of the conventional uniform
protocols, the dose fraction sizes can become as large as to make the theoretical optimal solution
practically unacceptable. We remind that the direct evaluation of the maximal admissible radiation
damage is obviously impossible, so that the method usually applied is the one using clinically assessed
reference protocols, as described by Equation (17).

In the paper [8], we reconsidered the optimization problem (Problem 1) in the absence of a
sublethal damage term owing to incomplete repair and over a fixed treatment time, and we introduced
a linear constraint representing an upper bound for the daily fractional dose. The additional constraint
is included to strengthen the normal tissue constraints, particularly with respect to “late” collateral
complications occurring months or even years after the radiation treatment. As already mentioned,
the quantification of this kind of complications by means of the LQ model is a controversial issue,
especially at high fraction doses [5,16–19,40,41].

Despite the formulation simplicity, including such box constraints on the fractional doses makes
the solution of the problem rather complex. In this section, we summarize the analytical results
reported by Bruni et al. [8], postponing a more detailed description of the solution until the next section
where the optimization problem is solved also with respect to the treatment duration.

As done for Problem 1, we assume that the overall treatment time is fixed and given by T = 7ω− 3,
and that the cumulative damages to normal tissues are equi-distributed over the ω treatment weeks.
Then, we formulate the following optimization problem over a single week of treatment, where dM
denotes the maximal value of the daily fraction and ge(d), gl(d) are defined by Equations (8) and (9),
without the incomplete repair term.

Problem 2. Minimize the function:

J(d) = −ρ
5

∑
i=1

di −
5

∑
i=1

d2
i , (20)

on the admissible set:

D = {d ∈ R5|di ∈ [0, dM] , i = 1, . . . , 5 , ge(d) ≤ 0 , gl(d) ≤ 0} .

A complete picture of the optimal solutions to Problem 2 is given in [8], where the dependence of
the optimum on the tumor α/β and on the bound dM is investigated. Incidentally, we observe that the
problem considered in the present section is actually a particular case of the problem considered in
Section 5 when n = 5.

Here, we report only the optimal solutions for the situation of prevalent late constraint most
frequently considered in practical applications (see Table 7). In Table 7, the quantities dl(i, j) are
solutions of gl(d) = 0 having j entries equal to dM, i entries equal to Al(i, j) and, clearly, 5− i− j null
entries. For suitable i, j, the value Al(i, j) is defined as

Al(i, j) = −ρl
2
+

√(ρl
2

)2
+

hl − jdM(dM + ρl)

i
. (21)
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Table 7. Optimal solutions to Problem 2 with respect to the tumor parameter ρ and the value of dM for
prevalent late constraint.

dM

(
Al(u+1, 0), Al(u, 0)

] (
Al(1, 0), ∞

)
1 ≤ u ≤ 4

ρ < ρl dl(1, u) dl(1, 0)

ρ ≥ ρl dl(5, 0) dl(5, 0)

Figure 2 illustrates the behavior of the fractional doses of the optima in Table 7 for ρ < ρl ,
showing how they change as a function of dM.

Figure 2. Optimal fractions di, i = 1, . . . , 5, for prevalent late constraint and ρ < ρl (see Table 7): (Top)
patterns of the dose fractions as functions of dM; and (Bottom) optimal weekly schedules (vertical bars)
corresponding to significant values of dM (limiting horizontal lines).

5. Optimal Number and Sizes of the Fractional Doses

In the present section we introduce the interesting aspect of finding the optimum overall treatment
time. Using the same formalism of the previous sections, we extend the formulation of Problem 2 to an
arbitrary number n of dose fractions, thus removing the assumption of treatments administered over
an assigned integer number of weeks. As done above, we consider traditional EBRT schemes with one
fraction per day and treatment breaks at the weekends and we express the overall treatment duration
T = T(n) as

T(n) = 7
[n

5

]
− 1−

{
2, n/5 integer,
5
[ n

5
]
− n, else.

(22)

Fixing a relation between the number of dose fractions and the overall treatment time allows us
to consider the number and the sizes of the dose fractions as the only decision variables. Obviously,
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the choice in Equation (22) is non-restrictive since different expressions of T(n) could be envisaged
without substantially altering the problem solving procedure (e.g., two fractions/day or seven
fractions/week). Numerical examples with different irradiation schemes investigating how clinically
important factors, such as accelerated tumor repopulation, affect the optima are reported in [9].
Then, the problem studied here is that of minimizing the function ln(S) (with S given by Equation (4))
with respect to both number and sizes of the fractional doses, taking into account the constraints on
the normal tissue damages in Equation (5) (without incomplete repair) and the upper bound dM on
the fractional dose sizes.

Using the usual notation in Equation (7), the total maximal admissible damages ke(n), kl over the
time T(n) are

ke(n) =
1
βe

[
Ce +

ln(2)
TPe

(
T(n)− TKe

)
H
(
T(n)− TKe

)]
, kl =

Cl
βl

. (23)

The following optimization problem can be set in terms of the variables n (number of fractional
doses) and d (vector of the fractional dose sizes di, with i = 1, . . . , n).

Problem 3. Minimize the function:

J(n, d) = −ρ
n

∑
i=1

di −
n

∑
i=1

d2
i +

ln(2)
βTP

(
T(n)− TK

)
H
(
T(n)− TK

)
, (24)

on the admissible domain:
D = N×Dn (25)

where

N = {n ∈ N|1 ≤ n ≤ nM} , (26)

Dn = {d ∈ Rn | ge(n, d) = ρe

n

∑
i=1

di +
n

∑
i=1

d2
i − ke(n) ≤ 0 ,

gl(n, d) = ρl

n

∑
i=1

di +
n

∑
i=1

d2
i − kl ≤ 0 ,

0 ≤ di ≤ dM , i = 1, . . . , n} . (27)

5.1. Optimal Vectors d

Problem 3 can be decomposed into a finite collection of nM optimization subproblems to be solved
in cascade with respect to d ∈ Dn, for n fixed, and then with respect to n, for any n ∈ N. In fact,
recalling Equations (25)–(27) of the feasible set D, we can write

min
(n,d)∈D

J(n, d) = min
n∈N

(
min
d∈Dn

J(n, d)
)

. (28)

Moreover
J(n, d) = Jn(d) + E(n) , (29)

where

Jn(d) = −ρ
n

∑
i=1

di −
n

∑
i=1

d2
i , (30)

and

E(n) =
ln(2)
βTP

(
T(n)− TK

)
H
(
T(n)− TK

)
. (31)
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Since E(n) in Equation (31) does not depend on the doses, the problem of minimizing J(n, d) on
Dn is equivalent to that of minimizing Jn(d) on the same set when n is fixed. Thus, we start by the
minimization with respect to d alone, i.e., by solving the following problem, which is a rather direct
extension of Problem 2.

Problem 4. For any fixed n ∈ N, minimize the function Jn(d) in Equation (30) with respect to d on the
admissible set Dn in Equation (27).

The decomposition in Equation (28) evidences that, in view of the Weierstrass Theorem [31],
the compactness of Dn and the continuity of Jn(d) on Dn guarantee the existence of an optimal solution
for Problem 4 for any given n ∈ N. Let us denote by d?n such an optimal solution, defining the sequence
of the corresponding optimal values for n ∈ N

J?(n) = J(n, d?n) = min
d∈Dn

J(n, d) . (32)

Since N is of finite cardinality, the optimum of Problem 3 can be determined by performing a
finite number of direct comparisons among the values J?(n), n ∈ N.

The optimal solutions of Problem 4 for an arbitrary n ∈ [1, nM] have been derived in [9] solving the
Karush–Kuhn–Tucker necessary and admissibility system, in view of the existence property guaranteed
by the Weierstrass theorem [31]. Because of the problem structure where the cost function and the
constraints are symmetrical with respect to the n-dimensional line ` = {d ∈ Rn : di = di+1, i =

1, . . . , n − 1}, the necessary and admissibility conditions increase with n, while their structure is
unchanged. In view of its application by numerical simulation, we report here the conclusive theorem
of Bruni et al. [9] for the most general constraint geometry.

Theorem 4. For ke(n)− kl > 0, ρekl − ρlke(n) > 0, and 1 ≤ v ≤ n, the optimal solutions of Problem 4 in
terms of ρ and dM are as in Tables 8–10.

Table 8. Optimal solutions d?n with respect to ρ and dM for 1 < v < n. The column headings reporting
additional conditions on v indicate that the solutions exist only for the values specified. The vectors for
ρl ≤ ρ < ρe, dM ≥ R1[v], and ρ = ρe are representative optimal vectors.

dM

(
0, Ae(n,0)

) [
Ae(u+1,0), Ae(u,0)

) [
Ae([v]+1,0), R1[v]

)
R1[v]

(
R1[v], Al([v],0)

] (
Al(u+1,0), Al(u,0)

] (
Al(1,0), ∞

)
[v]+1 ≤ u ≤ n− 1 1 ≤ u ≤ [v]−1

v - < n− 1 - - 6= [v] > 2 -

ρ<ρl d̃ de(1, u) de(1, [v]) dR dl(1, [v]) dl(1, u) dl(1, 0)

ρ=ρl d̃ de(1, u) de(1, [v]) dR dR dR dR

ρl <ρ<ρe d̃ de(1, u) de(1, [v]) dR dR dR dR

ρ=ρe d̃ de(n, 0) de(n, 0) de(n, 0) de(n, 0) de(n, 0) de(n, 0)

ρ>ρe d̃ de(n, 0) de(n, 0) de(n, 0) de(n, 0) de(n, 0) de(n, 0)

Table 9. Optimal solutions d?n with respect to ρ and dM for v = 1. The vectors for ρ = ρe are
representative optimal vectors.

dM

(
0, Ae(n,0)

) [
Ae(u+1,0), Ae(u,0)

) [
Ae(1,0), ∞

)
1 ≤ u ≤ n− 1

ρ<ρe d̃ de(1, u) de(1, 0)

ρ=ρe d̃ de(n, 0) de(n, 0)

ρ>ρe d̃ de(n, 0) de(n, 0)
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Table 10. Optimal solutions d?n with respect to ρ and dM for v = n. The vectors for ρ = ρl are
representative optimal vectors.

dM

(
0, Al(n,0)

) [
Al(u+1,0), Al(u,0)

) [
Al(1,0), ∞

)
1 ≤ u ≤ n− 1

ρ<ρl d̃ dl(1, u) dl(1, 0)

ρ=ρl d̃ dl(n, 0) dl(n, 0)

ρ>ρl d̃ dl(n, 0) dl(n, 0)

Proof. A proof of Theorem 4 is reported in the paper [9] along with a detailed analysis of the results.
We remind that, in Table 8, de(i, j) denotes solutions of ge(n, d) = 0 having j entries equal to dM,
i entries equal to Ae(i, j), and the remaining n− i− j entries equal to zero. Ae(i, j) is defined by

Ae(i, j) = −ρe

2
+

√(ρe

2

)2
+

ke(n)− jdM(dM + ρe)

i
. (33)

Similarly, we can define dl(i, j) and Al(i, j), with

Al(i, j) = −ρl
2
+

√(ρl
2

)2
+

kl − jdM(dM + ρl)

i
. (34)

It is evident in Table 8 that the optimal framework of Problem 4 becomes rather complex, especially
in the absence of a prevalent constraint. The optimal solution now changes as the pair of model
parameters (ρ and dM) change, as well as when the geometry of the normal tissue constraint is modified
(which means changing v). Figure 3 depicts such diversified situation reporting two three-dimensional
examples of the optima for the case of a slowly proliferating tumor (ρ < ρl) and for two dM values:
higher dM (dM > Al(1, 0), left panel) and lower dM (Al(2, 0) < dM < Al(1, 0), right panel).

In [8,9], it is shown that, when ρ < ρl , the cost function evaluated for dl(i, j) and de(i, j) decreases
as the total dose of the solution decreases. Thus, among the admissible vectors, the optimum is given
by the one with the minimal total dose. Indeed, when dM > Al(1, 0), dl(1, 0) is the optimum (first row,
last column of Table 8) since it is admissible (Figure 3, left panel) and since it satisfies the minimal total
dose requirement. On the contrary, when dM < Al(1, 0), the solution dl(1, 0) is no longer admissible
as it violates the box constraint (Figure 3, right panel). Thus, provided that dM ≥ Al(2, 0), the new
selected optimum is dl(1, 1) (first row, second to last column of Table 8, with u = 1), which is again the
vector with the minimal total dose among all the admissible vectors.

Concerning Table 8, we observe that there exists a threshold value for dM, which is called R1[v],
discriminating whether points of the intersection set {d ∈ Rn : ge(n, d) = 0, gl(n, d) = 0} are
admissible or not. In fact, such points are admissible if and only if dM ≥ R1[v]. Then, depending
on dM and v, the optimal solution can belong to the mentioned intersection of the constraints. As a
representative vector of this set, we choose the vector, denoted by dR, with the following particular
structure: [v] components equal to R1[v], one component equal to S − [v]R1[v] (absent for v = n),
plus n− [v]− 1 components equal to zero (absent if v ≥ n− 1). Our computational results show that
dR can actually represent the optimal radiotherapy scheme for tumors with ρ intermediate between ρl
and ρe.
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d1
d2

d3

d1
d2

d3

ge(3,d) = 0 gl(3,d) = 0 Box - dM

(Al(1,0) 0 0) (0 Al(1,0) 0)

(0 0 Al(1,0))

(dM 0 Al(1,1))

(dM Al(1,1) 0)

(Al(1,1) 0 dM) (0 Al(1,1) dM)

(0 dM Al(1,1))

(Al(1,1) dM 0)

Figure 3. Qualitative example for n = 3 to illustrate the optima of Table 8. Behavior of the optimal
solution for a tumor with ρ < ρl in the absence of a prevalent constraint and for two dM values: (Left)
dM > Al(1, 0); and (Right) Al(2, 0) < dM < Al(1, 0).

5.2. Optimal n

Let us now consider the function J?(n), defined by Equation (32), as J(n, d) evaluated at the
optimum d?n of Problem 4, with J(n, d) in Equations (29)–(31). We have

J?(n) = Jn(d?n) + E(n) . (35)

Concerning the problem of minimizing J?(n) with respect to n, in the paper [9], we established a
result that yields a theoretical upper limit for the optimal number of fractions and then for the optimal
treatment time. Therefore, provided that nM is higher than the upper limit, the iterative searching
procedure surely terminates in a finite number of steps leading to the optimal fraction number n◦,
n◦ ∈ [1, nM]. The theoretical upper bound depends on whether the tumor ρ is smaller or greater than
ρl , as stated in the following theorem.

Theorem 5. For n ≥ 1, the value n◦ for which J?(n) defined in Equation (35) attains its minimum value exists
and it is finite. For ρ < ρl , it is n◦ ≤ a, where a is such that ρekl − ρlke(a) = 0. For ρ ≥ ρl , in the presence of
tumor repopulation starting at TK, it is n◦ < ñ, where ñ is defined by

ñ =
1

ln(2)
αkl
ρl

TP
∆

+
TK
∆

+ 1 (36)

Proof. (see [9] for the details). Clearly, the thesis stems from the behavior of J?(n) and, in particular,
from the balance of its composing terms with respect to n. In addition, the conclusion depends
on ρ being smaller or greater than ρl because of the optimality of different fractionation schemes
(see Tables 8–10). Then, under the stated assumptions, it is easy to verify some properties of the
functions Jn(d?n) and E(n) useful to get the conclusion: (1) Jn+1(d?n+1) ≤ Jn(d?n) < 0; (2) Jn(d?n) has a
finite (negative) lower bound; (3) E(n + 1) ≥ E(n) ≥ 0; and (4) E(n) ≥ ln(2)((n− 1)∆− TK)/(βTP),
∆ = 1 day.

Another property stated in [9] is that, for n ≥ a, with a defined in theorem statement, gl(n, d)
is stricter than ge(n, d), which means that for n increasing the optimal vector eventually belongs to
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the boundary of the late constraint. Then, for n ≥ a, the optimum is d?n = dl(1, u) for ρ < ρl and
d?n = dl(n, 0) for ρ ≥ ρl (see Table 10).

For ρ < ρl , the integer u in the optimum d?n = dl(1, u) is independent of n (but it depends on dM).
Hence, Jn(d?n) takes a constant value with respect to n for n ≥ a and this constant value constitutes
its minimum. Thus, according to Properties (1)–(4), it is n◦ ≤ a (independently of the possible tumor
repopulation).

For ρ ≥ ρl , substituting the optimum d?n = dl(n, 0) in the cost function, and reminding
Equation (34) of Al(n, 0), it can be proved that Jn(d?n) strictly decreases with n tending to the finite
negative limit −ρkl/ρl . The presence of tumor repopulation will contrast the descent of Jn(d?n) for n
increasing. Using Property (4), we can write

J?(n) > −ρkl
ρl

+
ln(2)
βTP

[(n− 1)∆− TK] , (37)

where the right hand side is increasing with n. Denoting by ñ the real value where the minorant in
Equation (37) vanishes, we get for ñ the finite value defined in Equation (36). In conclusion, J?(n) is
negative and non-increasing until T(n) ≤ TK and it is positive for n ≥ ñ. Therefore, J?(n) must attain
its minimum for n◦ < ñ.

6. Numerical Results

We report a concise review of the main numerical results on the optimal solution of Problem 3.
We concentrate on this latter problem because the results allow us to evidence also properties common
to the solution of Problems 1 and 2.

On the basis of the analytical results of Section 5.1, after setting nM, the numerical procedure
selects the optimal solution d?n for each n = 1, . . . , nM computing the related J(n, d?n) = J?(n). Then,
the optimal fraction number n◦ is the number for which J?(n) attains its minimum value. Moreover,
still according to the theoretical results of the previous sections, our numerical investigation focuses
on three tumor classes, each identified by an interval of radiosensitivity ratio values: high (ρ≥ ρe,
fast proliferating tumors), low (ρ<ρl , slowly proliferating tumors), and intermediate (ρl≤ρ<ρe).

As mentioned above, the classification of tumors based on their proliferative behavior and
on α/β estimates has been widely used in the literature, while the advantage of using different
non-conventional protocols for different tumor classes has been evidenced only recently. Therefore,
our simulations were organized to explore the effect on the optimum of changing the tumor parameters.

For the computation of the maximal admissible damages Ce and Cl , again we chose
an equi-fractionated reference protocol n̄F × d̄Gy/T̄days, of the kind one fraction/day,
five fractions/week. From Equations (15) and (23), we obtain

ke(n) = k̄e +
ln(2)
βeTPe

(
T(n)− TKe

)
H
(
T(n)− TKe

)
, (38)

where the term k̄e is independent of n and entirely attributable to the reference protocol

k̄e = n̄ρed̄
(

1 +
d̄
ρe

)
− ln(2)

βeTPe

(
T̄ − TKe

)
H
(
T̄ − TKe

)
.

From Equation (16), we have

kl = n̄ρl d̄
(

1 +
d̄
ρl

)
. (39)

The simulations were carried out setting dM so that it satisfies the reasonable condition d̄ ≤
dM < min{Āe(1, 0), Al(1, 0)}, where d̄ is the fractional dose of the reference protocol and Āe(1, 0) is
computed setting ke(n) = k̄e and (i, j) = (1, 0) in Equation (33). The above condition ensures optimal
treatments consisting of at least two fractions besides the admissibility of the reference protocol.
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The values of the normal tissue parameters are relatively well assessed in the literature,
whereas the tumor parameter estimates vary considerably, even for the same tumor type. A rather
detailed literature search led us to fix in all the simulations the parameters of early and late normal
tissue as ρe = 10 Gy, αe = 0.35 Gy−1, and TKe = 7 days and TPe = 2.5 days, andρl = 3 Gy,
respectively [3–5,42].

Concerning the tumor classes, fast proliferating tumors characterized by high radiosensitivity
ratios are reckoned to include most human tumors, for instance head and neck, lung, and cervical
cancers [4,27,29,30,43]. We identify this tumor type with the range ρ ≥ ρe. Currently, prostatic
cancers are known as the most slowly proliferating human tumors; such tumors exhibit long potential
doubling times, low proportions of cycling cells, and low radiosensitivity ratios, typically lower than
late-responding normal tissues (ρ < ρl) [32,33,44–49]. Examples of tumors with ρl ≤ ρ < ρe are
breast cancer and some prostatic cancers observed to be not assimilable to slowly proliferating tumors
[30,50,51].

In view of the large variability of tumor parameters, we assumed a nominal set of parameter
values for each tumor class, and then we explored how the optimal solution changes when the
parameters vary in a meaningful range of values. Indeed, this is a crucial point for the application
of our optimization procedure because it requires setting the values of parameters such as ρ and α,
which can be affected by considerable estimation errors [21,35]. Interestingly, our simulations showed
some robustness of the optimal protocols to variations of the parameters, as shown below.

We are interested in comparing the obtained optimal protocols to real clinical schedules, which can
be done evaluating by means of the LQ model the effects that they produce in terms of cell killing. As in
Section 1, we chose the commonly used “strong standard” reference protocol 35 F× 2 Gy = 70 Gy/46
days, which provides BEDl = 116.7 Gy, BEDe = 53.1 Gy [5,27] and consequently kl = 350 Gy2,
k̄e = Ce/βe = 531.05 Gy2. The “log cell kill” defined in Equation (18) to quantify tumor radiation
damages now takes the form

LCK = α log10(e)

[
n

∑
i=1

di +
1
ρ

n

∑
i=1

d2
i −

ln(2)
αTP

(T(n)− TK)H(T(n)− TK)

]
. (40)

We notice that minimizing J?(n) with respect to n is equivalent to maximizing the quantity in
square brackets in Equation (40). Furthermore, it can be noticed from Equation (40) that LCK does not
depend directly on the tumor doubling time Tp, but on the product αTp. The inverse quantity 1/(αTp)

can be seen as an indicator of the tumor aggressiveness, since high values of this quantity are associated
to rapid tumor repopulation (short TP) accompanied by reduced radiosensitivity. An increase of
1/(αTp) tends to reduce LCK and has to be counterbalanced by reducing the treatment length.

Figures 4–6 summarize our numerical exploration of the optimum behaviour with respect to ρ,
αTP, and TK for the tumor classes fast, slow, and intermediate, respectively.

For fast proliferating tumors, the optimal fractionation scheme is uniform and made of fractions
equal to d̄. By contrast, as observed by some authors, the optimal treatment length is affected by
TK and TP (actually by αTP) [4,5]. Figure 4 shows the optimal treatment time as a function of the
product αTP for TK = 7, 14, 21, and 28 days. Moreover, ρ = 10 (left) and 50 Gy (right), and dM = 7 Gy.
Taking into account that most typically the average αTP ranges in [1, 2.5] Gy−1·days, the most recurrent
T(n◦) is 46 days equal to the reference protocol duration. For very small αTP, schedules shorter than
the standard reference are preferable and in particular as close as possible to TK. When αTP is large,
protracting the treatment time can be advantageous.

For tumors with low radiosensitivity ratios (ρ < ρl), the optimal solution tends to be
hypofractionated, i.e., composed by few fractions of large size, and in principle it would be made by a
single fraction if dM could exceed min{Āe(1, 0), Al(1, 0)}. Hence, the choice of the limit dM is expected
to strongly affect the optimal schedule. Higher tumor cell kill and lower normal tissue BED can be
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achieved using hypofractionated regimes rather than the conventional ones, provided that dM can be
safely increased.

Figure 4. Optimal treatment time T(n◦) as a function of αTP for ρ = 10 Gy (left) and for ρ = 50 Gy
(right). Daily dose upper bound dM = 7 Gy.

Figure 5. Optimal protocols for slowly proliferating tumors, ρ < ρl , as a function of αTP, for different ρ

and TK . Daily dose upper bound dM = 7 Gy.

Figure 5 shows the optimal solution for the class ρ < ρl as a function of αTP for dM = 7 Gy.
For this class, the optimal protocol is completely specified by the triple n◦ (or T(n◦)), number of
non-zero fractions at optimum ν◦, size of the “residual fraction". In fact, we remind that the optima of
this class take the form dl(1, u) or de(1, u), where u depends on dM and is such that u + 1 = ν◦ ≤ n◦

(see Tables 8–10) and the residual fraction is the only fraction different from zero and from dM. We add
some comments to Figure 5. First, the optimal treatment time of 16 days is the minimal time allowing
to satisfy the early tissue constraint with the equality sign. Second, and perhaps more interesting,
for most of the considered parameter values, the plots of Figure 5 give a sharp indication of the
optimum scheme of fractionation. Thus, when ρ < ρl , our simulation indicates that the optimal
solution is substantially insensitive to variations of the tumor parameters (for fixed values of the
normal tissue parameters and dM), which can be considered a very favorable feature of the problem
under study, in view of the high heterogeneity of tumors and of the large uncertainty affecting the
estimation of tumor parameters. Clearly, from a modeling point of view, the problem shifts towards
that of accurately assessing the healthy tissue constraints and the related bounds on the tolerable
radiation damage, as well as the value of dM.

However, for the case considered here of two quadratic normal tissue constraints with fixed
parameters and a given dM, the numerical simulation suggests that a single radiotherapy protocol can
be adopted for the class ρ < ρl . The mentioned protocol holds almost everywhere in tumor parameter
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interval, while it possibly represents a sub-optimal solution for some parameter value. We also observe
that such a robust solution is a safe solution since it is in compliance with the normal tissue constraints
for any considered set of tumor parameters.

For intermediate ρ values, ρl≤ρ<ρe, the optimal n◦ as a function of αTP, for different values of
TK, for ρ = 4 Gy and setting dM = 2.5 Gy is reported in Figure 6. As before, all parameters have been
set as the most recurrent in the literature. However, they are very scattered so that we expect to find
different types of optimal schedules.

Figure 6. Optimal protocols for tumors with intermediate ρ (ρ = 4 Gy) as a function of αTP, for different
TK . Reference protocol: 25 F× 1.8 Gy = 45 Gy/32 days: (Left) TK ≤ T̄; and (Right) TK > T̄, with T̄ total
reference protocol time. Daily dose upper bound dM = 2.5 Gy.

Depending on TK being shorter (left) or longer (right) than the total reference protocol time T̄,
the optimum is of the kind dR, with n◦ = 21 or 25 for the majority of αTP values (from 0.86 to 8.73
days/Gy). For small αTP, n◦ is smaller than the number of fractions of the reference protocol (n̄ = 25)
and the solution can be either d̃ (the vector with all dM entries) or of the kind de(1, u), depending on
dM. As depicted in Figure 6 right panel, when TK > T̄, T(n◦) turns out to be slightly greater or equal
to TK for almost any αTP. Overall, the plots of Figure 6 show that the optimal solutions are longer
than the reference (n◦ ≥ n̄) and with fraction doses smaller than d̄, which also implies that they are
not affected by different dM choices. However, protracting the solution beyond n̄ does not provide
significant advantages in terms of LCK. Hence, in view of the scarceness of information about the
“real” parameter values, treating tumors with intermediate proliferative behavior by means of standard
fractionation schemes appears to be advantageous.

A final schematic view of the optimal protocol sensitivity for the tumor classes considered thus
far is given in Figure 7.
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Figure 7. Sensitivity of optimal fractionated protocols to ±50% variations of α and ρ around the
nominal values, for the considered tumor classes. Nominal parameter values: ρ = 10 Gy, α = 0.35
Gy−1, TK = 21 days, and TP = 3 days (Fast); ρ = 6 Gy, α = 0.2 Gy−1, TK = 28 days, and TP = 14 days
(Intermediate); and ρ = 1.5 Gy, α = 0.1 Gy−1, TK = 35 days, and TP = 28 days (Slow). dM = 7 Gy.
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We applied relative perturbations of ±50% to the nominal values of α and ρ, computing the
relative variations of the following output quantities at the optimum: total treatment time, total dose,
normal tissues damages (BEDl , BEDe), and tumor LCK. For all tumor classes, the resulting LCK is
the quantity that exhibits the most consistent relative variations, either positive or negative, and,
in particular, it can be remarkably improved (up to 80% for slow proliferating tumors upon a −50%
variation of ρ). Apart from the LCK variation at the optimum, as also shown by Figures 4–6, the solution
for slow tumors is practically insensitive to the considered parameter variations, while the optimal
solution for fast tumors is affected only by negative variations of α and ρ. For the class of intermediate
tumors, upon both positive and negative ±50% parameter variations, we get output variations less
than 30%. This is not surprising from the mathematical point of view, indicating that tumors with
intermediate ρ can turn into the adjacent classes of fast or of slowly proliferating tumors.

We observe that T(n◦) and the optimal total dose are moderately affected by the relative
parameter variations, at least for slow and, in part, for intermediate tumors. On the contrary, for fast
and intermediate tumors, significant variations for T(n◦) (up to −54%, see Figure 7, fast tumors
panel, α− and ρ− columns) accompanied by noticeable variations of the optimal total dose (up to
−35%) are obtained when the optimum T(n◦) tends to equal the kick-off time (21 and 28 days,
respectively) unlike the conventional reference time of 35 days. Finally, reminding that the optima for
all tumor types maximize at least one of the prescribed normal tissue BEDs, we verify that at least one
between BEDl and BEDe is unaffected by the parameter variations, while the other shows only small
(obviously negative) variations not larger than −15%.

7. Concluding Remarks

The present work illustrates an example of the application of fundamental principles of
finite-dimensional nonlinear optimization to a problem of relevant interest in the clinical practice,
which is the problem of finding the best fractionation scheme in cancer EBRT treatment. We present
in a unitary framework an overview of the main results of our previous studies [7–9]. The problem
formulation is based on the LQ model describing the instantaneous relation between radiation dose
and cell survival for homogeneous cell populations. The model incorporates exponential repopulation,
but the analytical results for n fixed are in principle valid for different modeling choices of the
time-varying part of the cell population response. In its more general version, the optimization
problem includes a variable number of treatment sessions and it is a mixed-integer problem that can
be solved by means of two consecutive steps: (i) an analytical step to express the optimal size of the
fractional doses as a function of the model parameters for a fixed, but arbitrarily chosen, number
of fractions n; and (ii) a numerical step to simulate a sequence of optima obtained in Step (i) for n
increasing in order to find the optimal treatment time for specific tumor types.

Concerning Step (i), we present a few versions of the problem formulation following the
chronological order of the activity of our research group in this field. Our approach provides a
framework to analytically determine the optimal fractionation of the total radiation dose as a function
of tumor type for any arbitrarily fixed integer number of fractions. On the basis of KKT optimality
conditions, we classify the optimal solutions according to the tumor radiosensitivity ratio (α/β)
and to the possibly imposed upper limit on the dose fraction size (dM). We express the optimal
fraction sizes as a function of the normal tissue parameters, recognizing the crucial role of α/β on the
fractionation scheme for different tumor types. In particular, we confirm the convenience of adopting
hypofractionated schedules for small α/β (i.e., slowly proliferating tumors), as previously evidenced
by many authors [4,32,45], and uniform schedules of the kind commonly used in the clinical practice
in any other case.

The second step implements the numerical search of the optimal number of treatment sessions,
focusing on three classes of tumor types characterized by specific ranges of the radiosensitivity
ratio. The numerical results confirm the influence, highlighted above, of the ratio α/β on the
fractionation scheme. Recognizing that the uncertainty affecting the parameter estimation, especially in
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heterogeneous neoplastic cell populations, can constitute a drawback for the application of our
approach, we let the tumor parameters vary in broad ranges of parameter values trying, at the same
time, to provide a schematic summary of the results [9]. In particular, the numerical simulations have
evidenced the role of the product αTP in the optimality of treatment duration. The quantity 1/(αTP)

can be seen as an indicator of the tumor aggressiveness, since it takes high values when rapid tumor
repopulation is associated to low intrinsic radiosensitivity. Here, we present an excerpt from previous
simulations reporting the optimal solution as a function of the product αTP. Based on the discriminating
role of αTP, a remarkable results of our simulations is that for the majority of αTP values and for the
three tumor classes considered, basically two fractionated schedules appear to be preferable; for ρ ≥ ρe,
the conventional clinical protocols (e.g., the “strong standard” 2 Gy protocol) are optimal, while,
for ρ < ρl , hypofractionated protocols are generally preferable. Moreover, if experimental or clinical
evidence indicates very low αTP values, shorter protocols with overall duration close to TK and/or
hyperfractionation may be optimal. Indeed, in [9], we obtained optimal schemes delivering multiple
fractions per day (and with treatment length near TK) providing reduced late toxicity and increased
tumor damage with respect to protocols with a single daily fraction. In addition, the sensitivity of
the optimal solutions to ±50% variations of α and ρ around their nominal values was evaluated.
We stress that such a sensitivity analysis can be of some interest since the practical estimation of the
radiosensitivity parameters can be critically affected by consistent estimation errors. With the only
exception of the cases of T(n◦) approximating TK, which can occur for fast tumors with low α or ρ,
the sensitivity analysis revealed that the optimal protocol variations are rather limited, with absolute
variations of T(n◦) and of the optimal total dose lower than 15%.

We acknowledge that our results rely on some simplifying modeling assumptions such as,
in primis, the representation of the tissue response by means of the standard LQ model based on a
deterministic dose–response function with four parameters. The same LQ formalism is used to model
the normal tissue response and to set suitable boundary levels of the constraints necessary to ensure
treatment safety. This can be considered too simplistic, especially in regard to the many biological
processes involved in the normal tissue regeneration. The description of the radiation-induced damage
to normal tissue and of the subsequent healing kinetics, as well as the description of the post-irradiation
toxicity, are modeling issues really worthy of investigation as far as we are concerned with the
optimization of cancer treatments. As an example of more sophisticated normal tissue representation,
we mention the mechanistic approach by Hanin and Zaider [52] who combined a deterministic model
of the normal tissue kinetics with a stochastic representation of the inter-patient variation of kinetic
parameters. However, despite the criticism, the simple exponential law, starting after a “kick-off”
time from the treatment beginning, has been and continues to be largely used to model the tumor
repopulation, as well as to predict the tolerable radiation levels of acute reactions in healthy tissues
(see, e.g., [4,5,11,35,42]).

Thus, concerning the normal tissue constraints, we assume the maximal tolerable levels for early
and late complications, as well as the fraction limit dM, as input data values of the optimization
procedure. Furthermore, the quantities ke(n) and kl (or he and hl) have been expressed by means of
the Biologically Effective Dose to evaluate the extreme boundaries of early and late side-effects. Then,
these values are dependent on the model used to represent the damage and on a known tolerable
clinical protocol set as the reference protocol. At present, this kind of representation based on the BED
formalism is very frequently adopted and applied in planning external beam radiation treatments,
at least for the management of early-stage disease cases [24].

Finally, the modeling framework based on few “essential” parameters adopted in the present
study, allowed us to give a remarkably synthetic picture of the results of the optimal radiotherapy
problem. These results were obtained from the application of fundamental principles of the nonlinear
optimization and appear to be in good agreement with observations reported in the theoretical and
clinical literature.
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