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Abstract: Traditional time series forecasting techniques can not extract good enough sequence
data features, and their accuracies are limited. The deep learning structure SeriesNet is an advanced
method, which adopts hybrid neural networks, including dilated causal convolutional neural network
(DC-CNN) and Long-short term memory recurrent neural network (LSTM-RNN), to learn multi-range
and multi-level features from multi-conditional time series with higher accuracy. However, they didn’t
consider the attention mechanisms to learn temporal features. Besides, the conditioning method for
CNN and RNN is not specific, and the number of parameters in each layer is tremendous. This paper
proposes the conditioning method for two types of neural networks, and respectively uses the
gated recurrent unit network (GRU) and the dilated depthwise separable temporal convolutional
networks (DDSTCNs) instead of LSTM and DC-CNN for reducing the parameters. Furthermore,
this paper presents the lightweight RNN-based hidden state attention module (HSAM) combined
with the proposed CNN-based convolutional block attention module (CBAM) for time series
forecasting. Experimental results show our model is superior to other models from the viewpoint of
forecasting accuracy and computation efficiency.
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1. Introduction

In big data analysis, time series forecasting is an essential branch developed in recent
years. Traditional methods have some limitations for time series forecasting since the time series
possess characteristics such as non-linearity, non-stationarity and unknown dependencies. Deep
learning is an advanced approach to overcome these problems. It depends on non-linear modules
to learn the fully features from the input data. Shen et al. [1] proposed a deep learning structure
named SeriesNet, which combined the dilated causal convolutional neural networks (DC-CNN) [2]
and the long-short term memory (LSTM) [3]. They evaluated that their model has higher forecasting
accuracy and greater stableness. LSTM and DC-CNN are widely applied to time series forecasting
with excellent performance. However, DC-CNN and LSTM include a large number of parameters,
resulting in tremendous computation cost. Gated recurrent unit network (GRU) [4] and LSTM have a
comparable performance on time series forecasting, but parameter quantity significantly reduced. So
does the dilated depthwise separable temporal convolutional networks (DDSTCNs) [5] compared
with DC-CNN. The SeriesNet can directly input raw time series sequences by conditioning the target
time series on the additional time series. But the specific conditioning method is not clarified in
their work. In addition, they did not consider the attention mechanisms in SeriesNet. Recently, most
researches focus on the recurrent neural network (RNN) based attention [6–8] to improve the deep
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learning structure. However, the heavyweight attention mechanism within massive training parameters
will influence the computation efficiency. The convolutional block attention module (CBAM) [9] is
a lightweight attention structure, but has only been successfully applied to image recognition so
far. Therefore, the main contributions of this paper are as follows:

• We introduce the conditioning methods for CNN and RNN and propose a lightweight hidden
state attention module (HSAM) on RNN layers.

• We have utilized the attention mechanisms in SeriesNet and present an attention-based SeriesNet
combined CBAM [9] on convolutional layers and HSAM on RNN layers for time series forecasting.

• We used GRU and DDSTCNs instead of LSTM and DC-CNN of SeriesNet to reduce the parameters
in neural network layers.

The related work is shown in Section 2. Section 3 introduces the details of attention-based
SeriesNet. Section 4 gives the experimental results, followed by the conclusion in Section 5.

2. Related Work

With the development of modern time series forecasting, the traditional forecasting methods
such as the autoregressive integrated moving average (ARIMA) [10] model and the support vector
regression (SVR) [11] have encountered a bottleneck. The model based on the artificial neural network
(ANN) [12] is a further prediction approach. A single neuron in a neural network has a simple ability to
reflect the essential characteristics of non-linearity. The self-organizing and compounding of these basic
units enables the neural network to learn the inherent law of the sequence. Zeng et al. [13] presented
enhanced back-propagation neural network (ADE-BPNN) for energy consumption forecasting, which
outperforms the traditional BPNN models. Hu et al. [14] proposed a new enhanced optimization
model based on the bagged echo state network (ESN) improved by differential evolution algorithm
to estimate energy consumption. Subsequently, they developed DeepESN [15] by introducing deep
learning idea into ESN for forecasting energy consumption and wind power generation.

The recurrent neural network (RNN) [16] is a variant method of ANN applied for a sequence
that the forward and backward variables have dependencies. Subsequently, the improved RNN
named Long-short term memory (LSTM) [3] is proposed to deal with the gradient disappearance
problem [17] when a sequence is very long. LSTM combines short-term memory with long-term
memory through three gate structures to alleviate the gradient disappearance problem. Gated
recurrent unit (GRU) [4] is an advance in LSTM, which keeps the same performance as LSTM while
simplifying the structure of LSTM. Recently, it has been found that convolutional neural networks
(CNN) [18] widely used in image recognition, is also suitable for time series forecasting. Dilated
causal convolutional neural networks (DC-CNN) [2] is a variant of CNN for time series forecasting,
which allows the reception field greater than the length of the filter by skipping some inputs. Dilated
depthwise separable temporal convolutional networks (DDSTCNs) [5] is a further variant of DC-CNN,
which divides the DC-CNN into two steps: depthwise convolution and pointwise convolution. These
two steps significantly reduce the computation cost compared with a normal CNN. Shen et al. [1]
proposed the SeriesNet, which contains LSTM and DC-CNN as shown in Figure 1 to extract temporal
features. The SeriesNet adopts residual learning [19] and batch normalization (BN) [20] as Google
waveNet [21] to improve its generalization and achieved good forecasting accuracy. The SeriesNet
can directly conduct on raw time sequences. But the specific conditioning method is not introduced in
Shen’s work. Borovykh et al. [22] proposed the CNN-based multi-conditional time series forecasting
with excellent results. Philipperemy et al. [23] introduced the RNN-based conditioning method for
additional non-temporal information.

The attention mechanism is another advance in deep learning. An attention mechanism
equips a neural network with the ability to focus on a subset of its inputs. In recurrent networks,
the encoder-decoder structure based attention mechanisms [6] have been proposed for time
series forecasting with high accuracy. In convolutional networks, Hu et al. [24] presented a
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lightweight attention module, named squeeze-and-excitation networks (SeNet), which considered
global average pooling as an attention mechanism for image recognition and adopted in Google
ResNet [19]. The convolutional block attention module (CBAM) [9] is an improvement of SeNet by
taking account of both global average and max pooling simultaneously in the channel and spatial
attention modules, respectively. Nauta et al. [5] considered attention-based dilated depthwise separable
temporal convolutional networks (AD-DSTCNs) and demonstrated that attention mechanisms could
be successfully used in DDSTCNs for time series forecasting.

Figure 1. The structure of the SeriesNet.

3. Structure of Attention-Based SeriesNet

This paper improves Shen’s work [1] by using two different attention mechanisms on two
sub-networks of SeriesNet, respectively. The first subnet utilizes CBAM-based DDSTCNs to instead
of DC-CNN [2] to learn short interval features. The stacked deep residual connection blocks [19]
with different dilated rates can learn long interval features with different reception fields. The batch
normalization (BN) [20] is added to solve the gradient vanishing problem. For the second subnet,
HSAM-based GRU is applied instead of LSTM for learning the holistic features followed by a full
connection (FC) layer to set the output dimensionality. Finally, the outputs of two sub-networks will
be element-wise multiplied together for time series forecasting. The attention-based SeriesNet can
directly conduct on the raw time series by conditioning methods.

3.1. Conditioning

According to [21,22], given a one-dimensional time series with T time steps x = {x1, x2, . . . , xT} ∈
R1×T , the object is to output the next value xt conditional on the series’ history, x1, ..., xt−1 by
maximizing the likelihood function as below:

p(h) =
T

∏
t=1

p(xt|x1, x2, . . . , xt−1). (1)

The distribution of one time series conditional on additional time series y ∈ Ri×T is given by

p(x|y) =
T

∏
t=1

p(xt|x1, x2, . . . , xt−1, y), (2)
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This paper first adopts a causal convolution to map the input and the condition (additional time
series) with the same feature dimension (channel). Then the CNN-based conditioning method [22] is
done by computing the activation function of the convolution as:

SeLU( f 1×k
d (x) + f 1×h

d (y)), (3)

where f 1×k
d and f 1×h

d denotes the convolution operation with filter size 1× k, 1× h and dilation rate d in
the depthwise convolution of DDSTCNs, respectively. The conditioning method for CNN is similar to
Borovykh’s work [22] except for the activation function. This paper adopts the scaled exponential linear
unit (SeLU) [25] instead of the rectified linear unit (ReLU) [26] since the self-normalizing properties
of the SeLU has more robust representations of the time series. As shown in Figure 2, the input and
condition are conditioned in the first residual layer (L), followed by the CBAM [9] and the 1× 1
convolution, and summed with the parametrized skip connections. The result from this layer is the
input in the subsequent convolution layer with a residual connection, which is repeated to obtain the
output from layer L and forwarded to a 1× 1 convolution to generate the final CNN output.

This paper presents the conditioning method for RNN based on Philipperemy’s [23] work as
demonstrated in Figure 3. The given multi-conditions y ∈ Ri×T is considered as the initial state of the
first RNN layer by transforming its shape into y ∈ Rp×m, where m is the unit number of the first RNN
layer and p’s value is 1 or 2 for GRU and LSTM, respectively. Since LSTM owns hidden state and cell
state, GRU only has hidden state. In case of GRU, the flatten operation is implemented on y ∈ Ri×T

to convert its shape into y ∈ R1×v, where v is the product of i and T. The FC layer with a sigmoid
activation function is followed with the flatten operation to obtain the target shape y ∈ R1×m. For
LSTM, this paper first adopts flatten operation followed by a FC layer with a sigmoid activation
function to transform the shape of y ∈ Ri×T into y ∈ R1×2m, and then reshapes it into y ∈ R2×m. Each
row of y ∈ R2×m is considered as the initial hidden state and initial cell state,respectively. This
approach naturally solves the shape problem of multi-conditions, and also avoids polluting the inputs
with additional information.

Figure 2. The structure of the conditional CNN sub-networks.
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Figure 3. The structure of the attention-based SeriesNet.

3.2. Dilated Depthwise Separable Temporal Convolutional Networks

The DDSTCNs introduced in [5] based on the depthwise separable convolution [27], which is
well known by Google’s Xception architecture for image classification [27]. A depthwise separable
convolution splits a kernel into two separate kernels that do two convolutions: the depthwise
convolution and the pointwise convolution. The depthwise convolution separates the channels by
applying a different kernel to each input channel. The pointwise convolution adopts a one times one
kernel to each output channel of depthwise convolution and merges them together. This architecture
is different from normal CNN that two convolutions improve computation performance than only
one kernel per layer. The separate channels can correctly handle each dimension of input data impacts
on output data, followed by a pointwise convolution tunes the number of output channels where the
multiplications between parameters reduced significantly. Our architecture consists of k channels, one
for each output from batch normalization (BN) [20] layer. An overview of this architecture is shown in
Figure 4. Figure 5 is an example of stacked temporal DC-CNN, which explains the details of the left
zero padding to predict the first values. The dilation rate 1, 2, 4, ..., 2n is considered in the depthwise
convolution of each DDSTCNs layer to adjust the receptive field.

Figure 4. The structure of the DDSTCNs.
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Figure 5. The structure of the DC-CNN.

3.3. Convolutional Block Attention Module

The CBAM [9] adopts global average pooling and max pooling both in channel and spatial
direction of a 2D image within an intermediate feature map satisfying F ∈ RC×H×W , where C, H
and W denotes the channel, height and width, respectively. Figure 6 illustrates the details of channel
attention module Mc ∈ RC×1×1 and spatial attention module Ms ∈ R1×H×W of CBAM. For 1D time
series, the height H = 1. Given an intermediate feature map F ∈ Rn×T as input, this paper uses feature
dimension n and time steps T of the previous layer output instead of C and W in a image. The feature
(channel) attention generates time step context descriptors Fn

avg ∈ Rn×1 and Fn
max ∈ Rn×1 of a feature

map by using both average and max pooling operation along the time step axis, and then fowards to a
shared multi-layer perception (MLP) to produce the feature (channel) attention map Mn ∈ Rn×1 as:

Mn(F) = σ(MLP(AvgPool(F))) + MLP(MaxPool(F))

= σ(W1(W0(Fn
avg)) + W1(W0(Fn

max))), (4)

where σ indicates the sigmoid activation function, the MLP weights W0 ∈ Rn/r×n and W1 ∈ Rn×n/r

respectively followed by a ReLU and sigmoid activation function are shared for both inputs. r is
the reduction ratio used to reduce the parameters in W0. The feature attention map Mn ∈ Rn×1

element-wise multiplies the intermediate feature map F ∈ Rn×T to generate a new intermediate map
F
′ ∈ Rn×T to feed in time step (spatial) attention module:

F
′
= Mn (F)⊗ F, (5)

where ⊗ is an element-wise multiplication. The time step (spatial) attention module generates a
concatenated feature descriptor [F

′T
avg; F

′T
max] ∈ R2×T by applying average pooling and max pooling

along the feature axis, followed by a standard convolution layer. The time step (spatial) attention map
MT ∈ R1×T is computed as:

MT(F
′
) = σ( f 1×7([AvgPool(F

′
); MaxPool(F

′
)]))

= σ( f 1×7([F
′T
avg; F

′T
max])), (6)

where f 1×7 indicates a 1× 7 kernel size convolution operation. At last, the element-wise multiplication
between MT ∈ R1×T and F

′ ∈ Rn×T is executed to renew the intermediate feature map as:

F
′′
= MT

(
F
′)⊗ F

′
, (7)
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where F
′′ ∈ Rn×T and will be input to next layer.

Figure 6. The overview of CBAM.

3.4. Hidden State Attention Module

This paper presents the RNN-based HSAM by integrating the two modules of CBAM together. The
HSAM is implemented between every two GRU layers as illustrated in Figure 7. The GRU unit
merges the memory cell state and hidden state of LSTM unit into one hidden state, and reduces
the three sigmoid gates of LSTM unit to two gates: reset gate rt and update gate zt to simplify the
structure. Feeding the given one-dimensional time series with T time steps x = {x1, x2, . . . , xT} ∈ R1×T

in a GRU layer, the update formulas of the GRU unit are summarized as:

zt = σ(Wz[ht−1; xt]), (8)

rt = σ(Wr[ht−1; xt]), (9)

h̃t = tanh(W[rt ⊗ ht−1; xt]), (10)

ht = (1− zt)⊗ ht−1 + zt ⊗ h̃t, (11)

where ht ∈ Rm×1 is the hidden state with size m and ⊗ is an element-wise multiplication. [ht−1; xt] ∈
R(m+n)×1 is a concatenation of the previous hidden state ht−1 and the current input xt. Wz, Wr,
W ∈ Rm×(m+n) are weight parameters to learn. The multi GRU layers utilize per time step hidden
state of previous GRU layer as an input forwarding to the corresponding state of the next GRU
layer. The input at each time step (feature axis) has great influence on the related hidden state output
of the next GRU layer. Therefore, this paper aims to extract the average pooling and max pooling only
along the hidden state feature axis of the previous GRU layer. There is an intermediate feature map
h ∈ Rm×T represents all hidden states of previous GRU layer. The hidden state attention produces
feature context descriptors hT

avg ∈ R1×T and hT
max ∈ R1×T through average pooling and max pooling

along feature axis, and feeds them into a shared MLP layer. The outputs of the shared MLP layer are
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concatenated together as [W1(W0(hT
avg)); W1(W0(hT

max))] ∈ R2×T followed by a standard convolution
layer to obtain the hidden state map HT ∈ R1×T as below:

HT(h) = σ( f 1×7([MLP(AvgPool(h))); MLP(MaxPool(h)]))

= σ( f 1×7([W1(W0(hT
avg)); W1(W0(hT

max))])), (12)

where the MLP weights W0 ∈ Rm/r×1 and W1 ∈ R1×m/r with reduction ratio r are also followed by a
ReLU and sigmoid activation function, respectively. Finally, the hidden state map HT element-wise
multiplies the intermediate feature map h to produce a renewed intermediate feature map h

′ ∈ Rm×T

feeding in next GRU layer:
h
′
= HT (h)⊗ h. (13)

Figure 7. The overview of HSAM.

4. Experiments

This paper uses five typical open time series datasets, including three economic data: S&P500
Index, Shanghai Composite Index, Tesla Stock Price and two temperature data: NewYork hourly
temperature and Weather in Szeged as shown in Table 1 to evaluate the models. The attention-based
SeriesNet is compared with the SeriesNet [1], the Augmented WaveNet [22], the SVR [11] and the GRU
networks [4]. Each model is evaluated by 4 metrics: the root-mean-square error (RMSE), the mean
absolute error (MAE), the coefficient of determination (R2) and the computation time of specific
epoch numbers. This paper takes an average of ten times of training results as the final accuracy of
each model.
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Table 1. Time series dataset.

Time Series Time Range Train Data Validation Data Test Data

S&P500 Index 1950.01–2015.12 3297 320 320
Shanghai Composite Index 2004.01–2019.06 2430 280 280

Tesla Stock Price 2010.06–2017.03 1049 160 160
NewYork temperature 2016.01–2016.07 2430 320 320

Weather in Szeged 2006.04–2016.09 1700 240 240

This section uses A_SeriesNet and WaveNet instead of the attention-based SeriesNet and the
augmented WaveNet for short. The experiments are executed on Windows 10 with 2.50 GHz Intel
Core i7 and 8 GB memory and conducted on the python environment with Keras deep learning
structure. The hyper-parameters of A_SeriesNet shown in Table 2, Tables 3 and 4 are slightly adjusted
when it applies to different datasets. The reduction ratio of CBAM and HSAM shown in Tables 3 and 4
is one. The padding of depthwise convolution and pointwise convolution of DDSTCNs is causal and
valid, respectively. In the case of three economic datasets, this paper uses daily average stock price as
the target time series (Input) by taking the average of daily high and low stock price. The part of the
other time series in two economic datasets, such as the daily trading volume and the daily close stock
price, is chosen as the conditions. For the two temperature datasets, the temperature is considered as
the target time series (Input), the Dew point and the humidity are chosen as the conditions. This paper
adopts the MAE as the loss function as below:

lossmin =
1
T

T

∑
t=1
|Ft − At| , (14)

where Ft and At denotes the target value and predicted value at time t, respectively. The weights
of all CNN layers of A_SeriesNet are initialized with a truncated normal distribution with zero
mean and constant variance of 0.05. The GRU layers of A_SeriesNet are initialized with he_normal
distribution. The Adam optimizer [28] is used with the learning rate 0.001 and β1 of 0.9. The related
layer numbers of SeriesNet and WaveNet are unified with A_SeriesNet as shown in Table 2. This paper
removed CBAM and HSAM and used DC-CNN and LSTM instead of DDSTCNs and GRU in Figure 3
as the conditional structure of SeriesNet. All the models except for SVR used the conditioning method
for the experiments.

This paper computes each layer’s complexity for detecting our model’s computational
performance, as demonstrated in Tables 2–4. The shape of input time series and condition is respectively
specified to x ∈ R1×T and y ∈ R1×T for easy calculating the complexity. The evaluation is only limited
to the forward propagation of the computational process. The complexity of a standard 1D CNN
layer [29] is defined as below:

Complexity ∼ O(M · K · Cin · Cout), (15)

where M is the width of the output feature map, K denotes the width of the kernel, Cin and Cout

represents the channel input and channel output, respectively. We ignore the bias of all CNN layers and
full connection layers for convenience to compute the complexity. The complexity of a 1D DDSTCNs
layer is computable as follows:

Complexity ∼ O(M · K · Cin + M · Cin · Cout). (16)
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Table 2. Hyper parameters and complexity of attention-based SeriesNet.

Type Units/Filters Size Dilation Rate Padding Output Complexity

Conv1D(Input) 1 30 1 causal (50, 1) 1500
BN (50, 1) 0

DDSTCNs 8 7 1 causal/valid (50, 8) 750
Conv1D(Condition) 1 20 1 causal (50, 1) 1000

BN (50, 1) 0
DDSTCNs 8 4 1 causal/valid (50, 8) 600

Add (50, 8) 0
SeLU (50, 8) 0

CBAM (50, 8) 956
Conv1D 1 1 1 same (50, 1) 400

Add (50, 1) 0
BN (50, 1) 0

DDSTCNs 8 7 2 causal/valid (50, 8) 750
SeLU (50, 8) 0

CBAM (50, 8) 956
Conv1D 1 1 1 same (50, 1) 400

Add (50, 1) 0
...

BN (50, 1) 0
DDSTCNs 8 7 16 causal/valid (50, 8) 750

SeLU (50, 8) 0
CBAM (50, 8) 956

Conv1D 1 1 1 same (50, 1) 400
Add(Skip-Connection) (50, 1) 0

Conv1D 1 1 1 same (50, 1) 50
Condition (1, 20) 1000

GRU(Input, Condition) 20 (50, 20) 66,000
HSAM (50, 20) 780
GRU 20 (50, 20) 123,000
FC 1 (50, 1) 20

Multiply (50, 1) 0
ReLU (50, 1) 0

Total 204,480

Table 3. Hyper parameters and complexity of HSAM.

Type Units/Filters Size Dilation Rate Padding Output Complexity

Lambda_Mean(GRU) (50, 1) 0
FC 20 (50, 20) 20

ReLU (50, 20) 0
FC 1 (50, 1) 20

Lambda_Max(GRU) (50, 1) 0
FC 20 (50, 20) 20

ReLU (50, 20) 0
FC 1 (50, 1) 20

Concatenate (50, 2) 0
Conv1D 1 7 1 same (50, 1) 700
Sigmoid (50, 1) 0

Multiply(GRU, Sigmoid) (50, 20) 0

Total 780
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Table 4. Hyper parameters and complexity of CBAM.

Type Units/Filters Size Dilation Rate Padding Output Complexity

GlobalAvgPooling1D(SeLU) (1, 8) 0
FC 8 (1, 8) 64

ReLU (1, 8) 0
FC 8 (1, 8) 64

GlobalMaxPooling1D(SeLU) (1, 8) 0
FC 8 (1, 8) 64

ReLU (1, 8) 0
FC 8 (1, 8) 64

Add (1, 8) 0
Sigmoid (1, 8) 0

Multiply1(SeLU, Sigmoid) (50, 8) 0
Lambda_Mean(Multiply1) (50, 1) 0
Lambda_Max(Multiply1) (50, 1) 0

Concatenate (50, 2) 0
Conv1D 1 7 1 same (50, 1) 700
Sigmoid (50, 1) 0

Multiply2(Multiply1, Sigmoid) (50, 8) 0

Total 956

On the other hand, LSTM is local in space and time [3], which means that the input length does
not affect the storage requirements of the network and for each time step, the time complexity per
weight is O(1). Therefore, the overall complexity of an LSTM per time step is equal to O(w), where w
is the number of weights. The complexity of a standard LSTM layer per time step is calculated as:

Complexity ∼ O(4 · (I · H + H2 + H)), (17)

where I denotes the dimension of input data, H represents the hidden unit numbers. The Complexity
of a standard GRU layer per time step is simpler than LSTM, which is given as:

Complexity ∼ O(3 · (I · H + H2 + H)). (18)

The overall complexity of our model is the sum of the complexity of all layers.
Table 5 shows the experimental results when the forecast sliding window representing the

future time span is 1. GRU2
20 denotes using 2 layers of GRU cell and each layer contains 20 neurons.

The A_SeriesNet has the best performance on both non-linear and non-stationary economic datasets
and relatively stationary time series temperature dataset compared with the other models. The lower
RMSE, MAE and higher R2 close to 1 means better model fitting. This paper performs the models
except for SVR for 64 epochs with 64 mini-batch size one time. This epoch number allows the models
to achieve a satisfactory convergence on five datasets.

Table 5. The result of accuracy comparison.

Time Series A_SeriesNet SeriesNet WaveNet GRU2
20 SVR

RMSE MAE R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE R2

S&P500 Index 8.90 7.17 0.98 10.08 8.11 0.97 11.13 8.73 0.97 10.57 8.39 0.97 16.16 12.61 0.96
Shanghai Composite Index 56.69 36.49 0.98 71.96 55.50 0.97 80.52 60.10 0.97 79.29 50.17 0.97 82.25 63.19 0.97

Tesla Stock Price 4.56 3.36 0.97 4.82 3.68 0.96 5.50 4.36 0.95 5.59 4.38 0.95 4.74 3.36 0.96
NewYork temperature 1.63 1.20 0.97 1.68 1.22 0.97 1.76 1.25 0.96 1.72 1.25 0.97 1.79 1.23 0.96

Weather in Szeged 1.22 0.71 0.96 1.29 0.79 0.96 1.44 0.90 0.95 1.42 0.88 0.95 1.41 0.83 0.95

Table 6 demonstrates the average computation time (in seconds) of the models for one-time
training. The computation time of A_SeriesNet is in rank 3, which is faster than SeriesNet and slower
than GRU2

20. The SVR takes longer training time to obtain the results close to the other models.
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Table 6. The result of performance comparison.

Time Series A_SeriesNet SeriesNet WaveNet GRU2
20 SVR

S&P500 Index 100.80 103.62 17.99 74.37 273.49
Shanghai Composite Index 92.72 94.42 18.73 76.10 237.40

Tesla Stock Price 61.90 64.69 36.36 41.37 124.97
NewYork temperature 99.78 101.38 17.80 74.73 107.08

Weather in Szeged 89.24 96.56 17.54 62.93 115.96

Table 7 shows the results of GRU combined with HSAM (HSAM_GRU) compared with GRU.
This paper adopts GRU2

20 with 2 layers of GRU cell and each layer contains 20 neurons and GRU4
20

with 4 layers of GRU cell and each layer contains 20 neurons for the experiments. The results show
that the different layers of HSAM_GRU are superior to related GRU networks. When the number of
layers increased, the accuracy of GRU for 5 datasets decreases. HSAM can keep the accuracy of deep
GRU networks. The computation time of HSAM_GRU is close to GRU as demonstrated in Table 8.

Table 7. The accuracy comparison of HSAM_GRU and GRU.

Time Series HSAM_GRU2
20 GRU2

20 HSAM_GRU4
20 GRU4

20

RMSE MAE R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE R2

S&P500 Index 9.51 7.77 0.98 10.57 8.39 0.97 10.18 8.01 0.97 12.23 9.92 0.96
Shanghai Composite Index 78.44 48.49 0.97 79.29 50.17 0.97 80.46 54.74 0.97 92.83 66.70 0.96

Tesla Stock Price 5.02 3.89 0.96 5.59 4.38 0.95 6.24 4.63 0.94 6.29 5.00 0.94
NewYork temperature 1.68 1.23 0.97 1.72 1.25 0.97 1.73 1.27 0.97 1.76 1.28 0.97

Weather in Szeged 1.33 0.80 0.96 1.42 0.88 0.95 1.41 0.82 0.95 1.56 1.00 0.94

Table 8. The performance comparison of HSAM_GRU and GRU.

Time Series HSAM_GRU2
20 GRU2

20 HSAM_GRU4
20 GRU4

20

S&P500 Index 81.94 74.37 167.42 145.09
Shanghai Composite Index 82.87 76.10 172.13 141.04

Tesla Stock Price 39.44 36.36 86.82 76.52
NewYork temperature 81.21 74.73 170.77 147.92

Weather in Szeged 66.20 62.93 125.95 117.07

Tables 9–11 show the hyper parameters and complexity of SeriesNet and WaveNet in our
experiments. The shape of input time series and condition in the tables is also appointed to x ∈ R1×T

and y ∈ R1×T, respectively. We also ignore the bias of all CNN layers and full connection layers for
computing the overall complexity of these models. The structure of GRU4

20 is similar to GRU2
20 in

Tables 10 and 12 gives the complexity comparison results of deep learning models. The complexity of
our model is between GRU2

20 and SeriesNet.

Table 9. Hyper parameters and complexity of augmented WaveNet.

Type Units/Filters Size Dilation Rate Padding Output Complexity

Conv1D(Input) 8 7 1 causal (50, 8) 2800
ReLU (50, 8) 0

Conv1D(Condition) 8 7 1 causal (50, 8) 2800
ReLU (50, 8) 0
Add (50, 8) 0

Conv1D 8 7 2 causal (50, 8) 22,400
ReLU (50, 8) 0
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Table 9. Cont.

Type Units/Filters Size Dilation Rate Padding Output Complexity

Add (50, 8) 0
...

Conv1D 8 7 16 causal (50, 8) 22,400
ReLU (50, 8) 0

Add(Skip-Connection) (50, 8) 0
Conv1D 1 1 1 same (50, 1) 400

Total 95,600

Table 10. Hyper parameters and complexity of GRU2
20.

Type Units/Filters Size Dilation Rate Padding Output Complexity

Condition (1, 20) 1000
GRU(Input, Condition) 20 (50, 20) 66,000

GRU 20 (50, 20) 123,000
FC 1 (50, 1) 20

Total 190,020

Table 11. Hyper parameters and complexity of SeriesNet.

Type Units/Filters Size Dilation Rate Padding Output Complexity

Conv1D(Input) 1 20 1 causal (50, 1) 1000
BN (50, 1) 0

Conv1D 8 7 1 causal (50, 8) 2800
Conv1D(Condition) 1 20 1 causal (50, 1) 1000

BN (50, 1) 0
Conv1D 8 4 1 causal (50, 8) 1600

Add (50, 8) 0
Conv1D 1 1 1 same (50, 1) 400

Add (50, 1) 0
BN (50, 1) 0

Conv1D 8 7 2 causal (50, 8) 2800
Conv1D 1 1 1 same (50, 1) 400

Add (50, 1) 0
...

BN (50, 1) 0
Conv1D 8 7 16 causal (50, 8) 2800
Conv1D 1 1 1 same (50, 1) 400

Add(Skip-Connection) (50, 1) 0
Conv1D 1 1 1 same (50, 1) 50

Condition (2, 20) 2000
LSTM(Input, Condition) 20 (50, 20) 88,000

LSTM 20 (50, 20) 164,000
FC 1 (50, 1) 20

Multiply (50, 1) 0
ReLU (50, 1) 0

Total 273,670

Table 12. The result of complexity comparison.

A_SeriesNet SeriesNet WaveNet GRU2
20 GRU4

20

Complexity 204,480 273,670 95,600 190,020 436,020
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5. Conclusions

This paper proposed a deep learning neural network structure named attention-based SeriesNet,
which desires to predict the future value of time series. The attention-based SeriesNet applies DDSTCNs
and GRU instead of DC-CNN and LSTM in SerieNet to accelerate the training. Furthermore, this model
adopts CBAM attention on residual learning module and proposed HSAM attention on GRU networks
to better extract the potential features from the input time series. We succeeded in improving SeriesNet
since our model’s accuracy, and complexity is superior to the SeriesNet. The experiment results also
show that attention-based SeriesNet has higher forecasting accuracy than other models. This paper only
explored the performance of the SeriesNet models on the economic and temperature datasets. Further
analysis of different types of datasets is required to examine the capability of attention-based SeriesNet
to forecast from different data distributions for varying forecast horizons. This paper didn’t evaluate
the performance of hidden state attention mechanisms on recurrent neural networks with deep
structure. The only two or four layers GRU can not adequately describe its performance. It was also
found that the forecasts were very sensitive to layer weight initialization, receptive field and training
duration. The parameter tuning is necessary for different datasets.

6. Future Work

In the future, we will continue to develop the attention mechanism of our model. The dual-stage
attention-based recurrent neural network has good accuracy in the field of time series forecasting.
The dual-stage attention structure, combined with a hidden state attention module, may improve
our model’s performance. This paper only detected the conditional time series for time series
forecasting. The performance of our model for multi-variable time series will also be detected in
the future.
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