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Abstract

:

Traditional time series forecasting techniques can not extract good enough sequence data features, and their accuracies are limited. The deep learning structure SeriesNet is an advanced method, which adopts hybrid neural networks, including dilated causal convolutional neural network (DC-CNN) and Long-short term memory recurrent neural network (LSTM-RNN), to learn multi-range and multi-level features from multi-conditional time series with higher accuracy. However, they didn’t consider the attention mechanisms to learn temporal features. Besides, the conditioning method for CNN and RNN is not specific, and the number of parameters in each layer is tremendous. This paper proposes the conditioning method for two types of neural networks, and respectively uses the gated recurrent unit network (GRU) and the dilated depthwise separable temporal convolutional networks (DDSTCNs) instead of LSTM and DC-CNN for reducing the parameters. Furthermore, this paper presents the lightweight RNN-based hidden state attention module (HSAM) combined with the proposed CNN-based convolutional block attention module (CBAM) for time series forecasting. Experimental results show our model is superior to other models from the viewpoint of forecasting accuracy and computation efficiency.
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1. Introduction


In big data analysis, time series forecasting is an essential branch developed in recent years. Traditional methods have some limitations for time series forecasting since the time series possess characteristics such as non-linearity, non-stationarity and unknown dependencies. Deep learning is an advanced approach to overcome these problems. It depends on non-linear modules to learn the fully features from the input data. Shen et al. [1] proposed a deep learning structure named SeriesNet, which combined the dilated causal convolutional neural networks (DC-CNN) [2] and the long-short term memory (LSTM) [3]. They evaluated that their model has higher forecasting accuracy and greater stableness. LSTM and DC-CNN are widely applied to time series forecasting with excellent performance. However, DC-CNN and LSTM include a large number of parameters, resulting in tremendous computation cost. Gated recurrent unit network (GRU) [4] and LSTM have a comparable performance on time series forecasting, but parameter quantity significantly reduced. So does the dilated depthwise separable temporal convolutional networks (DDSTCNs) [5] compared with DC-CNN. The SeriesNet can directly input raw time series sequences by conditioning the target time series on the additional time series. But the specific conditioning method is not clarified in their work. In addition, they did not consider the attention mechanisms in SeriesNet. Recently, most researches focus on the recurrent neural network (RNN) based attention [6,7,8] to improve the deep learning structure. However, the heavyweight attention mechanism within massive training parameters will influence the computation efficiency. The convolutional block attention module (CBAM) [9] is a lightweight attention structure, but has only been successfully applied to image recognition so far. Therefore, the main contributions of this paper are as follows:




	
We introduce the conditioning methods for CNN and RNN and propose a lightweight hidden state attention module (HSAM) on RNN layers.



	
We have utilized the attention mechanisms in SeriesNet and present an attention-based SeriesNet combined CBAM [9] on convolutional layers and HSAM on RNN layers for time series forecasting.



	
We used GRU and DDSTCNs instead of LSTM and DC-CNN of SeriesNet to reduce the parameters in neural network layers.








The related work is shown in Section 2. Section 3 introduces the details of attention-based SeriesNet. Section 4 gives the experimental results, followed by the conclusion in Section 5.




2. Related Work


With the development of modern time series forecasting, the traditional forecasting methods such as the autoregressive integrated moving average (ARIMA) [10] model and the support vector regression (SVR) [11] have encountered a bottleneck. The model based on the artificial neural network (ANN) [12] is a further prediction approach. A single neuron in a neural network has a simple ability to reflect the essential characteristics of non-linearity. The self-organizing and compounding of these basic units enables the neural network to learn the inherent law of the sequence. Zeng et al. [13] presented enhanced back-propagation neural network (ADE-BPNN) for energy consumption forecasting, which outperforms the traditional BPNN models. Hu et al. [14] proposed a new enhanced optimization model based on the bagged echo state network (ESN) improved by differential evolution algorithm to estimate energy consumption. Subsequently, they developed DeepESN [15] by introducing deep learning idea into ESN for forecasting energy consumption and wind power generation.



The recurrent neural network (RNN) [16] is a variant method of ANN applied for a sequence that the forward and backward variables have dependencies. Subsequently, the improved RNN named Long-short term memory (LSTM) [3] is proposed to deal with the gradient disappearance problem [17] when a sequence is very long. LSTM combines short-term memory with long-term memory through three gate structures to alleviate the gradient disappearance problem. Gated recurrent unit (GRU) [4] is an advance in LSTM, which keeps the same performance as LSTM while simplifying the structure of LSTM. Recently, it has been found that convolutional neural networks (CNN) [18] widely used in image recognition, is also suitable for time series forecasting. Dilated causal convolutional neural networks (DC-CNN) [2] is a variant of CNN for time series forecasting, which allows the reception field greater than the length of the filter by skipping some inputs. Dilated depthwise separable temporal convolutional networks (DDSTCNs) [5] is a further variant of DC-CNN, which divides the DC-CNN into two steps: depthwise convolution and pointwise convolution. These two steps significantly reduce the computation cost compared with a normal CNN. Shen et al. [1] proposed the SeriesNet, which contains LSTM and DC-CNN as shown in Figure 1 to extract temporal features. The SeriesNet adopts residual learning [19] and batch normalization (BN) [20] as Google waveNet [21] to improve its generalization and achieved good forecasting accuracy. The SeriesNet can directly conduct on raw time sequences. But the specific conditioning method is not introduced in Shen’s work. Borovykh et al. [22] proposed the CNN-based multi-conditional time series forecasting with excellent results. Philipperemy et al. [23] introduced the RNN-based conditioning method for additional non-temporal information.



The attention mechanism is another advance in deep learning. An attention mechanism equips a neural network with the ability to focus on a subset of its inputs. In recurrent networks, the encoder-decoder structure based attention mechanisms [6] have been proposed for time series forecasting with high accuracy. In convolutional networks, Hu et al. [24] presented a lightweight attention module, named squeeze-and-excitation networks (SeNet), which considered global average pooling as an attention mechanism for image recognition and adopted in Google ResNet [19]. The convolutional block attention module (CBAM) [9] is an improvement of SeNet by taking account of both global average and max pooling simultaneously in the channel and spatial attention modules, respectively. Nauta et al. [5] considered attention-based dilated depthwise separable temporal convolutional networks (AD-DSTCNs) and demonstrated that attention mechanisms could be successfully used in DDSTCNs for time series forecasting.




3. Structure of Attention-Based SeriesNet


This paper improves Shen’s work [1] by using two different attention mechanisms on two sub-networks of SeriesNet, respectively. The first subnet utilizes CBAM-based DDSTCNs to instead of DC-CNN [2] to learn short interval features. The stacked deep residual connection blocks [19] with different dilated rates can learn long interval features with different reception fields. The batch normalization (BN) [20] is added to solve the gradient vanishing problem. For the second subnet, HSAM-based GRU is applied instead of LSTM for learning the holistic features followed by a full connection (FC) layer to set the output dimensionality. Finally, the outputs of two sub-networks will be element-wise multiplied together for time series forecasting. The attention-based SeriesNet can directly conduct on the raw time series by conditioning methods.



3.1. Conditioning


According to [21,22], given a one-dimensional time series with T time steps   x =  {  x 1  ,  x 2  , … ,  x T  }  ∈  R  1 × T    , the object is to output the next value   x t   conditional on the series’ history,    x 1  , … ,  x  t − 1     by maximizing the likelihood function as below:


     p  ( h )  =  ∏  t = 1  T  p  (  x t  |  x 1  ,  x 2  , … ,  x  t − 1   )  .     



(1)







The distribution of one time series conditional on additional time series   y ∈  R  i × T     is given by


     p  (  x | y  )  =  ∏  t = 1  T  p  (  x t  |  x 1  ,  x 2  , … ,  x  t − 1   , y )  ,     



(2)







This paper first adopts a causal convolution to map the input and the condition (additional time series) with the same feature dimension (channel). Then the CNN-based conditioning method [22] is done by computing the activation function of the convolution as:


  S e L U (  f d  1 × k    ( x )  +  f d  1 × h    ( y )  ) ,  



(3)




where   f d  1 × k    and   f d  1 × h    denotes the convolution operation with filter size   1 × k  ,   1 × h   and dilation rate d in the depthwise convolution of DDSTCNs, respectively. The conditioning method for CNN is similar to Borovykh’s work [22] except for the activation function. This paper adopts the scaled exponential linear unit (SeLU) [25] instead of the rectified linear unit (ReLU) [26] since the self-normalizing properties of the SeLU has more robust representations of the time series. As shown in Figure 2, the input and condition are conditioned in the first residual layer (L), followed by the CBAM [9] and the   1 × 1   convolution, and summed with the parametrized skip connections. The result from this layer is the input in the subsequent convolution layer with a residual connection, which is repeated to obtain the output from layer L and forwarded to a   1 × 1   convolution to generate the final CNN output.



This paper presents the conditioning method for RNN based on Philipperemy’s [23] work as demonstrated in Figure 3. The given multi-conditions   y ∈  R  i × T     is considered as the initial state of the first RNN layer by transforming its shape into   y ∈  R  p × m    , where m is the unit number of the first RNN layer and p’s value is 1 or 2 for GRU and LSTM, respectively. Since LSTM owns hidden state and cell state, GRU only has hidden state. In case of GRU, the flatten operation is implemented on   y ∈  R  i × T     to convert its shape into   y ∈  R  1 × v    , where v is the product of i and T. The FC layer with a sigmoid activation function is followed with the flatten operation to obtain the target shape   y ∈  R  1 × m    . For LSTM, this paper first adopts flatten operation followed by a FC layer with a sigmoid activation function to transform the shape of   y ∈  R  i × T     into   y ∈  R  1 × 2 m    , and then reshapes it into   y ∈  R  2 × m    . Each row of   y ∈  R  2 × m     is considered as the initial hidden state and initial cell state, respectively. This approach naturally solves the shape problem of multi-conditions, and also avoids polluting the inputs with additional information.




3.2. Dilated Depthwise Separable Temporal Convolutional Networks


The DDSTCNs introduced in [5] based on the depthwise separable convolution [27], which is well known by Google’s Xception architecture for image classification [27]. A depthwise separable convolution splits a kernel into two separate kernels that do two convolutions: the depthwise convolution and the pointwise convolution. The depthwise convolution separates the channels by applying a different kernel to each input channel. The pointwise convolution adopts a one times one kernel to each output channel of depthwise convolution and merges them together. This architecture is different from normal CNN that two convolutions improve computation performance than only one kernel per layer. The separate channels can correctly handle each dimension of input data impacts on output data, followed by a pointwise convolution tunes the number of output channels where the multiplications between parameters reduced significantly. Our architecture consists of k channels, one for each output from batch normalization (BN) [20] layer. An overview of this architecture is shown in Figure 4. Figure 5 is an example of stacked temporal DC-CNN, which explains the details of the left zero padding to predict the first values. The dilation rate   1 , 2 , 4 , … ,  2 n    is considered in the depthwise convolution of each DDSTCNs layer to adjust the receptive field.




3.3. Convolutional Block Attention Module


The CBAM [9] adopts global average pooling and max pooling both in channel and spatial direction of a 2D image within an intermediate feature map satisfying   F ∈  R  C × H × W    , where   C , H   and W denotes the channel, height and width, respectively. Figure 6 illustrates the details of channel attention module    M c  ∈  R  C × 1 × 1     and spatial attention module    M s  ∈  R  1 × H × W     of CBAM. For 1D time series, the height   H = 1  . Given an intermediate feature map   F ∈  R  n × T     as input, this paper uses feature dimension n and time steps T of the previous layer output instead of C and W in a image. The feature (channel) attention generates time step context descriptors     F   a v g  n  ∈  R  n × 1     and     F   m a x  n  ∈  R  n × 1     of a feature map by using both average and max pooling operation along the time step axis, and then fowards to a shared multi-layer perception (MLP) to produce the feature (channel) attention map    M n  ∈  R  n × 1     as:


      M n   ( F )      = σ ( M L P ( A v g P o o l ( F ) ) ) + M L P ( M a x P o o l ( F ) )           = σ (  W 1   (  W 0   (  F  a v g  n  )  )  +  W 1   (  W 0   (  F  m a x  n  )  )  ) ,     



(4)




where  σ  indicates the sigmoid activation function, the MLP weights    W 0  ∈  R  n / r × n     and    W 1  ∈  R  n × n / r     respectively followed by a ReLU and sigmoid activation function are shared for both inputs. r is the reduction ratio used to reduce the parameters in   W 0  . The feature attention map    M n  ∈  R  n × 1     element-wise multiplies the intermediate feature map   F ∈  R  n × T     to generate a new intermediate map    F ′  ∈  R  n × T     to feed in time step (spatial) attention module:


   F ′  =  M n   ( F )  ⊗ F ,  



(5)




where ⊗ is an element-wise multiplication. The time step (spatial) attention module generates a concatenated feature descriptor    [   F   a v g   ′ T   ;   F   m a x   ′ T   ]  ∈  R  2 × T     by applying average pooling and max pooling along the feature axis, followed by a standard convolution layer. The time step (spatial) attention map    M T  ∈  R  1 × T     is computed as:


      M T   (  F ′  )      = σ (  f  1 × 7    (  [ A v g P o o l  (  F ′  )  ; M a x P o o l  (  F ′  )  ]  )  )           = σ (  f  1 × 7    (  [   F   a v g   ′ T   ;   F   m a x   ′ T   ]  )  ) ,     



(6)




where   f  1 × 7    indicates a   1 × 7   kernel size convolution operation. At last, the element-wise multiplication between    M T  ∈  R  1 × T     and    F ′  ∈  R  n × T     is executed to renew the intermediate feature map as:


   F ″  =  M T    F ′   ⊗  F ′  ,  



(7)




where    F ″  ∈  R  n × T     and will be input to next layer.




3.4. Hidden State Attention Module


This paper presents the RNN-based HSAM by integrating the two modules of CBAM together. The HSAM is implemented between every two GRU layers as illustrated in Figure 7. The GRU unit merges the memory cell state and hidden state of LSTM unit into one hidden state, and reduces the three sigmoid gates of LSTM unit to two gates: reset gate   r t   and update gate   z t   to simplify the structure. Feeding the given one-dimensional time series with T time steps   x =  {  x 1  ,  x 2  , … ,  x T  }  ∈  R  1 × T     in a GRU layer, the update formulas of the GRU unit are summarized as:


   z t  = σ  (  W z   [  h  t − 1   ;  x t  ]  )  ,  



(8)






   r t  = σ  (  W r   [  h  t − 1   ;  x t  ]  )  ,  



(9)






    h ˜  t  = t a n h  ( W  [  r t  ⊗  h  t − 1   ;  x t  ]  )  ,  



(10)






   h t  =  ( 1 −  z t  )  ⊗  h  t − 1   +  z t  ⊗   h ˜  t  ,  



(11)




where    h t  ∈  R  m × 1     is the hidden state with size m and ⊗ is an element-wise multiplication.    [  h  t − 1   ;  x t  ]  ∈  R  ( m + n ) × 1     is a concatenation of the previous hidden state   h  t − 1    and the current input   x t  .   W z  ,   W r  ,   W ∈  R  m × ( m + n )     are weight parameters to learn. The multi GRU layers utilize per time step hidden state of previous GRU layer as an input forwarding to the corresponding state of the next GRU layer. The input at each time step (feature axis) has great influence on the related hidden state output of the next GRU layer. Therefore, this paper aims to extract the average pooling and max pooling only along the hidden state feature axis of the previous GRU layer. There is an intermediate feature map   h ∈  R  m × T     represents all hidden states of previous GRU layer. The hidden state attention produces feature context descriptors    h  a v g  T  ∈  R  1 × T     and    h  m a x  T  ∈  R  1 × T     through average pooling and max pooling along feature axis, and feeds them into a shared MLP layer. The outputs of the shared MLP layer are concatenated together as    [  W 1   (  W 0   (  h  a v g  T  )  )  ;  W 1   (  W 0   (  h  m a x  T  )  )  ]  ∈  R  2 × T     followed by a standard convolution layer to obtain the hidden state map    H T  ∈  R  1 × T     as below:


      H T   ( h )      = σ (  f  1 × 7    (  [ M L P  ( A v g P o o l  ( h )  )  )  ; M L P  ( M a x P o o l  ( h )  ]  )  )           = σ (  f  1 × 7    (  [  W 1   (  W 0   (  h  a v g  T  )  )  ;  W 1   (  W 0   (  h  m a x  T  )  )  ]  )  ) ,     



(12)




where the MLP weights    W 0  ∈  R  m / r × 1     and    W 1  ∈  R  1 × m / r     with reduction ratio r are also followed by a ReLU and sigmoid activation function, respectively. Finally, the hidden state map   H T   element-wise multiplies the intermediate feature map h to produce a renewed intermediate feature map    h ′  ∈  R  m × T     feeding in next GRU layer:


   h ′  =  H T   h  ⊗ h .  



(13)









4. Experiments


This paper uses five typical open time series datasets, including three economic data: S&P500 Index, Shanghai Composite Index, Tesla Stock Price and two temperature data: NewYork hourly temperature and Weather in Szeged as shown in Table 1 to evaluate the models. The attention-based SeriesNet is compared with the SeriesNet [1], the Augmented WaveNet [22], the SVR [11] and the GRU networks [4]. Each model is evaluated by 4 metrics: the root-mean-square error (RMSE), the mean absolute error (MAE), the coefficient of determination (  R 2  ) and the computation time of specific epoch numbers. This paper takes an average of ten times of training results as the final accuracy of each model.



This section uses A_SeriesNet and WaveNet instead of the attention-based SeriesNet and the augmented WaveNet for short. The experiments are executed on Windows 10 with 2.50 GHz Intel Core i7 and 8 GB memory and conducted on the python environment with Keras deep learning structure. The hyper-parameters of A_SeriesNet shown in Table 2, Table 3 and Table 4 are slightly adjusted when it applies to different datasets. The reduction ratio of CBAM and HSAM shown in Table 3 and Table 4 is one. The padding of depthwise convolution and pointwise convolution of DDSTCNs is causal and valid, respectively. In the case of three economic datasets, this paper uses daily average stock price as the target time series (Input) by taking the average of daily high and low stock price. The part of the other time series in two economic datasets, such as the daily trading volume and the daily close stock price, is chosen as the conditions. For the two temperature datasets, the temperature is considered as the target time series (Input), the Dew point and the humidity are chosen as the conditions. This paper adopts the MAE as the loss function as below:


  l o s  s  m i n   =  1 T   ∑  t = 1  T    F t  −  A t   ,  



(14)




where   F t   and   A t   denotes the target value and predicted value at time t, respectively. The weights of all CNN layers of A_SeriesNet are initialized with a truncated normal distribution with zero mean and constant variance of 0.05. The GRU layers of A_SeriesNet are initialized with he_normal distribution. The Adam optimizer [28] is used with the learning rate 0.001 and   β 1   of 0.9. The related layer numbers of SeriesNet and WaveNet are unified with A_SeriesNet as shown in Table 2. This paper removed CBAM and HSAM and used DC-CNN and LSTM instead of DDSTCNs and GRU in Figure 3 as the conditional structure of SeriesNet. All the models except for SVR used the conditioning method for the experiments.



This paper computes each layer’s complexity for detecting our model’s computational performance, as demonstrated in Table 2, Table 3 and Table 4. The shape of input time series and condition is respectively specified to   x ∈  R  1 × T     and   y ∈  R  1 × T     for easy calculating the complexity. The evaluation is only limited to the forward propagation of the computational process. The complexity of a standard 1D CNN layer [29] is defined as below:


  C o m p l e x i t y ∼ O ( M · K ·  C  i n   ·  C  o u t   ) ,  



(15)




where M is the width of the output feature map, K denotes the width of the kernel,   C  i n    and   C  o u t    represents the channel input and channel output, respectively. We ignore the bias of all CNN layers and full connection layers for convenience to compute the complexity. The complexity of a 1D DDSTCNs layer is computable as follows:


  C o m p l e x i t y ∼ O ( M · K ·  C  i n   + M ·  C  i n   ·  C  o u t   ) .  



(16)







On the other hand, LSTM is local in space and time [3], which means that the input length does not affect the storage requirements of the network and for each time step, the time complexity per weight is   O ( 1 )  . Therefore, the overall complexity of an LSTM per time step is equal to   O ( w )  , where w is the number of weights. The complexity of a standard LSTM layer per time step is calculated as:


  C o m p l e x i t y ∼ O ( 4 ·  ( I · H +  H 2  + H )  ) ,  



(17)




where I denotes the dimension of input data, H represents the hidden unit numbers. The Complexity of a standard GRU layer per time step is simpler than LSTM, which is given as:


  C o m p l e x i t y ∼ O ( 3 ·  ( I · H +  H 2  + H )  ) .  



(18)







The overall complexity of our model is the sum of the complexity of all layers.



Table 5 shows the experimental results when the forecast sliding window representing the future time span is 1.   GRU  20  2   denotes using 2 layers of GRU cell and each layer contains 20 neurons. The A_SeriesNet has the best performance on both non-linear and non-stationary economic datasets and relatively stationary time series temperature dataset compared with the other models. The lower RMSE, MAE and higher   R 2   close to 1 means better model fitting. This paper performs the models except for SVR for 64 epochs with 64 mini-batch size one time. This epoch number allows the models to achieve a satisfactory convergence on five datasets.



Table 6 demonstrates the average computation time (in seconds) of the models for one-time training. The computation time of A_SeriesNet is in rank 3, which is faster than SeriesNet and slower than   GRU  20  2  . The SVR takes longer training time to obtain the results close to the other models.



Table 7 shows the results of GRU combined with HSAM (HSAM_GRU) compared with GRU. This paper adopts   GRU  20  2   with 2 layers of GRU cell and each layer contains 20 neurons and   GRU  20  4   with 4 layers of GRU cell and each layer contains 20 neurons for the experiments. The results show that the different layers of HSAM_GRU are superior to related GRU networks. When the number of layers increased, the accuracy of GRU for 5 datasets decreases. HSAM can keep the accuracy of deep GRU networks. The computation time of HSAM_GRU is close to GRU as demonstrated in Table 8.



Table 9, Table 10 and Table 11 show the hyper parameters and complexity of SeriesNet and WaveNet in our experiments. The shape of input time series and condition in the tables is also appointed to   x ∈  R  1 × T     and   y ∈  R  1 × T    , respectively. We also ignore the bias of all CNN layers and full connection layers for computing the overall complexity of these models. The structure of   GRU  20  4   is similar to   GRU  20  2   in Table 10 and Table 12 gives the complexity comparison results of deep learning models. The complexity of our model is between   GRU  20  2   and SeriesNet.




5. Conclusions


This paper proposed a deep learning neural network structure named attention-based SeriesNet, which desires to predict the future value of time series. The attention-based SeriesNet applies DDSTCNs and GRU instead of DC-CNN and LSTM in SerieNet to accelerate the training. Furthermore, this model adopts CBAM attention on residual learning module and proposed HSAM attention on GRU networks to better extract the potential features from the input time series. We succeeded in improving SeriesNet since our model’s accuracy, and complexity is superior to the SeriesNet. The experiment results also show that attention-based SeriesNet has higher forecasting accuracy than other models. This paper only explored the performance of the SeriesNet models on the economic and temperature datasets. Further analysis of different types of datasets is required to examine the capability of attention-based SeriesNet to forecast from different data distributions for varying forecast horizons. This paper didn’t evaluate the performance of hidden state attention mechanisms on recurrent neural networks with deep structure. The only two or four layers GRU can not adequately describe its performance. It was also found that the forecasts were very sensitive to layer weight initialization, receptive field and training duration. The parameter tuning is necessary for different datasets.




6. Future Work


In the future, we will continue to develop the attention mechanism of our model. The dual-stage attention-based recurrent neural network has good accuracy in the field of time series forecasting. The dual-stage attention structure, combined with a hidden state attention module, may improve our model’s performance. This paper only detected the conditional time series for time series forecasting. The performance of our model for multi-variable time series will also be detected in the future.
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Figure 1. The structure of the SeriesNet. 






Figure 1. The structure of the SeriesNet.
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Figure 2. The structure of the conditional CNN sub-networks. 
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Figure 3. The structure of the attention-based SeriesNet. 
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Figure 4. The structure of the DDSTCNs. 
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Figure 5. The structure of the DC-CNN. 
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Figure 6. The overview of CBAM. 
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Figure 7. The overview of HSAM. 
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Table 1. Time series dataset.






Table 1. Time series dataset.





	Time Series
	Time Range
	Train Data
	Validation Data
	Test Data





	S&P500 Index
	1950.01–2015.12
	3297
	320
	320



	Shanghai Composite Index
	2004.01–2019.06
	2430
	280
	280



	Tesla Stock Price
	2010.06–2017.03
	1049
	160
	160



	NewYork temperature
	2016.01–2016.07
	2430
	320
	320



	Weather in Szeged
	2006.04–2016.09
	1700
	240
	240
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Table 2. Hyper parameters and complexity of attention-based SeriesNet.






Table 2. Hyper parameters and complexity of attention-based SeriesNet.














	Type
	Units/Filters
	Size
	Dilation Rate
	Padding
	Output
	Complexity





	Conv1D(Input)
	1
	30
	1
	causal
	(50, 1)
	1500



	BN
	
	
	
	
	(50, 1)
	0



	DDSTCNs
	8
	7
	1
	causal/valid
	(50, 8)
	750



	Conv1D(Condition)
	1
	20
	1
	causal
	(50, 1)
	1000



	BN
	
	
	
	
	(50, 1)
	0



	DDSTCNs
	8
	4
	1
	causal/valid
	(50, 8)
	600



	Add
	
	
	
	
	(50, 8)
	0



	SeLU
	
	
	
	
	(50, 8)
	0



	CBAM
	
	
	
	
	(50, 8)
	956



	Conv1D
	1
	1
	1
	same
	(50, 1)
	400



	Add
	
	
	
	
	(50, 1)
	0



	BN
	
	
	
	
	(50, 1)
	0



	DDSTCNs
	8
	7
	2
	causal/valid
	(50, 8)
	750



	SeLU
	
	
	
	
	(50, 8)
	0



	CBAM
	
	
	
	
	(50, 8)
	956



	Conv1D
	1
	1
	1
	same
	(50, 1)
	400



	Add
	
	
	
	
	(50, 1)
	0



	
	
	⋮
	
	
	
	



	BN
	
	
	
	
	(50, 1)
	0



	DDSTCNs
	8
	7
	16
	causal/valid
	(50, 8)
	750



	SeLU
	
	
	
	
	(50, 8)
	0



	CBAM
	
	
	
	
	(50, 8)
	956



	Conv1D
	1
	1
	1
	same
	(50, 1)
	400



	Add(Skip-Connection)
	
	
	
	
	(50, 1)
	0



	Conv1D
	1
	1
	1
	same
	(50, 1)
	50



	Condition
	
	
	
	
	(1, 20)
	1000



	GRU(Input, Condition)
	20
	
	
	
	(50, 20)
	66,000



	HSAM
	
	
	
	
	(50, 20)
	780



	GRU
	20
	
	
	
	(50, 20)
	123,000



	FC
	1
	
	
	
	(50, 1)
	20



	Multiply
	
	
	
	
	(50, 1)
	0



	ReLU
	
	
	
	
	(50, 1)
	0



	Total
	
	
	
	
	
	204,480
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Table 3. Hyper parameters and complexity of HSAM.
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	Type
	Units/Filters
	Size
	Dilation Rate
	Padding
	Output
	Complexity





	Lambda_Mean(GRU)
	
	
	
	
	(50, 1)
	0



	FC
	20
	
	
	
	(50, 20)
	20



	ReLU
	
	
	
	
	(50, 20)
	0



	FC
	1
	
	
	
	(50, 1)
	20



	Lambda_Max(GRU)
	
	
	
	
	(50, 1)
	0



	FC
	20
	
	
	
	(50, 20)
	20



	ReLU
	
	
	
	
	(50, 20)
	0



	FC
	1
	
	
	
	(50, 1)
	20



	Concatenate
	
	
	
	
	(50, 2)
	0



	Conv1D
	1
	7
	1
	same
	(50, 1)
	700



	Sigmoid
	
	
	
	
	(50, 1)
	0



	Multiply(GRU, Sigmoid)
	
	
	
	
	(50, 20)
	0



	Total
	
	
	
	
	
	780
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Table 4. Hyper parameters and complexity of CBAM.
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	Type
	Units/Filters
	Size
	Dilation Rate
	Padding
	Output
	Complexity





	GlobalAvgPooling1D(SeLU)
	
	
	
	
	(1, 8)
	0



	FC
	8
	
	
	
	(1, 8)
	64



	ReLU
	
	
	
	
	(1, 8)
	0



	FC
	8
	
	
	
	(1, 8)
	64



	GlobalMaxPooling1D(SeLU)
	
	
	
	
	(1, 8)
	0



	FC
	8
	
	
	
	(1, 8)
	64



	ReLU
	
	
	
	
	(1, 8)
	0



	FC
	8
	
	
	
	(1, 8)
	64



	Add
	
	
	
	
	(1, 8)
	0



	Sigmoid
	
	
	
	
	(1, 8)
	0



	Multiply1(SeLU, Sigmoid)
	
	
	
	
	(50, 8)
	0



	Lambda_Mean(Multiply1)
	
	
	
	
	(50, 1)
	0



	Lambda_Max(Multiply1)
	
	
	
	
	(50, 1)
	0



	Concatenate
	
	
	
	
	(50, 2)
	0



	Conv1D
	1
	7
	1
	same
	(50, 1)
	700



	Sigmoid
	
	
	
	
	(50, 1)
	0



	Multiply2(Multiply1, Sigmoid)
	
	
	
	
	(50, 8)
	0



	Total
	
	
	
	
	
	956










[image: Table] 





Table 5. The result of accuracy comparison.
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Time Series

	
A_SeriesNet

	
SeriesNet

	
WaveNet

	
    GRU 20 2    

	
SVR






	

	
RMSE

	
MAE

	
   R 2   

	
RMSE

	
MAE

	
   R 2   

	
RMSE

	
MAE

	
   R 2   

	
RMSE

	
MAE

	
   R 2   

	
RMSE

	
MAE

	
   R 2   




	
S&P500 Index

	
8.90

	
7.17

	
0.98

	
10.08

	
8.11

	
0.97

	
11.13

	
8.73

	
0.97

	
10.57

	
8.39

	
0.97

	
16.16

	
12.61

	
0.96




	
Shanghai Composite Index

	
56.69

	
36.49

	
0.98

	
71.96

	
55.50

	
0.97

	
80.52

	
60.10

	
0.97

	
79.29

	
50.17

	
0.97

	
82.25

	
63.19

	
0.97




	
Tesla Stock Price

	
4.56

	
3.36

	
0.97

	
4.82

	
3.68

	
0.96

	
5.50

	
4.36

	
0.95

	
5.59

	
4.38

	
0.95

	
4.74

	
3.36

	
0.96




	
NewYork temperature

	
1.63

	
1.20

	
0.97

	
1.68

	
1.22

	
0.97

	
1.76

	
1.25

	
0.96

	
1.72

	
1.25

	
0.97

	
1.79

	
1.23

	
0.96




	
Weather in Szeged

	
1.22

	
0.71

	
0.96

	
1.29

	
0.79

	
0.96

	
1.44

	
0.90

	
0.95

	
1.42

	
0.88

	
0.95

	
1.41

	
0.83

	
0.95
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Table 6. The result of performance comparison.
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	Time Series
	A_SeriesNet
	SeriesNet
	WaveNet
	    GRU 20 2    
	SVR





	S&P500 Index
	100.80
	103.62
	17.99
	74.37
	273.49



	Shanghai Composite Index
	92.72
	94.42
	18.73
	76.10
	237.40



	Tesla Stock Price
	61.90
	64.69
	36.36
	41.37
	124.97



	NewYork temperature
	99.78
	101.38
	17.80
	74.73
	107.08



	Weather in Szeged
	89.24
	96.56
	17.54
	62.93
	115.96
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Table 7. The accuracy comparison of HSAM_GRU and GRU.
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Time Series

	
HSAM_   GRU 20 2   

	
    GRU 20 2    

	
HSAM_   GRU 20 4   

	
    GRU 20 4    






	

	
RMSE

	
MAE

	
   R 2   

	
RMSE

	
MAE

	
   R 2   

	
RMSE

	
MAE

	
   R 2   

	
RMSE

	
MAE

	
   R 2   




	
S&P500 Index

	
9.51

	
7.77

	
0.98

	
10.57

	
8.39

	
0.97

	
10.18

	
8.01

	
0.97

	
12.23

	
9.92

	
0.96




	
Shanghai Composite Index

	
78.44

	
48.49

	
0.97

	
79.29

	
50.17

	
0.97

	
80.46

	
54.74

	
0.97

	
92.83

	
66.70

	
0.96




	
Tesla Stock Price

	
5.02

	
3.89

	
0.96

	
5.59

	
4.38

	
0.95

	
6.24

	
4.63

	
0.94

	
6.29

	
5.00

	
0.94




	
NewYork temperature

	
1.68

	
1.23

	
0.97

	
1.72

	
1.25

	
0.97

	
1.73

	
1.27

	
0.97

	
1.76

	
1.28

	
0.97




	
Weather in Szeged

	
1.33

	
0.80

	
0.96

	
1.42

	
0.88

	
0.95

	
1.41

	
0.82

	
0.95

	
1.56

	
1.00

	
0.94
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Table 8. The performance comparison of HSAM_GRU and GRU.
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	Time Series
	HSAM_   GRU 20 2   
	    GRU 20 2    
	HSAM_   GRU 20 4   
	    GRU 20 4    





	S&P500 Index
	81.94
	74.37
	167.42
	145.09



	Shanghai Composite Index
	82.87
	76.10
	172.13
	141.04



	Tesla Stock Price
	39.44
	36.36
	86.82
	76.52



	NewYork temperature
	81.21
	74.73
	170.77
	147.92



	Weather in Szeged
	66.20
	62.93
	125.95
	117.07
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Table 9. Hyper parameters and complexity of augmented WaveNet.
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Type

	
Units/Filters

	
Size

	
Dilation Rate

	
Padding

	
Output

	
Complexity






	
Conv1D(Input)

	
8

	
7

	
1

	
causal

	
(50, 8)

	
2800




	
ReLU

	

	

	

	

	
(50, 8)

	
0




	
Conv1D(Condition)

	
8

	
7

	
1

	
causal

	
(50, 8)

	
2800




	
ReLU

	

	

	

	

	
(50, 8)

	
0




	
Add

	

	

	

	

	
(50, 8)

	
0




	
Conv1D

	
8

	
7

	
2

	
causal

	
(50, 8)

	
22,400




	
ReLU

	

	

	

	

	
(50, 8)

	
0




	
Add

	

	

	

	

	
(50, 8)

	
0




	
⋮

	




	
Conv1D

	
8

	
7

	
16

	
causal

	
(50, 8)

	
22,400




	
ReLU

	

	

	

	

	
(50, 8)

	
0




	
Add(Skip-Connection)

	

	

	

	

	
(50, 8)

	
0




	
Conv1D

	
1

	
1

	
1

	
same

	
(50, 1)

	
400




	
Total

	

	

	

	

	

	
95,600
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Table 10. Hyper parameters and complexity of   GRU  20  2  .
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	Type
	Units/Filters
	Size
	Dilation Rate
	Padding
	Output
	Complexity





	Condition
	
	
	
	
	(1, 20)
	1000



	GRU(Input, Condition)
	20
	
	
	
	(50, 20)
	66,000



	GRU
	20
	
	
	
	(50, 20)
	123,000



	FC
	1
	
	
	
	(50, 1)
	20



	Total
	
	
	
	
	
	190,020
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Table 11. Hyper parameters and complexity of SeriesNet.
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Type

	
Units/Filters

	
Size

	
Dilation Rate

	
Padding

	
Output

	
Complexity






	
Conv1D(Input)

	
1

	
20

	
1

	
causal

	
(50, 1)

	
1000




	
BN

	

	

	

	

	
(50, 1)

	
0




	
Conv1D

	
8

	
7

	
1

	
causal

	
(50, 8)

	
2800




	
Conv1D(Condition)

	
1

	
20

	
1

	
causal

	
(50, 1)

	
1000




	
BN

	

	

	

	

	
(50, 1)

	
0




	
Conv1D

	
8

	
4

	
1

	
causal

	
(50, 8)

	
1600




	
Add

	

	

	

	

	
(50, 8)

	
0




	
Conv1D

	
1

	
1

	
1

	
same

	
(50, 1)

	
400




	
Add

	

	

	

	

	
(50, 1)

	
0




	
BN

	

	

	

	

	
(50, 1)

	
0




	
Conv1D

	
8

	
7

	
2

	
causal

	
(50, 8)

	
2800




	
Conv1D

	
1

	
1

	
1

	
same

	
(50, 1)

	
400




	
Add

	

	

	

	

	
(50, 1)

	
0




	
⋮

	




	
BN

	

	

	

	

	
(50, 1)

	
0




	
Conv1D

	
8

	
7

	
16

	
causal

	
(50, 8)

	
2800




	
Conv1D

	
1

	
1

	
1

	
same

	
(50, 1)

	
400




	
Add(Skip-Connection)

	

	

	

	

	
(50, 1)

	
0




	
Conv1D

	
1

	
1

	
1

	
same

	
(50, 1)

	
50




	
Condition

	

	

	

	

	
(2, 20)

	
2000




	
LSTM(Input, Condition)

	
20

	

	

	

	
(50, 20)

	
88,000




	
LSTM

	
20

	

	

	

	
(50, 20)

	
164,000




	
FC

	
1

	

	

	

	
(50, 1)

	
20




	
Multiply

	

	

	

	

	
(50, 1)

	
0




	
ReLU

	

	

	

	

	
(50, 1)

	
0




	
Total

	

	

	

	

	

	
273,670
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Table 12. The result of complexity comparison.






Table 12. The result of complexity comparison.













	
	A_SeriesNet
	SeriesNet
	WaveNet
	    GRU 20 2    
	    GRU 20 4    





	Complexity
	204,480
	273,670
	95,600
	190,020
	436,020











© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).






nav.xhtml


  information-11-00305


  
    		
      information-11-00305
    


  




  





media/file8.jpg
//// Diation=2"
Paddng=8_—

OSSR T T T T T T L T TT [T 1] wagen

/ / Diaton=2"

[ [T] [ ][ viaden

Dtaton=2

[T TAT TeT TeT TeT T#T Tl TT ToT T | iocen
] ]






media/file11.png
e

Convolutional Block Attention Module

Channel
Input Feature

Attention

JS

\

Attention Spatial Refined Feature
Module
=\ S "W\
2%, p N —>

~N

7/

-

Channel Attention Module
MaxPool

= =
- 4 DO~

~

\ AvgPool -/ \

Channel Attention
— st mp D M
\ Input feature F

_/

Spatial Attention Module

conv
layer

— -

Channel-refined [MaxPool AvgPooll Spatial Attention
feature F’ Ms





media/file6.jpg
Depthwise

Pointwise

Kirx -

J Ik
Kernels

Channel 1

1
Kernel 1

Channel 1
Channel 2

Channel j

1
BN

Channel 2
N - x
.
Kernel 2

1

Channel &

bbbl

(]
Kernel &

v

X





media/file1.png
Concatenate

Residual Skip-conhections
. Concatenate
1x1 \ . @
Convolution | - J
Dilated Causal 1x1
Convolution Convolution

“ . concatenate () —=Output

Layers 1

Causal
Convolution

Full Connection

LSTM

Input -






media/file13.png
( Next GRU )

h® hy hy® - hi
Hidden state | | | |
h? h2 h? ht
h! h} h; - h}
. ® ]
( Convolutional (Sigmoid) )
( Concatenate [Avgpool’, Maxpool'] )
HSAM — | FC (Sigmoid) )
( FC (RelLU)
[ Avgpool ) ( Maxpool )
s R
hi" hé” hy® | - hg’i’
Hidden stat | | ]
idden state P h2 h3 hT

Condition — GRU GRU GRU GRU

( Input






media/file10.jpg
( Convolutional Block Attention Module R

Chamnel
Input Foature Attention

\L

o ChaNNE! Attention: Module A

S =
e UG
»

\ Lot e ¢

Spatial Attention Module

5

Chamel-reined. [MaxPoot AvgPoai] ool Arien
Tosure -






media/file7.png
Depthwise

Pointwise

ﬁ

Channel 1 Channel 2 Channel 4

xnn - xn o -xn - xer - x
=~ O ) 9
!
HEEEEREEEEESEEEEE
H B ¢
X 2
ST N N
Chamnel 1 | | |
Chamnel 2 | | | | |






media/file12.jpg
Next GRU

L5 hg hy h?
Hidden state
he h hy i
B " B n
Convolutional (Sigmoid)
Concatenate [Avgpool’, Maxpool
HSAM FC (Sigmoid)
FC (ReLU)
Avgpool Maxpool
g W e '
Hidden state " " 3 "
hi h3 hy hy
' ' ' '
Condition -~ GRU - GRU - GRU GRU





media/file9.png
LT[ fel | ] outou
Dilation=2°
» | | | Hidden
Dilation=22
| | | Hidden
Dilation=2"
| | | Hidden
Dilation=2°

(1T,
BT [ | o

Padding = 1/
|| o|o|e]e]e]e






media/file5.png
Skip-ct

—

Convolution

S
®

onnections

]

DDSTCNs

DDSTCNs

! T

Causal
Convolution

Causal
Convolution

Condition

Convolution

) Output

R

HSAM

Initial state

Input






media/file3.png
Output Layer 1

skip T skip
connection connection
; @ \
1x1
Convolution
|
.~ CBAM |

o)
O

DDSTCNSs DDSTCNSs

Input Condition

Output Layer |

skip
connection
9
1x1
Convolution

~ CBAM

DDSTCNs 1x1

Convolution

Output Layer I-1

CNN Output

Output Layer L





media/file4.jpg
Residual ‘Skip-connections.

xt o >
Convolution x|
CBAM -
'
) x1
Convolution
'
DDSTCNs|  DDSTCNs ) Ot
BN BN 1
+ i FC
Causal Causa_\ i
Convoluton  Gonvolton SRl
)
Condition -  Flatten HSAM
¥
i Intal state
FC ~0)+ GRU
1

Input





media/file0.jpg
# Concatenate
Residual ‘Skip-connections.

x1 oy
Convolution

Dilated Causal
Convolution

BN

Layers

Causal
Convolution
i

Input

Concatenate

v’

1x1
Convolution

concatenate pett)

Full Connection
3

- LSTM

~Output





media/file2.jpg
Output Layer 1 Output Layer |
skip 1 skip skip i
connection connection connection
N
x1 x1
Convolution Convolution
CBAM CRAN
sav
sav
DDSTCNs DDSTCNs DDSTCNs
BN BN BN
Input Condition Output Layer I-1

CNN Output

1x1
Convolution

Output Layer L





