
 information

Article

Android Collusion: Detecting Malicious Applications
Inter-Communication through SharedPreferences †

Rosangela Casolare 1,*,‡, Fabio Martinelli 2,‡, Francesco Mercaldo 2,3,*,‡ and Antonella Santone 1,‡

1 Department of Biosciences and Territory, University of Molise, 86090 Pesche (IS), Italy;
antonella.santone@unimol.it

2 Institute for Informatics and Telematics, National Research Council of Italy, 56121 Pisa, Italy;
fabio.martinelli@iit.cnr.it

3 Department of Medicine and Health Sciences “Vincenzo Tiberio”, University of Molise,
86100 Campobasso, Italy

* Correspondence: rosangela.casolare@unimol.it (R.C.); francesco.mercaldo@unimol.it (F.M.)
† This paper is an extended version of our paper published in the 34th International Conference on Advanced

Information Networking and Applications, AINA Workshops 2020.
‡ All authors contributed equally to this work.

Received: 29 April 2020; Accepted: 31 May 2020; Published: 5 June 2020
����������
�������

Abstract: The Android platform is currently targeted by malicious writers, continuously focused
on the development of new types of attacks to extract sensitive and private information from our
mobile devices. In this landscape, one recent trend is represented by the collusion attack. In a
nutshell this attack requires that two or more applications are installed to perpetrate the malicious
behaviour that is split in more than one single application: for this reason anti-malware are not able
to detect this attack, considering that they analyze just one application at a time and that the single
colluding application does not exhibit any malicious action. In this paper an approach exploiting
model checking is proposed to automatically detect whether two applications exhibit the ability to
perform a collusion through the SharedPreferences communication mechanism. We formulate a series
of temporal logic formulae to detect the collusion attack from a model obtained by automatically
selecting the classes candidate for the collusion, obtained by two heuristics we propose. Experimental
results demonstrate that the proposed approach is promising in collusion application detection: as a
matter of fact an accuracy equal to 0.99 is obtained by evaluating 993 Android applications.

Keywords: colluding; malware; model checking; formal methods; security; Android; mobile

1. Introduction

Malware (contraction word for malicious software) is currently afflicting each kind of device
equipped with an operating system, from workstations to our mobile devices (for instance, smartphone
and tables). The final aim of malware is generally to exfiltrate the private and sensible information
stored on these devices, typically with an always-on internet connection. According to CLUSIT 2020
security report, 1670 cyber attacks were carried out in 2019, with a growth rate of 7.6% on 2018 and
91.2% compared to 2014. Cyber crime is the main cause of attack, among the means the most used is
malware https://clusit.it/rapporto-clusit/.

In this scenario, our mobile devices have become in few years a really appealing surface attack for
malware writers, considering the plethora of private and sensitive information that they keep.

Just as example, in modern mobile devices the users can easily download applications from the
official market but also from non official ones. These last can be untrustworthy and represent a serious
threat for the users’ data, in fact users usually consider third-party markets to find free versions of
applications that are usually paid ones on the official market [1].

Information 2020, 11, 304; doi:10.3390/info11060304 www.mdpi.com/journal/information

http://www.mdpi.com/journal/information
http://www.mdpi.com
https://clusit.it/rapporto-clusit/
http://dx.doi.org/10.3390/info11060304
http://www.mdpi.com/journal/information
https://www.mdpi.com/2078-2489/11/6/304?type=check_update&version=2

Information 2020, 11, 304 2 of 18

As a confirmation of this trend, researchers shown that several AppChina http://www.appchina.
com/ (a widespread Chinese third-party market) applications are supplying malware-tainted
applications that can steal data or cost money by auto-subscribing infected users to SMS/MMS services
https://www.techinasia.com/china-android-app-stores-malware. But even the Android official
market (i.e., Google Play) is not free from infected applications [2]. As a matter of fact, BitDefender
security researchers recently (January, 2020) have discovered the presence of 17 applications infected
with malware on the Google store, which mostly infested smartphones with aggressive advertisements
that showed up even when the applications were not running https://www.ilfattoquotidiano.it/2020/
01/16/google-play-store-trovate-altre-17-app-infettate-da-malware/5674489/.

The mobile operating systems most afflicted by malware is Android https://gs.statcounter.com/
os-market-share/mobile/worldwide: this is not surprising considering that is currently the most
diffused operating system for mobile devices [3]. Moreover, being open, this system is very attracting
for malware writers, for these reasons it represents the primary target of cybercriminals, that are able
to develop malicious code to attack the users and their information [4,5]. Moreover, also ransomware
is becoming a serious threat in Android environment [6,7].

If on the one side we have the attackers, there is also the defensive counterpart (the defenders).
With the word “defender” we refer to tools like the anti-malware, but they are not able to identify new
malware or threats, because the identification is possible only if the malicious payload signature is
stored in the anti-malware’s repository [8]. For this reason a threat can be detected only if its signature
is present in the anti-malware repository.

One of the new threats appeared in mobile environment is represented by the so-called collusion
attack. With the collusion attack the malicious action is split between different applications and these
communicate with each other when is performed a specific action by the users or when a specific
system event occurs. In this way the user has not suspicious because the applications require the
minimum permissions needed to launch the attack.

To perform a collusion attack, we need to have at least two applications. To better understand how
it works we provide an example: during a collusion one application might read sensitive data (this
implies that it has only the permission to read the data) and transmits it to the other application, this one
then send the data to the outside world (this implies instead that it has connection permission) [9].
Analyzing separately the applications involved, it is not possible to intercept this kind of attack [10].

It is necessary to underline that in Android system the applications are not completely
independent to each other, but they can use the Inter-Component Communication (ICC), a mechanism
that allows functionality reuse to reduce the developers’ burden. This inter-application collaboration
is possible thanks to information exchange between components that could belong to the same
application or to different applications [11]. Unfortunately, the ICC model can be misused by malicious
applications to threaten user privacy [9,10].

Our research work starts from just described considerations and in this paper we present a
tool developed starting from an approach based on model checking, able to detect the collusion
between Android applications [12]. We also propose two heuristic functions with the aim to reduce the
number of the analyzed applications. The functions has been built using the µ-calculus temporal logic.
During this work we have focused the attention on String, Int and Float resources shared, exploiting
Android SharedPreferences.

This work represents an extension of the preliminary paper entitled “Colluding Android Apps
Detection via Model Checking” [13] presented at the “34th International Conference on Advanced
Information Networking and Applications, AINA Workshops 2020”. With respect to the previous
work, in this paper we introduce following contributions: we deep explain the formal model we
considered to detect collusion; we present the temporal logic formulae to detect SharedPreferences
sharing Int and Float values; we show the temporal logic formulae aimed to detect the information (for
instance the IMEI or the location of the device) shared through SharedPreferences; we show a running
example to better understand the proposed approach; we better evaluate the proposed approach by

http://www.appchina.com/
http://www.appchina.com/
https://www.techinasia.com/china-android-app-stores-malware
https://www.ilfattoquotidiano.it/2020/01/16/google-play-store-trovate-altre-17-app-infettate-da-malware/5674489/
https://www.ilfattoquotidiano.it/2020/01/16/google-play-store-trovate-altre-17-app-infettate-da-malware/5674489/
https://gs.statcounter.com/os-market-share/mobile/worldwide
https://gs.statcounter.com/os-market-share/mobile/worldwide

Information 2020, 11, 304 3 of 18

adding in the experiment a set of 100 malicious and 100 legitimate real-world applications; finally we
compare the proposed approach with the current state-of-the-art literature in terms of kind of approach,
components handled, inter-application analysis and accuracy. Moreover 20 colluding application
developed by authors are considered in the experiment, for a total of 993 evaluated applications.

The paper’s organization is the following: in Section 2 we describe the proposed approach for
detecting colluding attack in Android environment, a running example is provided in Section 3,
evaluation results are discussed in Section 4 in Section 5 current state-of-the-art literature is analyzed
and, finally, conclusion and future research lines are drawn in Section 6

2. Detecting SharedPreferences Collusion in Android Environment

The developed approach for the detection and verification of Android colluding applications
starts from the binary analysis code using the Java ByteCode, because the source code is not always
reachable like the binary code [14,15].

Figure 1 shows the schema of the proposed approach.

Figure 1. The proposed approach for colluding application detection. We highlight the First Heuristic
(with the ϕPUT and the ϕGET properties) and the Second Heuristic (with the χP property) aimed to
reduce the application comparisons.

In this paper we experiment whether model checking techniques can be adopted for detecting
Android collusion. To apply model checking we need a model and a set of properties.

Information 2020, 11, 304 4 of 18

For this reason, in the first step we have defined a formal model from the Java Bytecode of an
Android application. With this technique it is possible to build a general model and in this model we
can check the system properties.

The formal model is expressed in the Calculus of Communicating Systems (CCS) process calculus,
while the properties are expressed in µ-calculus. The proposed formal model represents a process
that starting from the ByteCode is able to simulate the application behaviour. The .apk (i.e., Android
Package) is an Android application and is a variant of the .jar file compiled for embedded devices.
This type of file contains the executable code (i.e., the .dex file) targeting the Dalvik Virtual Machine,
the resource folder (i.e., images, sounds, icons) and the Manifest file.

To obtain the Java ByteCode from the .apk file, we need:

- to use the dex2jar https://sourceforge.net/projects/dex2jar/ tool, to generate the .jar file starting
from the .apk file;

- to use the Java Archive Tool utility to extract from the .jar file the java classes and packages
https://docs.oracle.com/javase/8/docs/technotes/tools/unix/jar.html;

- to invoke the BCEL (Byte Code Engineering Library https://commons.apache.org/proper/
commons-bcel/) to generate the Android application ByteCode from the .jar file.

After this, is executed an algorithm developed by the author in [2,3] to generate a CCS process
for each Java ByteCode instructions. The process to generate the CSS models is aimed to codify the
instructions: an action of the model represents a single Java Bytecode instruction.

2.1. The First Heuristic Function: PUT and GET

Given the large number of applications present in official and unofficial stores, the cost of the
analysis grows exponentially with the number of applications analyzed at the same time. To reduce
the number of colluding candidates to test, we need to find groups of applications that should be
considered together for collusion.

We have defined some temporal logic formulae to detect the applications behaviour and recognize
collusive ones. The first heuristic function works using the SharedPreferences. It checks every read or
write of a String, Int and Float shared resources in every possible code path. So, is applied a division of
the applications relatively to the different shared resource use.

Below we show two Android source code snippets (belonging to two different Android
applications), the first one represents a SharedPreferences GET (i.e., a read operation) of the String
value (i.e., “defaultValue”, read from the “value1” variable).

//GET snippet : s t a r t
SharedPreferences sharedPreferences = t h i s . getSharedPreferences (" SharedPreferences " ,
Context .MODE_WORLD_WRITEABLE) ;
S t r i n g value1 = sharedPreferences . g e t S t r i n g (" value1 " , " defaul tValue ") ;
//GET snippet : end

The second snippet, below shown, represents a SharedPreferences PUT (i.e., a write operation),
where the “information” value is stored in the “value1” variable.

//PUT snippet : s t a r t
SharedPreferences sharedPreferences= t h i s . getSharedPreference
(" SharedPreferences " , Context .MODE_WORLD_WRITEABLE) ;
SharedPreferences . Edi tor e d i t o r = sharedPreferences . e d i t () ;
e d i t o r . putStr ing (" value1 " , " information ") ;
//PUT snippet : end

The GET and PUT snippets show how it is possible for two Android applications to share
(sensitive) data between two applications without requiring additional permissions.

As shown from the source code snippets, an application can execute two different operations on a
shared resource: PUT and GET. These actions can be encoded with the µ-calculus logic:

https://sourceforge.net/projects/dex2jar/
https://docs.oracle.com/javase/8/docs/technotes/tools/unix/jar.html
https://commons.apache.org/proper/commons-bcel/
https://commons.apache.org/proper/commons-bcel/

Information 2020, 11, 304 5 of 18

- when an application executes a PUT action on a shared resource, the formula (Table 1—Formula1)
results true if are performed the following actions: invokegetSharedPreferences, invokeedit,
invokeputString/invokeputInt/invokeputFloat, invokecommit;

- when instead an application executes a GET action on a shared resource, the formula
(Table 1—Formula2) results true if are performed the following actions: invokegetSharedPreferences,
invokegetString/invokegetInt/invokegetFloat.

Table 1. The First Heuristic: the ϕPUT property is aimed to detect methods invoking PUT operations
on SharedPre f erences, while the ϕGET property is aimed to detect methods invoking GET operations
on SharedPre f erences.

Formula1
ϕPUT = µX. 〈invokegetSharedPre f erences〉 ϕPUT1∨

〈−invokegetSharedPre f erences〉 X
ϕPUT1 = µX. 〈invokeedit〉 ϕPUT2 ∨ 〈−invokeedit〉 X
ϕPUT2 = µX. 〈invokeputString, invokeputInt, invokeputFloat〉 ϕPUT3∨

〈−invokeputString, invokeputInt, invokeputFloat〉 X
ϕPUT3 = µX. 〈invokecommit〉 tt∨ 〈−invokecommit〉 X

Formula2
ϕGET = µX. 〈invokegetSharedPre f erences〉 ϕGET1∨

〈−invokegetSharedPre f erences〉 X
ϕGET1 = µX. 〈invokegetString, invokegetInt, invokegetFloat〉 tt∨

〈−invokegetString, invokegetInt, invokegetFloat〉 X

The heuristic function allows to obtain in a short time two different sets of applications to be
analyzed later, where in the first one are contained the applications that verify the PUT property,
instead in the second one are contained the applications that verify the GET property. The reduction in
processing costs is given thanks to model checking (which considers as input a class modeled in terms
of CCS and a temporal logic formula) which performs a screening and selects only the classes that could
potentially generate a collusion. In this way the number of classes to be tested is significantly reduced.

2.2. The Second Heuristic Function: FlowDroid

We have thought to a second heuristic based on the flow analysis, with the aim to further reduce
the search space of colluding applications. If a PUT formula is verified during execution, will be
executed FlowDroid to check the data flow presence, but it will not be executed if a GET property
is verified.

This choice is made because a PUT action presupposes the presence of an active modification and
the analysis of the flow can help us understand if some modification has been made.

In Table 2 are showed the properties used to verify data flow on the model generated from the
FlowDroid output. The properties are useful to classify the flow type according to the channel where
are passed the data to a specific shared resource.

The channel in this case is represented by the exfiltrated data: we consider WIFI (detected by the
ψWIFI formula in Table 2), IMEI (detected by the ψIMEI formula in Table 2), GPS (detected by the ψGPS
formula in Table 2), ACCOUNTS (detected by the ψACCOUNTS formula in Table 2), TASK (detected by
the ψTASK formula in Table 2), CONT_BOOK_HIST (detected by the ψCONT formula in Table 2) and
CALL (detected by the ψCALL formula in Table 2).

Information 2020, 11, 304 6 of 18

Table 2. The Second Heuristic, aimed to check with the χP property the resource (for instance the
device IMEI or the accounts) shared between the SharedPre f erences on the model built exploiting the
FlowDroid tool.

Formula3
χ1 = νX.[query] ff ∧ [−query]X
χ2 = νX.[getString] ff ∧ [−getString]X
ψCALL1 = µX. 〈getString〉 ψCALL2 ∨ 〈−getString〉 X
ψCALL2 = µX. 〈putString〉 tt∨ 〈−putString〉 X
ψCALL = ψCALL1 ∧ χ1

χ3 = µX. 〈getString〉 tt∨ 〈−getString〉 X
ψCONT1 = µX. 〈query〉 ψCONT2 ∨ 〈−query〉 X
ψCONT2 = µX. 〈putString〉 tt∨ 〈−putString〉 X
ψCONT = ψCONT1 ∧ χ3

ψTASK = µX. 〈getRunningTasks〉 ψTASK1 ∨ 〈−getRunningTasks〉 X
ψTASK1 = µX. 〈putString〉 tt∨ 〈−putString〉 X
ψACCOUNTS = µX. 〈getAccounts〉 ψACCOUNTS1 ∨ 〈−getAccounts〉 X
ψACCOUNTS1 = µX. 〈putString〉 tt∨ 〈−putString〉 X
ψGPS = µX. 〈getLastKnownLocation〉 ψGPS1 ∨ 〈−getLastKnownLocation〉 X
ψGPS1 = µX. 〈putString〉 tt∨ 〈−putString〉 X
ψIMEI = µX. 〈getSimSerialNumber, getDeviceId〉 ψIMEI1 ∨ 〈−getSimSerialNumber, getDeviceId〉 X
ψIMEI1 = µX. 〈putString〉 tt∨ 〈−putString〉 X
χTASK = νX.[getRunningTasks] ff ∧ [−getRunningTasks]X
χACCOUNTS = νX.[getAccounts] ff ∧ [−getAccounts]X
χGPS = νX.[getLastKnownLocation] ff ∧ [−getLastKnownLocation]X
χSIM = νX.[getSimSerialNumber] ff ∧ [−getSimSerialNumber]X
χID = νX.[getDeviceId] ff ∧ [−getDeviceId]X
χIMEI = χSIM ∨ χID

ψWIFI−AND = χTASK ∧ χACCOUNTS ∧ χGPS ∧ χIMEI

ψWIFI1 = µX. 〈toString〉 ψWIFI2 ∨ 〈−toString〉 X
ψWIFI2 = µX. 〈putString〉 tt∨ 〈−putString〉 X
ψWIFI = χ2 ∧ χ1 ∧ ψWIFI−AND ∧ ψWIFI1

χP = 〈ψWIFI ∨ ψIMEI ∨ ψGPS ∨ ψACCOUNTS ∨ ψTASK ∨ ψCONT ∨ ψCALL〉

2.3. The Formal Model Design and Generation

We have create a system model and system properties to be able to use the model verification
techniques. For the model development, we start with the definition of an algorithm that is based on
the use of FlowDroid to take as input one application at a time and to obtain in output an XML file
containing the data flow reconstruction that includes the description of the sources and (respective)
sinks. Subsequently will be created two lists, one for the sources and one for the sinks respectively.
The two lists are used to compose the hashmap, where the key is represented by the source and the
value is represented by the array sink.

The model is created building a graph based on the flow, that is composed by an array of roots and
an array of leaves. During the execution, the sources array is scanned to verify if the source element is
present also in the sinks array and if it is true, then the element is deleted from both arrays. At the end
we will find in the sources array all the roots and in the sinks array all the leaves of the flow graph.

We developed a recursive algorithm working in the following way: it selects the first root
contained in the roots array, to enter into the hashmap using the root like a key and checks if it has
sons. In case there is a son, in the CCS file model we go from the root to the son and the recursive

Information 2020, 11, 304 7 of 18

algorithm will be invoked until all the roots have been selected. In this way, we obtain the CCS file for
the model checking.

2.4. Coupling Process and Formal Verification

With the heuristic functions application, we are able to obtain a set of applications pairs for
the SharedPreferences shared resources: these resources can be String, Int of Float. We indicate these
resources as Ss.r..

For each (p, q) ∈ Ss.r. the CCS process is defined as:

Procpq = (p |C| q)\L

To better understand:

- p and q are the CCS representation of potential candidates to the collusion;
- C is the definition of the coupling process that verify the collusion presence among p and q;
- L is the set of communication actions and is composed how showed:

L = {Pre f erences_NAME, invokegetSharedPre f erences, resource_ID,
invokeputString/ invokeputInt/ invokeputFloat, invokegetString/ invokegetInt/ invokegetFloat}.

At the end is applied a formal verification environment including a model checker. For each
(p, q) ∈ Ss.r. is checked the CCS process Procpq. The model checker tool used is CWB-NC, when its
result is true, then means CCS process Procpq satisfies a mu-calculus formula encoding the colluding
notion. So we can deduce that our approach under colluding analysis considers two applications p
and q, false otherwise.

In this paper we experiment with the Concurrency Workbench of New Century (CWB-NC)
https://sourceforge.net/projects/cwb-nc/ model checker, a tool considering a plethora of different
techniques for specifying and verifying finite-state concurrent systems.

3. Android Colluding Detection Running Example

To better understand how the proposed approach is working to malicious colluding detection,
in following section we show a running example. We provide the several model automatically
generated by the proposed approach. Let us consider two applications: the first one is
identified by FMVPNMY3DT87FD4A2D15ON3KR0243ZUH hash and the second one by the
B5KH2TM08LBYPA03KHFOWA3E7JB9W0IU hash.

As highlighted from Figure 1 the first step is represented by the PUT and the GET properties
verification. Thus the proposed approach converts all the classes (parsed in ByteCode format obtained
by exploiting the BCEL library) into CCS processes. So, each CCS process is checked respectively with
the PUT and the GET formulae.

Figures 2 and 3 shows the graph snippets obtained from the CCS processes that the CWB-NC
model checker respectively labelled as true when the GET and the PUT formulae are verified.

The images in Figures 2 and 3 are given by the representation of an application in a call graph
structure, where each arch identifies a Java ByteCode instruction and it is possible to obtain it thanks to
the transformation of the class into a CCS process, that simulates the applications’ beaviour. In detail
we obtained the call graph structure by invoking in the first time “load file.ccs” command on the
CWB-NC and then “compile automaton-name.ccs”. The two commands respectively permit to load the
file in the CWB-NC model checker, while the second enable us to obtain the graph of the automaton.

Each connection in the call graph generated from the model checker is in the following format:
start : action {end} where, start : represents the source node, action the ByteCode instruction (i.e.,
the node action) and with end the destination(s) node(s).

Figure 2 shows the call graph related to CCS process resulting true to the GET formula.

https://sourceforge.net/projects/cwb-nc/

Information 2020, 11, 304 8 of 18

Figure 2. The GET automaton: the invokegetSharedPreferences and invokegetString actions are related to a
read operation (in this case of a string variable) from a SharedPre f erences.

According to ϕGET formula shown in Table 1, the model checker output true when the ϕGET
formula is checked because it exists a sequence of following instructions: invokegetSharedPreferences,
invokegetString. In particular in Figure 2 the invokegetSharedPreferences instruction is the label between
the 26 and the 28 nodes, while the invokegetString instruction is the label between the 34 and the
36 nodes.

In Figure 3 we show a snippet related to the call graph obtained from the PUT CCS process.
According to ϕPUT formula shown in Table 1, the formal verification environment outputs true on

the graph shown in Figure 3 because it contains following path: ’invokegetSharedPreferences, ’invokeedit,
’invokeputString and ’invokecommit. From Figure 3 it emerges that the ’invokegetSharedPreferences
instruction is the label between the 13 and the 15 nodes, the ’invokeedit instruction is the label between
the 15 and 17 nodes, ’invokeputString is the label between the 20 and 21 nodes and, finally, ’invokecommit
is the label between nodes 21 and 22.

Once the ϕPUT formula shown in Table 1 is satisfied on a CCS process, the FlowDroid tool is
invoked to generate a CCS process aimed to understand the kind variable that is wrote into the
SharedPreferences.

In this example, the automaton generated from the FlowDroid output is shown in Figure 4: whether
the property shown in Table 2 is satisfied, one of this data is written into the SharedPreferences.

Information 2020, 11, 304 9 of 18

Figure 3. The PUT automaton: the ’invokegetSharedPreferences, ’invokeedit and ’invokeputString actions
are related to a write operation (in this case of a string variable) from a SharedPre f erences.

Figure 4. The FlowDroid automaton. From the getString, putString and getSharedPreferences actions is
emerging that the (read and write) shared variable is a string.

Information 2020, 11, 304 10 of 18

In the example depicted in Figure 4, the χP property (shown in Table 2) is satisfied because
between the several properties concatenated by the OR operator the ψCALL property is satisfied. In fact,
in the graph in Figure 4 exists one path with the getString, the putString actions and without the query
actions. In particular the getString action is the label between the nodes 0 and 1, 2 and the putString
action is the label between the 4 and 5 nodes.

Figure 5 shows one of the C processes generated for the collusion detection between the PUT and
the GET processes with the set of L communication actions, as described in Section 2.

Figure 5. The Coupler automaton, in this case the push7LHWDB30YDZG7KQ and
the push18N2C3EFRT0L51O actions (obtained from the GET automaton) and the
’push7LHWDB30YDZG7KQ, and ’push18N2C3EFRT0L51O actions (obtained from the PUT automaton)
are symptomatic of a colluding between the GET and the PUT automata.

The idea behind the C automaton is to verify whether the PUT and the GET automata exhibits the
same push labels (in other words whether the PUT and the GET are invoking the same SharedPreferences
and they are respectively writing and reading the same item from the SharedPreferences). In this case the
C automaton contains both the push7LHWDB30YDZG7KQ and the push18N2C3EFRT0L51O (retrieved
from the GET model) and the ’push7LHWDB30YDZG7KQ and the ’push18N2C3EFRT0L51O obtained
from the PUT one: in this specific case 18N2C3EFRT0L51O is the name of the SharedPreferences and
7LHWDB30YDZG7KQ is the key of the value that is wrote by the PUT class and read by the GET class.
Once obtained the C process, we generate the Tester process as shown in Figure 6.

Information 2020, 11, 304 11 of 18

Figure 6. The Tester process, aimed to verify if at least on the Coupler processes exhibits a collusion.

The aim of the Tester process is to verify whether one of the C process is related to a collusion.
The results of the tool from this analysis (stored in a .csv file from the tool) are shown in Table 3.

Table 3. Running example result, with the detail about the name, the class, the method and the variable
exhibiting the GET and the PUT collusion.

Description Item

GET Application FMVPNMY3DT87FD4A2D15ON3KR0243ZUH.apk
GET Class com.acid.tFMVPNMY3DT87FD4A2D15ON3KR0243ZUH.PLAINACTIVITY$1
GET Method public void run
GET Variable PUSH7LHWDB30YDZG7KQ
PUT Application B5KH2TM08LBYPA03KHFOWA3E7JB9W0IU.apk
PUT Class com.acid.rB5KH2TM08LBYPA03KHFOWA3E7JB9W0IU.PlainActivity$1
PUT Method public void run
PUT Variable PUSH18N2C3EFRT0L51O

As appears from the results in Table 3, the proposed approach is able to detect the name of the GET
and the PUT applications, the package, the class and the method where the GET and PUT collusion
action occurs, the name of the SharedPreferences involved in the attack and the key of the value shared
by the collusion applications.

4. Experimental Evaluation

In this section we present the experimental results obtained by the proposed approach.
We experiment a real-world data-set composed by malware with a standalone malicious payload
(i.e., no requiring another application to perpetrate the malicious behaviour), colluding malware
and trusted applications. Below we first present the data-set involved in the experiment and then
the results. Moreover, we discuss the reduction rate exhibited by the proposed approach in term of
application comparison.

4.1. The Data-Set

Several sources are used to build the data-set to evaluated our approach. In particular we consider:

- the ACE data-set, proposed by authors in [16]. In this paper authors have developed a system to
automatically generate combinations of colluding (and non-colluding) applications in Android
environment, the so-called Application Collusion Engine (ACE), with the aim to evaluate different
collusion detection and protection methods. About the experiment we have used a data-set
generated with ACE, we have generated 160 different applications in order to have 80 couples
of colluding applications that communicate through SharedPreferences with String variables and
other 320 different applications in order to have 160 couples of colluding applications not using
this type of communication;

- a set of 20 applications developed by authors (i.e., the SP_INT_FLOAT data-set). In this
data-set 10 applications are performing a collusion attacks through an Int value, while the

Information 2020, 11, 304 12 of 18

other 10 applications consider the collusion attack through a Float value. We built this data-set to
evaluate the proposed approach on the collusion through Int and Float variables (in fact, the ACE
data-set considers only collusion through String variables);

- the DroidBench 2.0 https://github.com/secure-software-engineering/DroidBench composed by
119 applications. We are talking about an open data-set with the aim to evaluate the effectiveness
of taint-analysis tools for Android applications. This data-set do not have colluding applications,
but some applications use SharedPreferences;

- the Swansea University data-set, composed by 14 applications. In it there are only two
colluding applications;

- the Drebin malware repository, a data-set of well-known malware [17,18] not performing collusion
attacks, with the aim to demonstrate the ability of the proposed approach to detect only colluding
malware. We select 10 malware belonging to the top 10 malicious family in the data-set for a total
of 100 not colluding malware, as shown in Table 4;

Table 4. Malware families in the Drebin data-set. We selected the 10 most populous families in this
repository, for a total of 100 not colluding malware. We indicate in the Inst. column the payload
delivering (standalone, repackaging, update), in the attack column the kind of attack (trojan, botnet)
and in the Activation column the operating system events triggering the malicious payload.

Family Inst. Attack Activation

FakeInstaller s t,b
DroidKungFu r t boot,batt,sys

Plankton s,u t,b
Opfake r t

GinMaster r t boot
BaseBridge r,u t boot,sms,net,batt

Kmin s t boot
Geinimi r t boot,sms

Adrd r t net,call
DroidDream r b main

- a set of legitimate 260 applications obtained from the official store of Google i.e., Play store.
These applications were automatically collected from Google Play (https://play.google.com/
store), by using a script developed by authors aimed to query and to download applications
from Android official market. In order to confirm the trustworthiness of these 260 applications
we analyzed this data-set by exploiting the VirusTotal service (https://www.virustotal.com/).
This service run 60 different antivirus software (e.g., Symantec, Avast, Kasperky, McAfee, Panda,
and others) on each application: the output confirmed that the trusted applications included in
the legitimate data-set did not contain malicious payload.

By summarize, we consider a total of 993 applications. In the data-set there are colluding
applications, malware application not performing the collusion attack and legitimate applications
obtained from different sources.

4.2. Collusion Detection Results

In this section we present the evaluation results.
In order to assess the performance of the proposed approach for colluding detection, we consider

four different metrics: Precision, Recall, F-Measure and Accuracy.
The precision has been computed as the proportion of the examples that truly belong to class

X among all those which were assigned to the class. It is the ratio of the number of relevant records
retrieved to the total number of irrelevant and relevant records retrieved:

Precision =
tp

tp + f p

https://github.com/secure-software-engineering/DroidBench
https://play.google.com/store
https://play.google.com/store
https://www.virustotal.com/

Information 2020, 11, 304 13 of 18

where tp indicates the number of true positives and fp indicates the number of false positives.
The recall has been computed as the proportion of examples that were assigned to class X, among

all the examples that truly belong to the class, i.e., how much part of the class was captured. It is the
ratio of the number of relevant records retrieved to the total number of relevant records:

Recall =
tp

tp + f n

where fn indicates the number of false negatives.
The F-Measure is a measure of a test’s accuracy. This score can be interpreted as a weighted

average of the precision and recall:

F-Measure = 2 ∗ Precision ∗ Recall
Precision + Recall

The Accuracy is the fraction of the classifications that are correct and it is computed as the sum of
true positives and negatives divided all the evaluated samples:

Accuracy =
tp + tn

tp + f n + f p + tn

where tn indicates the number of true negatives.
In Table 5 we show the obtained results.

Table 5. Performance Results. The proposed approach reaches a precision and a recall equal to 0.98
with 1 false positive and 1 false negative.

TP TN FP FN PR RC Fm AC

90 160,779 1 1 0.98 0.98 0.98 0.99

As shown by the results in Table 5 we obtain an accuracy equal to 0.99. We obtain only
2 misclassifications in particular, 1 false positive (one application belonging to the DroidBench data-set)
and 1 false negative (the colluding application belonging to the Swansea data-set).

To demonstrate how the proposed heuristics are effective to reduce the comparison between
applications, in Table 6 we show the reduction rate obtained by the proposed approach.

Table 6. Reduction rate results. Without the proposed heuristics the checking for collusion of
993 requires 160,882 comparisons, while with the proposed heuristics we need 90 comparisons for
colluding detection.

Data-Set Applications Theoretical Couples Not Colluding Couples Colluding Couples

ACE 480 114,960 114,880 80

SP_INT_FLOAT 20 190 180 10

DroidBench 119 7021 7021 0

Swansea 14 91 91 0

Drebin 100 4950 4950 0

Play 260 33,670 33,670 0

TOTAL 993 160,882 160,781 90

As shown from reduction rates in Table 6, the evaluation of 993 applications require 160,882
theoretical couples: the proposed approach for detecting collusion attacks considers only 90 couples
(with a reduction rate equal to 99.94%).

Information 2020, 11, 304 14 of 18

5. Colluding and Malicious Communication Channel Detection State-of-the-Art

In the detection techniques environment usually the attention is focused on the analysis of one
sample at a time, not considering the communication channel that can be used by cybercriminals
to perform the attack. This section reviews the related work that consider methods focused on the
detection of colluding and communication channel.

For instance, in [19] the researchers have developed a tool that uses static taint analysis technique
with the aim to retrieve paths in which private and sensitive information are sent to external without
ask the users consent. Using IccTA is possible to detect paths with a single component or multiple
components. The researchers have developed about 22 applications containing ICC-based privacy
leaks to verify this approach.

Amandroid [20] is an approach developed starting from the aforementioned IccTA that focuses it
attention on leaks detection with an ICC analysis. To execute the ICC analysis, it needs to generate two
components: the Inter-Component Data Flow Graph (ICDFG) and the Data Dependence Graph (DDG).
It executes data flow and data dependence analysis for the components and tracks communication
activities between the latter, allowing a customized analysis on Android applications.

About the colluding attack with covert channels, the authors in [21] have developed a
multichannel communication mechanism to transfer sensitive data in secure way on mobile
devices. This mechanism is called Multichannel Communication System (MSYM) and uses the
Android VpnService interface (https://developer.android.com/reference/android/net/VpnService)
to intercept the network data sent, after this, splits it into different parts that will be disordered and
encrypted via multiple transmission channels.

The accelerometer sensor can generate signals able to reflect the motions of the users, so it is
possible use it like covert channel to exchange data. Using properly the devices’ vibration motor,
it is possible to encode the data to avoid that malicious applications read or steal them. With this
mechanism an application can produce effects on acceleration data to be received and decoded by
a second application. In [22] are been implemented two Android applications that play the roles of
source and sink, furthermore are used three different smartphones models to verify the communication.

XManDroid [23] provides runtime monitoring of communication links between applications and
defines communication classification based on permission policies. This tool presents a very high
number of false positive (55%). The aim is to minimize the risk of applications collusion using different
security metrics.

IIFA (Modular Inter-Application Intent Information Flow Analysis of Android Applications) [24]
is an approach based on an intent-flow pre-analysis, it avoids the combinatorial explosion between all
the communication partners, furthermore excludes the infeasible communication paths.

DIALDroid [25] performs a systematic large-scale security analysis on ICC-based sensitive
inter-application data flows. It uses relational database to match ICC entry and exit points.

The authors in [26] show the ability to send data using the USB (Universal Serial Bus) which
acts like a covert channel to the public charging station. They implemented an application called
PowerSnitch, that is able to send data through power bursts, working on the power consumption of
the devices’ CPU.

MR-Droid [27] is a tool to detect inter-application communication threats in particular intent
spoofing and collusion. It uses a framework based on MapReduce to execute a compositional
application analysis.

TaintDroid [28] is an approach that represents an Android Operating System extension. Through
third-party applications, it tracks sensitive data flow. It starts assuming that applications downloaded
by third-parties are not reliable, for this reason it checks in real time how them access and modify these
sensitive data.

Researchers in [29] have developed a method to identify colluding applications analyzing
communication channels, permissions, access to sensitive data and others features. It is possible
to detect collusion in Android environment with it.

https://developer.android.com/reference/android/net/VpnService

Information 2020, 11, 304 15 of 18

IntelliDroid [30] is a tool able to generate input specific for dynamic analysis tool, reducing the
false positives and allowing more precise analysis. IntelliDroid allows to execute targeted analysis.

Authors in [31] propose a method aimed to check the Android inter-application communication
dynamically. After the activity component analysis of the application, it implements different
attack scenarios, considering as vulnerabilities: Cross-Site Scripting, SQL Injection, User Interface
Spoofing, File Manipulation, Native Memory Corruption, Unsafe Reflections, Fragment Injection and
Java Crashing.

Table 7 shows a comparison between the current literature we discussed and the proposed
approach. We grouped the works in terms of Kind of Approach, Components Handled, Inter-Application
Analysis and Accuracy. In detail, in the Kind of Approach column in Table 7, coherently with authors in [32],
we consider methods that do not require the execution of the application (i.e., Static), methods requiring
the application execution (i.e., Dynamic) and methods considering policies for detecting collusion
attacks (i.e., Policy Enforcement). The Components Handled column in Table 7 highlights the colluded
shared resources detected: A is for Activity, S is for Service, R for Broadcast Receiver, C for Content
Provider and SP for Shared Preferences. The Inter-Application Analysis column specifies whether the
discussed methods consider resources shared between different applications (Yes) or consider only
resources shared within the same application (No), while the Accuracy column shows the performances
(n.a. stands for not available).

Table 7. State-of-the-art comparison in colluding detection.

Research Year Kind of Approach Components Handled Inter-Application Accuracy

AmanDroid [20] 2014 Static A, S, R No 0.67

DIALDroid [25] 2017 Policy Enforcement A, S, R, C Yes 0.91

IccTA [19] 2015 Static A, S, R, C Yes 0.93

IntelliDroid [30] 2016 Dynamic A, S, R No 0.93

Hay et al. [31] 2015 Dynamic A Yes n.a.

MR-Droid [27] 2017 Static A, S, R No 1

TaintDroid [28] 2014 Dynamic A, S, R, C No n.a.

Asavoae et al. [29] 2016 Static A, S, R No 0.94

XManDroid [23] 2011 Policy Enforcement A, S, R, C Yes n.a.

Our Approach 2020 Static SP Yes 0.99

From the analysis in Table 7 emerges that the proposed approach is the first one (at the best of
authors knowledge) considering the SharedPreferences as inter-application communication channel for
colluding attacks detection. As a matter of fact, the approaches available in the current-state-of-the-art
considers inter- and intra-communication between other components (activities, service, broadcast
receivers and content providers), this represent a novelty point of the proposed approach, aimed
to detect whether a String, an Int or a Float variable is shared exploiting this channel. Furthermore,
from the performance of view, the only method overcoming the proposed approach is MR-Droid
proposed by Liu et al. [27] . Differently from the proposed approach, authors in [27] do not consider
SharedPreferences as communication channel. Moreover they evaluate in the experimental analysis
8 applications, while we experiment the proposed approach using a data-set (obtained from different
repositories and with a set of applications developed by authors) composed by 993 mobile applications.

6. Conclusions and Future Work

Mobile malware writers are continuously increasing the techniques to develop more complex and
undetectable malicious payloads, with the aim to elude the current detection mechanism provided by
signature-based anti-malware. One of the latest trend in the mobile attack landscape is represented

Information 2020, 11, 304 16 of 18

by the so-called collusion attack. In this paper we propose an approach based on formal methods for
detecting this new threat in Android environment. Basically we represent Android applications
in term of CCS processes and, by exploiting model checking, we verify whether the automata
obtained from the classes of the application satisfy certain properties formulated by the authors.
There are several collusion attacks in the wild, in this experiment we focus on the colluding attacks
through SharedPreferences, object pointing to a file containing key-value pairs providing a simple
way to read and write them, really widespread to share data between different Android applications.
We propose several heuristics to drastically reduce the number of comparisons performed by the
proposed approach. In detail the first heuristic is aimed to looking for methods aimed to GET and
to PUT information on the SharedPreferences. The second heuristic is aimed to detect the kind of
information exfiltrated exploiting the SharedPreferences channel (i.e., WIFI, IMEI, GPS, ACCOUNTS,
CONT_BOOK_HIST and CALL).

To evaluate the effectiveness of the proposed approach are considered standalone malicious
applications, legitimate applications crawled by the official Android market and a set of applications
performing malicious collusion. In particular, we built a data-set by exploiting several repositories
freely available for research purposes (i.e., ACE, DroidBench, Swansea and the Google Play Store).
Moreover we take into account 20 applications developed by authors exhibiting the SharedPreferences
collusion with integer and float variables.

Experimental results show the effectiveness of the proposed approach: as a matter of
fact an accuracy equal to 0.99 is obtained, obtaining only two application misclassifications.
The proposed heuristics are able to obtain a comparison reduction rate of 99.94%, in fact the proposed
approach requires only 90 comparisons instead of the 160,882 comparisons required to evaluate the
993 applications in the analyzed data-set. As future work we plan to detect different kinds of collusion
attacks for instance, the external storage one. Moreover, we will extend the proposed approach to
detect collusion attacks performed by more than two applications. Furthermore, we are investigating
whether the adoption of formal equivalence checking can be helpful to obtain better performances on
the detection of malicious communication channels between several mobile applications.

Author Contributions: Conceptualization, R.C., F.M. (Francesco Mercaldo) and A.S.; methodology, R.C., F.M.
(Francesco Mercaldo), A.S.; software, R.C., F.M. (Francesco Mercaldo); validation, R.C., F.M. (Fabio Martinelli),
F.M. (Francesco Mercaldo) and A.S.; formal analysis, R.C., F.M. (Francesco Mercaldo) and A.S.; investigation,
R.C., F.M. (Fabio Martinelli), F.M. (Francesco Mercaldo) and A.S.; resources, R.C., F.M. (Fabio Martinelli), F.M.
(Francesco Mercaldo) and R. C.; data curation, R.C., F.M. (Fabio Martinelli), F.M. (Francesco Mercaldo) and
A.S.; writing–original draft preparation, R.C., F.M. (Fabio Martinelli), F.M. (Francesco Mercaldo) and A.S.;
writing–review and editing, R.C., F.M. (Fabio Martinelli), F.M. (Francesco Mercaldo) and A.S.; visualization,
R.C., F.M. (Fabio Martinelli), F.M. (Francesco Mercaldo) and A.S.; supervision, F.M. (Fabio Martinelli) and A.S.;
project administration, F.M. (Fabio Martinelli) and A.S.; funding acquisition, F.M. (Fabio Martinelli). All authors
have read and agreed to the published version of the manuscript.

Funding: This work has been partially supported by MIUR—SecureOpenNets and EU SPARTA and
CyberSANE projects.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Nguyen, T.; Mcdonald, J.; Glisson, W.; Andel, T. Detecting Repackaged Android Applications Using
Perceptual Hashing. In Proceedings of the 53rd Hawaii International Conference on System Sciences, Manoa,
HI, USA, 7–10 January 2020.

2. Canfora, G.; Martinelli, F.; Mercaldo, F.; Nardone, V.; Santone, A.; Visaggio, C.A. Leila: Formal tool for
identifying mobile malicious behaviour. IEEE Trans. Softw. Eng. 2018, 45, 1230–1252. [CrossRef]

3. Mercaldo, F.; Nardone, V.; Santone, A.; Visaggio, C.A. Ransomware steals your phone. formal methods
rescue it. In Formal Techniques for Distributed Objects, Components, and Systems; Springer: Cham, Switzerland,
2016; pp. 212–221.

http://dx.doi.org/10.1109/TSE.2018.2834344

Information 2020, 11, 304 17 of 18

4. Mercaldo, F.; Visaggio, C.A.; Canfora, G.; Cimitile, A. Mobile malware detection in the real world.
In Proceedings of the 2016 IEEE/ACM 38th International Conference on Software Engineering Companion
(ICSE-C), Austin, TX, USA, 14–22 May 2016; pp. 744–746.

5. Enck, W. Defending users against smartphone apps: Techniques and future directions. In Information Systems
Security; Springer: Berlin/Heidelberg, Germany, 2011; pp. 49–70.

6. Maiorca, D.; Mercaldo, F.; Giacinto, G.; Visaggio, C.A.; Martinelli, F. R-PackDroid: API package-based
characterization and detection of mobile ransomware. In Proceedings of the Symposium on Applied
Computing, Marrakech, Morocco, 4–6 April 2017; pp. 1718–1723.

7. Scalas, M.; Maiorca, D.; Mercaldo, F.; Visaggio, C.A.; Martinelli, F.; Giacinto, G. On the effectiveness of system
API-related information for Android ransomware detection. Comput. Secur. 2019, 86, 168–182. [CrossRef]

8. Memon, A.M.; Anwar, A. Colluding apps: Tomorrow’s mobile malware threat. IEEE Secur. Priv. 2015,
13, 77–81. [CrossRef]

9. Marforio, C.; Ritzdorf, H.; Francillon, A.; Capkun, S. Analysis of the communication between colluding
applications on modern smartphones. In Proceedings of the 28th Annual Computer Security Applications
Conference, Orlando, FL, USA, 3–7 December 2012; pp. 51–60.

10. Casolare, R.; Martinelli, F.; Mercaldo, F.; Santone, A. A Model Checking based Proposal for Mobile Colluding
Attack Detection. In Proceedings of the 2019 IEEE International Conference on Big Data (Big Data),
Los Angeles, CA, USA, 9–12 December 2019; pp. 5998–6000.

11. Xu, K.; Li, Y.; Deng, R.H. Iccdetector: Icc-based malware detection on android. IEEE Trans. Inf. Foren. Secur.
2016, 11, 1252–1264. [CrossRef]

12. Cimino, M.G.; De Francesco, N.; Mercaldo, F.; Santone, A.; Vaglini, G. Model checking for malicious family
detection and phylogenetic analysis in mobile environment. Comput. Secur. 2020, 90, 101691. [CrossRef]

13. Casolare, R.; Martinelli, F.; Mercaldo, F.; Nardone, V.; Santone, A. Colluding Android Apps Detection via
Model Checking. In Proceedings of the Web, Artificial Intelligence and Network Applications—Proceedings
of the Workshops of the 34th International Conference on Advanced Information Networking and
Applications, AINA Workshops 2020, Caserta, Italy, 15–17 April 2020; pp. 776–786.

14. Cimitile, A.; Mercaldo, F.; Nardone, V.; Santone, A.; Visaggio, C.A. Talos: No more ransomware victims with
formal methods. Int. J. Inf. Secur. 2018, 17, 719–738. [CrossRef]

15. Mercaldo, F.; Nardone, V.; Santone, A.; Visaggio, C.A. Hey malware, i can find you! In Proceedings of
the 2016 IEEE 25th International Conference on Enabling Technologies: Infrastructure for Collaborative
Enterprises (WETICE), Paris, France, 13–15 June 2016; pp. 261–262.

16. Blasco, J.; Chen, T.M. Automated generation of colluding apps for experimental research. J. Comput. Virol.
Hacking Tech. 2018, 14, 127–138. [CrossRef]

17. Canfora, G.; De Lorenzo, A.; Medvet, E.; Mercaldo, F.; Visaggio, C.A. Effectiveness of opcode ngrams for
detection of multi family android malware. In Proceedings of the 2015 10th International Conference on
Availability, Reliability and Security, Toulouse, France , 24–27 August 2015; pp. 333–340.

18. Arp, D.; Spreitzenbarth, M.; Hubner, M.; Gascon, H.; Rieck, K.; Siemens, C. Drebin: Effective and Explainable
Detection of Android Malware in Your Pocket; NDSS: New York, NY, USA, 2014; Volume 14, pp. 23–26.

19. Li, L.; Bartel, A.; Bissyandé, T.F.; Klein, J.; Le Traon, Y.; Arzt, S.; Rasthofer, S.; Bodden, E.; Octeau, D.;
McDaniel, P. Iccta: Detecting inter-component privacy leaks in android apps. In Proceedings of the 2015
IEEE/ACM 37th IEEE International Conference on Software Engineering, Florence, Italy, 16–24 May 2015;
Volume 1, pp. 280–291.

20. Wei, F.; Roy, S.; Ou, X. Amandroid: A precise and general inter-component data flow analysis framework for
security vetting of android apps. ACM Trans. Priv. Secur. (TOPS) 2018, 21, 1–32. [CrossRef]

21. Wang, W.; Tian, D.; Meng, W.; Jia, X.; Zhao, R.; Ma, R. MSYM: A multichannel communication system for
android devices. Comput. Netw. 2020, 168, 107024. [CrossRef]

22. Al-Haiqi, A.; Ismail, M.; Nordin, R. A new sensors-based covert channel on android. Sci. World J. 2014,
2014, 969628. [CrossRef] [PubMed]

23. Bugiel, S.; Davi, L.; Dmitrienko, A.; Fischer, T.; Sadeghi, A.R. Xmandroid: A New Android Evolution to Mitigate
Privilege Escalation Attacks; Technical Report TR-2011-04; Technische Universität Darmstadt: Darmstadt,
Germany, 2011.

http://dx.doi.org/10.1016/j.cose.2019.06.004
http://dx.doi.org/10.1109/MSP.2015.143
http://dx.doi.org/10.1109/TIFS.2016.2523912
http://dx.doi.org/10.1016/j.cose.2019.101691
http://dx.doi.org/10.1007/s10207-017-0398-5
http://dx.doi.org/10.1007/s11416-017-0296-4
http://dx.doi.org/10.1145/3183575
http://dx.doi.org/10.1016/j.comnet.2019.107024
http://dx.doi.org/10.1155/2014/969628
http://www.ncbi.nlm.nih.gov/pubmed/25295311

Information 2020, 11, 304 18 of 18

24. Tiwari, A.; Groß, S.; Hammer, C. IIFA: Modular inter-app intent information flow analysis of android
applications. In Security and Privacy in Communication Systems; Springer: Cham, Switzerland, 2019;
pp. 335–349.

25. Bosu, A.; Liu, F.; Yao, D.; Wang, G. Collusive data leak and more: Large-scale threat analysis of inter-app
communications. In Proceedings of the 2017 ACM on Asia Conference on Computer and Communications
Security, Abu Dhabi, UAE, 2–6 April 2017; pp. 71–85.

26. Spolaor, R.; Abudahi, L.; Moonsamy, V.; Conti, M.; Poovendran, R. No free charge theorem: A covert channel
via usb charging cable on mobile devices. In Applied Cryptography and Network Security; Springer: Cham,
Switzerland, 2017; pp. 83–102.

27. Liu, F.; Cai, H.; Wang, G.; Yao, D.; Elish, K.O.; Ryder, B.G. MR-Droid: A scalable and prioritized analysis of
inter-app communication risks. In Proceedings of the 2017 IEEE Security and Privacy Workshops (SPW),
San Jose, CA, USA, 25 May 2017; pp. 189–198.

28. Enck, W.; Gilbert, P.; Han, S.; Tendulkar, V.; Chun, B.G.; Cox, L.P.; Jung, J.; McDaniel, P.; Sheth, A.N.
TaintDroid: An information-flow tracking system for realtime privacy monitoring on smartphones.
ACM Trans. Comput. Syst. (TOCS) 2014, 32, 1–29. [CrossRef]

29. Asavoae, I.M.; Blasco, J.; Chen, T.M.; Kalutarage, H.K.; Muttik, I.; Nguyen, H.N.; Roggenbach, M.; Shaikh, S.A.
Towards automated android app collusion detection. arXiv 2016, arXiv:1603.02308.

30. Wong, M.Y.; Lie, D. IntelliDroid: A Targeted Input Generator for the Dynamic Analysis of Android Malware; NDSS:
New York, NY, USA, 2016; Volume 16, pp. 21–24.

31. Hay, R.; Tripp, O.; Pistoia, M. Dynamic detection of inter-application communication vulnerabilities in
Android. In Proceedings of the 2015 International Symposium on Software Testing and Analysis, Baltimore,
MD, USA, 12–17 July 2015; pp. 118–128.

32. Bhandari, S.; Jaballah, W.B.; Jain, V.; Laxmi, V.; Zemmari, A.; Gaur, M.S.; Mosbah, M.; Conti, M. Android
inter-app communication threats and detection techniques. Comput. Secur. 2017, 70, 392–421. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1145/2619091
http://dx.doi.org/10.1016/j.cose.2017.07.002
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Detecting SharedPreferences Collusion in Android Environment
	The First Heuristic Function: PUT and GET
	The Second Heuristic Function: FlowDroid
	The Formal Model Design and Generation
	Coupling Process and Formal Verification

	Android Colluding Detection Running Example
	Experimental Evaluation
	The Data-Set
	Collusion Detection Results

	Colluding and Malicious Communication Channel Detection State-of-the-Art
	Conclusions and Future Work
	References

