
 information

Article

GEdIL—Gamified Education Interoperability Language

Jakub Swacha 1,* , José Carlos Paiva 2,3,* , José Paulo Leal 2,3,* , Ricardo Queirós 2,4,* ,
Raffaele Montella 5 and Sokol Kosta 6

1 Department of Information Technology in Management, University of Szczecin, 70-453 Szczecin, Poland
2 CRACS—INESC Porto LA, 4169-007 Porto, Portugal
3 Department of Computer Science, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
4 uniMAD—ESMAD, Polytechnic of Porto, 4480-876 Vila do Conde, Portugal
5 Department of Science and Technology, University of Naples “Parthenope”, 80133 Naples, Italy;

raffaele.montella@uniparthenope.it
6 Department of Electronic Systems, Aalborg University, 9220 Aalborg, Denmark; sok@es.aau.dk
* Correspondence: jakub.swacha@usz.edu.pl (J.S.); jose.c.paiva@inesctec.pt (J.C.P.); zp@dcc.fc.up.pt (J.P.L.);

ricardoqueiros@esmad.ipp.pt (R.Q.)

Received: 30 April 2020; Accepted: 26 May 2020; Published: 28 May 2020
����������
�������

Abstract: The paper introduces Gamified Education Interoperability Language (GEdIL), designed
as a means to represent the set of gamification concepts and rules applied to courses and exercises
separately from their actual educational content. This way, GEdIL allows not only for an easy yet
effective specification of gamification schemes for educational purposes, but also sharing them among
instructors and reusing in various courses. GEdIL is published as an open format, independent from
any commercial vendor, and supported with dedicated open-source software.

Keywords: gamification in education; gamification language; gamification data format

1. Introduction

With the world becoming more and more dependent on software, there is a growing demand for
those capable of developing it. According to recent research, while the number of software developers
in the world has already surpassed 24 million, it is expected to increase by an additional 5 million in
the forthcoming five years [1]. This obviously stresses the importance of learning to program, which
has already become, as aptly put by Sedgewick et al. [2], “an essential part of the education of every
student in the sciences and engineering”. The problem with learning programming is that it is difficult
as observed by various researchers (see, e.g., [3] and works cited therein).

Gamification, consisting of the use of game design elements outside of games, was proven as an
effective means to counteract the decreasing engagement of the students coping with the difficulty of
learning programming [4]. While there are several reports on the use of gamification in programming
education (see, e.g., [5], especially Table I, for a review of a selection of such attempts), considering the
scale of programming education worldwide, this approach is far from widespread. In our opinion,
one of the main barriers for its wider adoption is the closedness of existing solutions: one can either
use existing gamified courses and platforms or develop one’s own from scratch, but there is no open
repository of programming exercises with attached sets of gamification rules nor open platforms that
would handle them so that the exercises could be reused in various contexts and the rules adapted for
specific needs.

Overcoming this gap is the main goal of the Framework for Gamified Programming Education
project [6]. This paper is devoted to one of the key results of this project, namely an open format for
the specification of the gamification layer of educational contents such as programming exercises.
The need for such a format arises from both the complexity of the existing languages/formats and

Information 2020, 11, 287; doi:10.3390/info11060287 www.mdpi.com/journal/information

http://www.mdpi.com/journal/information
http://www.mdpi.com
https://orcid.org/0000-0002-2214-6989
https://orcid.org/0000-0003-0394-0527
https://orcid.org/0000-0002-8409-0300
https://orcid.org/0000-0002-1985-6285
https://orcid.org/0000-0002-4767-2045
https://orcid.org/0000-0002-9441-4508
http://dx.doi.org/10.3390/info11060287
http://www.mdpi.com/journal/information
https://www.mdpi.com/2078-2489/11/6/287?type=check_update&version=2

Information 2020, 11, 287 2 of 9

their lack of reusability, as they attempt to cover the whole board of gamification elements, without
focusing on the specific needs of a domain such as education, use intermediate compilations, or are
close to a particular service [7–9].

Note that while the proposed format was conceived originally for gamification of computer
programming exercises, it is in no way constrained to this area of use, and in this paper, we emphasize
its applicability to gamification of any kind of educational exercises. The rest of this paper is organized
as follows: the related work panorama is framed in Section 2; GEdIL, the modeling language for
gamification in educational contexts which represents the novel contribution proposed in this work,
is detailed in Section 3; Section 4 describes the fulfillment of the requirements for the programming
domain; finally, the concluding remarks and some future directions are in Section 5.

2. Related Work

While many gamified applications use gamification features embedded in their code, separating
the gamification layer has many virtues, such as the increase in reuse, adaptability, and maintainability.

The separation of the gamification layer does not imply a dedicated format as the rules can be
expressed in any general-purpose programming language. However, their specific nature advocates
the use of a domain-specific language. Perhaps the best-known example of the latter approach is GaML
(Gamification Modeling Language), a textual, declarative, and platform-independent gamification
modeling language [7]. It includes most of the widely used gamification concepts: GameLevel, Point,
Skill, Mission, Role, Leaderboard, Level, Goods, Badge, and Event. The actions that could be
featured in the rules include User Actions (something done by the user of the gamified system),
External Events (e.g. specific time of day), Interim Events (being an interim result of another
gamification rule), Context (achieving a specific state, e.g., passing a score threshold), Constraints
(temporal, spatial, boolean, numeric or random, e.g., performing some action within a specified time
after achieving something), Randomness (limiting the probability of the rule producing its result), and
Joint Actions (performing some action by several users together). The language has been designed
as “fully writable for IT experts and partially writable by domain experts”, meaning that the latter
should be able to understand all but the most complex expressions of GaML.

While GaML relies on the external (gamified) system to identify events that are relevant for
triggering the gamification rules before exposing them, the notation for the representation of events
and rules proposed in [10] makes it a part of the rule specification. The only requirement for the
gamified system is, therefore, to produce a standardized stream of communications exposing all the
potentially relevant, possibly low-level events happening therein. Each such event is represented as a
tuple of nine elements: Player, Software Client, Area, Location, Object, Action, Action Result,
Date, and Time. The rules are defined in two separate parts linked by the same rule name: Event
Selector and Rule Result for the sake of both clarity and the ability to match multiple selectors with
a single result and vice versa. The selectors can be based on the external events (which have then to
conform to defined conditions), their repetitions (possibly in a specific sequence) and game-state-related
events (caused indirectly by other rules), and can be combined to form compound rules. The allowed
rule results include feedback to the user, rewards, challenges being offered, started or finished, and
other manipulation of the game state properties.

Ašeriškis, in his PhD thesis, introduces the UAREI model for formal specification of gamification,
coupled with a visual modeling language for graphical representation of game mechanics [8]. Its name
stems from the five gamification elements it models: User, Action, Rule, Entities and Interface.
Users trigger Rules with their Actions, the Rules interact with data represented in Entities, and
Interface defines what is displayed to Users. While UAREI is primarily intended for design
and analysis of gamification systems, it can be transformed to the simplified UAREI JSON model
(serializable using JavaScript Object Notation, hence its name) which can, in turn, be transformed into
executable JavaScript code for the purposes of development and simulation of gamification systems.

Information 2020, 11, 287 3 of 9

GameLayer [9] is a cloud-based platform that enables the creation of mechanics for applications
and services to increase engagement from its users. At its core, GameLayer uses a gamification system
based on a well-defined structure composed of several entities such as players, rewards, achievements,
levels, events, and missions. Players are the cornerstone of the gamification system. As they progress
in the gamified application, they are rewarded, increasing their status, unblocking new accesses, or
receiving more power (e.g., gaining permissions to moderate or ban users on chats and forums).
Rewards in GameLayer consist mainly of points or credits.

There are also proprietary solutions (e.g., Gametize [11], IActionable [12], Bunchball [13]), more
focused on business and client/employee engagement, which offer complementary features such as
a content management system, customizable achievements, multiple mechanisms to motivate social
behaviors, on-boarding, reports, and analytics.

Even if it cannot be used for actual gamification implementation (i.e., it cannot be automatically
interpreted by a rule engine), the Machinations framework [14] represents an interesting browser-based
solution for collaborative game design and prototyping. Using a methodology not dissimilar than
other collaborative tools leveraging on cloud SaaS (Software as a Service) model, enables a group of
designers to create game logic, levels, challenges, rewards, and events. The creation of the game-field
logic uses a diagram schema. The output is a graph data structure in which the nodes are the game
objects (levels, quests, etc.) and the arcs the actions the player has to perform to unlock the next
game object.

3. GEdIL

Gamified Education Interoperability Language (GEdIL) is a modeling language for gamification
in educational contexts, that can be serialized as JSON. It describes gamification layers in a way that
they can be built using a simple multistep form, without any programming knowledge. GEdIL sets up
in the assumption that its primary consumer is a Gamification Engine, which uses it as an itinerary
to update the state when an event occurs or an action is performed. The only requirement that the
state must meet, according to GEdIL, is to include information on the state of (1) the environment and
(2) each player.

GEdIL was initially designed to fulfil specific requirements of gamification applied in
programming courses [15]. These requirements identify a vast collection of rewarding mechanisms
such as points, badges, virtual items, and social status (e.g., through leaderboards), to provide extrinsic
motivation, but can also affect the educational content directly through unlockable and secret content,
different activity modes (e.g., speedup and duels), among others. Nonetheless, GEdIL completely
separates the gamification layer from the activities being gamified, which makes it sufficiently generic
to be applied to any other educational subjects, provided that activities have a unique ID.

The next subsections detail the structure of GEdIL with an example use case.

3.1. Multiplication Tables (Toy Domain)

To demonstrate the aptitude of GEdIL to be employed in any educational domain as well as to
facilitate its understanding by the reader, the next subsection will make use of a primary school module
as a toy domain, the multiplication tables. Each activity of this module provides the student with two
integers, between 1 and 10, and expects the result of their multiplication. Activities are identified as
Ax.y, where x and y are the first and second operands of the multiplication, respectively. For instance,
activity A2.4 asks the student to write the result of 2 × 4.

The gamification layer of the toy domain includes an (RQ1) bonus point for each accepted exercise,
(RQ2) a badge for solving the ten activities with prefix A2, and an (RQ3) leaderboard with the top point
collectors. Activities with prefix A10 are unlocked only after A9.9 is solved (RQ4).

Information 2020, 11, 287 4 of 9

3.2. Structure

GEdIL defines a hierarchy of Challenges rooted by a Gamification Layer, in which both elements
can hold Rewards, Rules, and Leaderboards. The vertical position of an element in the hierarchy
determines its scope, as elements closer to the root may be accessed in lower levels, but not the other
way around. For instance, leaderboards attached to the gamification layer are global and consider
every challenge, whereas a leaderboard within a challenge only uses data of that same challenge and
its branches. Figure 1 presents the data model encoded in GEdIL.

Gamification Layer

id : UUID

name : string

description: string

keywords : string[]

status : string

Reward

id : UUID

name : string

description : string

kind : string

amount : number

unlockables : string[]

revealables : string[]

hints : string[]

congratulations: string[]

criteria : object

Rule

id : UUID

name : string

criteria: object

actions : object[]

Leaderboard

id : UUID

name : string

description : string

metrics : string[]

sorting_orders: object[]

Challenge

id : UUID

name : string

description : string

refs : string[]

mode : string

mode_parameters : string[]

locked : boolean

hidden : boolean

difficulty : string

feedback_generators: object[]

1

1

11

0 .. 1 0 .. 1

0 .. M 0 .. M

0 .. M

0 .. M

1 .. M

0 .. M 0 .. M

0 .. M

0 .. M

0 .. 1

Figure 1. Data model defined by the GEdIL format.

The Gamification Layer holds the metadata for identifying the layer, in particular, the Universally
Unique Identifier (UUID) [16] of the layer (id), the name of the layer, a description of the layer
purpose and contents, the set of keywords that best categorizes the layer, and the status of the layer
(possible values are DRAFT, PUBLISHED, UNPUBLISHED, TRASH); as well as pointers to global rewards,
rules, leaderboards, and the first-level of challenges. Despite the fact that it does not encode any logic
and, thus, it is not relevant for gamification (i.e., could be replaced with a top-level challenge), the
proper identification of the layers is the key to ensure their reusability and possibility of replacement.

Challenges are the core of GEdIL. They “wrap” one or more non-gamified activities with a
gamification envelope, which allows locking, hiding, and/or leveling-up the summon to solve it
(e.g., by using mode and mode_parameters the activity could be limited to a certain timeframe). In fact,
challenges are activities themselves, distinct from the original, with a name, a description of the goals,
a difficulty level (BEGINNER, EASY, AVERAGE, HARD, or MASTER), and, possibly, feedback on completion
(provided through an executable script in feedback_generators). Furthermore, challenges also serve
the purpose of organizing the content as they can be chained, not only providing the student with
some structure to follow but also enabling the composition of more complex gamification mechanisms,
such as quests, stories, or duels.

With regard to the multiplication tables domain, a possible gamification layer meeting the
requirements could include three challenges connected to the root: C1—which wraps all activities with
prefix A2; C2—which wraps A9.9; and C3—which is initially locked and wraps all activities with prefix
A10. In this way, the only missing stem to cover RQ2 is to attach a Reward to challenge C1 of kind
BADGE (other possible values are POINT, VIRTUAL_ITEM, COUPON, REVEAL, UNLOCK, HINT, and MESSAGE),

Information 2020, 11, 287 5 of 9

with a suggestive name and description. As the badge is directly linked to the challenge, it should be
delivered on its completion without the need for any additional criteria. The same applies for RQ4,
as a reward of kind UNLOCK linking to challenge C3, through property unlockables, can be a child
node of challenge C2. Then, when and if a student solves C2, he/she will unlock C3.

However, satisfying RQ1 is not so straightforward as it must be triggered on the completion of
any activity, to reward the student. A possible approach is to wrap each activity in a challenge with a
reward of type POINT, which would produce a heavy layer. Yet, GEdIL offers a fairly better strategy to
accomplish this by using a Rule. Rules are triggered based on events or user actions, and they will
modify the state with the value of an action attribute if their criteria are met. An action of a rule is
a verb (e.g., GIVE, TAKE, or UPDATE) followed by any number of parameters. The criteria, which can
also be used in rewards, is a list of conditions connected with junctors (AND and OR), where each
condition has: a left_entity/right_entity—the type of entity holding the property to test, which
is either ENVIRONMENT (i.e., current state of the environment), PLAYER (i.e., current state of the player
related to the trigger), ACTION (i.e., the action performed by the student, if this check results of an
action), EVENT (i.e., the event object, when activated in response to an internal state change or at a given
time), or FIXED (i.e., a constant); a left_property/right_property—a reference to the property to test
(e.g., using JSONPath); and a comparing_function—the function to use while comparing both sides.

Hence, RQ1 can be accomplished with a rule that gives a reward of kind POINT and an amount of
1 when an event has the type of submission with an accepted result. As the specific names and paths of
these properties (in this case, type and result) will invariably depend on the underlying Gamification
Engine, GEdIL does not set any special constraints upon them.

Finally, GEdIL also “imports” a well-known gamification mechanics, the Leaderboard.
A leaderboard consists of a list of metrics and their respective sorting_orders to rank the players.
This component is a prerequisite to fulfilling the missing requirement of the toy domain, RQ3, which
now comes down to attaching a leaderboard sorted in descending order by points. Figure 2 presents a
diagram of the complete gamification layer built for the multiplication tables example, masking IDs,
and ignoring some empty fields.

Gamification Layer

id: GL1

name: Multiplication tables

description: A sample

gamification layer for

teaching multiplication

tables.

keywords : multiplication

table; times table;maths

status: DRAFT

Challenge

id: C1

name: Solve 2x?

description: Solve

the 2 times table.

difficulty: BEGINNER

locked: false

hidden: false

mode: NORMAL

Challenge

id: C3

name: Locked 10

description: The

initially locked 10

times table

difficulty: EASY

locked: true

hidden: false

mode: NORMAL

Challenge

id: C2

name: Solve 9x9

description: Solve

9x9 to unlock 10

times table

difficulty: EASY

locked: false

hidden: false

mode: NORMAL

A2.1 A2.2 A2.10A2.3 A2.4 A2.5 A2.6 A2.7 A2.8 A2.9

Reward

id : RwB

name: Master of 2

description:

Complete the 2 times

table

kind: BADGE

A10.1 A10.2 A10.10A10.3 A10.4 A10.5 A10.6 A10.7 A10.8 A10.9

Leaderboard

id : L1

name: Top Points

metrics: [points]

sorting_orders:

[DESC]

A9.9

Reward

id: RwU

name: Unlock 10x

description: Unlock

the 10 times table

kind: UNLOCK

Reward

id: RwP

name: Point

description: Point

awarded per solved

exercise

kind: POINT

amount: 1

Rule

id: R1

name: Give Point for Solved

criteria

 - conditions[0]

 - left_entity: EVENT

 - left_property: $.type

 - comparing_function: EQUAL

 - right_entity: FIXED

 - right_property:

SUBMISSION_RESULT

 - conditions[1]

 - left_entity: EVENT

 - left_property: $.value

 - comparing_function: EQUAL

 - right_entity: FIXED

 - right_property: ACCEPTED

 - junctors: [AND]

actions

 - type: GIVE

 - parameters: [(reward)]

G
E
d
I
L

A
c
t
i
v
i
t
i
e
s

Figure 2. Diagram of the gamification layer of the toy domain (IDs masked for the sake of simplicity).

Information 2020, 11, 287 6 of 9

4. Requirements Fulfillment for the Programming Domain

As stated previously, GEdIL was designed to fulfill a specific list of requirements classified as
relevant for the gamification of programming education [15]. This section raises each of the identified
requirements and describes how it is accomplished using GEdIL.

The exercise types are out of the scope of GEdIL as they pertain to the programming exercises’
format, so their requirements were neglected. For the sake of simplicity, the different badges, awarded
either on the course-level or the exercise-level, were also ignored as they have all the same requirements
only varying their name and criteria.

Table 1 targets the requirements of aspects related to the course organization. Table 2 describes
the fulfillment of concepts related to the definition of goals. In Table 3, the requirements of the relevant
rewards are accomplished, whereas Table 4 handles the conditions upon which they are granted.
Table 5 covers the needs of the distinct modes in which an activity can be solved. Finally, Table 6
addresses the fulfillment of gamification concepts involving multiple challenges.

Table 1. Fulfillment of requirements from gamification concepts related to course organization.

Concept Description of Fulfillment

Course Module
GEdIL supports a hierarchy of challenges. A module could be a challenge of the
first-level.

Exercise Type Out of scope (i.e., it should be handled by the programming exercises’ format).

Exercise Mode
A challenge supports mode and mode_parameters, so it may wrap the activity with those
modifiers.

Locked Content A challenge supports a locked modifier.

Secret A challenge supports a hidden modifier.

Difficulty Level A challenge supports a difficulty property, with 5 levels.

Table 2. Fulfillment of requirements from gamification concepts related to goals definition.

Concept Description of Fulfillment

Challenge It is a component of the format.

Requirements
A challenge may describe its requirements in its description, but requirements of the
main task (i.e., the exercise) should be handled by the programming exercises’ format.

Quest A challenge may wrap several related activities and give a reward on completion.

Streak
A rule may be added to check if a goal has been accomplished when an event is triggered,
in which case a dedicated counter of the player is increased. Another rule may be added to
check the counter and give a reward if it reaches the threshold.

Record
Leaderboards display the top-ranked players by any metric. Moreover, they can be
attached at any level of the hierarchy.

Information 2020, 11, 287 7 of 9

Table 3. Fulfillment of requirements from gamification concepts related to definition of rewards.

Concept Description of Fulfillment

Point Reward of kind POINT with a certain amount.

Level
A rule to handle an event triggered when player’s points increases may deal with level
progression.

Held Record
Leaderboards display the top-ranked players by any metric. Moreover, they can be
attached at any level of the hierarchy.

Current Rank Same as above.

Badge Reward of kind BADGE.

Virtual Item Reward of kind VIRTUAL_ITEM with a certain amount.

Coupon Reward of kind COUPON with a certain amount.

Content Discovery Reward of kind REVEAL with a set of revealables.

Content Unlock Reward of kind UNLOCK with a set of unlockables.

Hint Reward of kind HINT with a set of hints.

Congratulations Reward of kind MESSAGE with a set of congratulations.

Table 4. Fulfillment of requirements of the types of conditions upon which rewards are granted.

Concept Description of Fulfillment

Attempt
A rule can be attached to the root or a specific challenge to give rewards based on
attempts.

Achievement
A reward attached to the challenge is given on its completion (if the rest of the
criteria is met).

Failure
A rule can be attached to the root or a specific challenge to give rewards based on
failure count of the player submitting.

Progress threshold
A rule to handle an event triggered when player’s points increases may give a
reward when a certain threshold is achieved.

Progress in competition Leaderboard is a component of GEdIL and supports several metrics.

Table 5. Fulfillment of requirements of gamified programming exercise modes.

Concept Description of Fulfillment

Shapeshifter
A challenge supports mode (which can be SHAPESHIFTER) and mode_parameters (to
specify other exercises), so it may wrap the activity with those modifiers.

Shortening challenge
A challenge supports mode (which can be SHORTENING) and mode_parameters (to
specify threshold), so it may wrap the activity with those modifiers.

Speedup challenge
A challenge supports mode (which can be SPEEDUP) and mode_parameters (to specify
time), so it may wrap the activity with those modifiers.

Hack the problem
A challenge supports mode (which can be HACK_IT) and mode_parameters (to specify
the trick to search for), so it may wrap the activity with those modifiers. Rules may
also be attached to detect tricks.

Time bomb
A challenge supports mode (which can be TIME_BOMB) and mode_parameters (to
specify time), so it may wrap the activity with those modifiers.

Information 2020, 11, 287 8 of 9

Table 6. Fulfillment of requirements of complex challenges.

Concept Description of Fulfillment

Duel
A challenge supports mode DUEL and may have inner challenges and reference multiple
exercises.

Quest See Table 2.

Streak See Table 2.

Story
A challenge supports feedback_generator to generate any feedback needed to make
the story between challenges and may have inner challenges (the chapters of the story).

Tournament The complete layer can represent a tournament.

Mystery Track A composition of challenges with rewards of kind REVEAL.

5. Conclusions

Gamification is a promising educational tool and its capability of rising engagement can be
especially useful in the areas of teaching that require students to solve a large number of exercises (e.g.,
computer programming, mathematics, or physics). The effort needed to implement gamification in a
specific course is nonetheless considerable. This effort can be significantly reduced by allowing the
separation of the gamification layer from the educational content it is applied to so that the solicitously
designed gamification rules could be easily reused and adapted to various subjects and courses.

In this paper, we introduced GEdIL, a domain-specific language and data format developed
to represent the gamification layer of educational courses and exercises, and showed its practical
applicability. Compared to the existing gamification specification formats, it is simple, designed purely
for educational gamification (rather than being business-oriented), independent from the format used
to represent the actual educational content, and open (with supporting open-source software provided).

As GEdIL is a textual language, it could be edited even with a generic text editor; this would
require, however, very good knowledge of its specification, making it unappealing for teachers and
trainers. Therefore, for the sake of making it easy to develop complex gamification scenarios for
educational purposes, share them among instructors and reuse them in various courses, a collaborative
web editor has been developed as open-source software [17].

Our most immediate future work is the development of an open library of reusable gamification
components defined in GEdIL, from which educational course designers and instructors could select
those most suitable for their own courses and apply them there in an effortless way.

Author Contributions: Conceptualization, all authors; data curation, J.S., J.C.P., R.Q., and J.P.L.; formal analysis,
J.C.P., J.S., R.Q., and J.P.L.; funding acquisition, J.S.; investigation, all authors; methodology, all authors;
project administration, J.S., R.Q., J.P.L., R.M., and S.K.; resources, J.C.P., J.S., R.Q., and J.P.L.; software, J.C.P.;
supervision, J.S., R.Q., and J.P.L.; validation, J.C.P., R.Q., J.P.L., and J.S.; visualization, J.C.P., R.Q., J.P.L., and
J.S.; writing—original draft preparation, J.C.P., J.S., R.Q. and R.M.; writing—review and editing, all authors.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Erasmus+ grant number 2018-1-PL01-KA203-050803.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Lieby, V. Worldwide Professional Developer Population of 24 Million Projected to Grow amid Shifting
Geographical Concentrations. 2019. Available online: https://evansdata.com/press/viewRelease.php?
pressID=278 (accessed on 22 April 2020).

2. Sedgewick, R.; Wayne, K.D.; Dondero, R. Introduction to Programming in Python: An Interdisciplinary Approach;
Addison-Wesley: New York, NY, USA, 2015.

3. Bosse, Y.; Gerosa, M.A. Why is programming so difficult to learn?: Patterns of difficulties related to
programming learning mid-stage. ACM SIGSOFT Softw. Eng. Notes 2017, 41, 1–6. [CrossRef]

https://evansdata.com/press/viewRelease.php?pressID=278
https://evansdata.com/press/viewRelease.php?pressID=278
http://dx.doi.org/10.1145/3011286.3011301

Information 2020, 11, 287 9 of 9

4. Rojas-López, A.; Rincón-Flores, E.G.; Mena, J.; García-Peñalvo, F.J.; Ramírez-Montoya, M.S. Engagement in
the course of programming in higher education through the use of gamification. Univers. Access Inf. Soc.
2019, 18, 583–597. [CrossRef]

5. Swacha, J.; Queirós, R.; Paiva, J.C. Towards a Framework for Gamified Programming Education. In
Proceedings of the 2019 International Symposium on Educational Technology (ISET), Hradec Kralove,
Czech Republic, 2–4 July 2019; pp. 144–149. [CrossRef]

6. Framework for Gamified Programming Education, 2018. Project Website. Available online: http://fgpe.usz.
edu.pl (accessed on 28 April 2020).

7. Herzig, P.; Jugel, K.; Momm, C.; Ameling, M.; Schill, A. GaML—A Modeling Language for Gamification. In
Proceedings of the 2013 IEEE/ACM 6th International Conference on Utility and Cloud Computing, Dresden,
Germany, 9–12 December 2013; pp. 494–499.

8. Aaeriakis, D.; Blažauskas, T.; Damaševičius, R. UAREI: A model for formal description and visual
representation /software gamification. DYNA 2017, 84, 326–334. [CrossRef]

9. GameLayer. 2020. Available online: http://gamelayer.co/ (accessed on 28 April 2020).
10. Swacha, J. Representation of Events and Rules in Gamification Systems. Procedia Comput. Sci. 2018,

126, 2040–2049. [CrossRef]
11. Gametize. 2020. Available online: https://gametize.com/ (accessed on 28 April 2020).
12. IActionable. 2020. Available online: http://iactionable.com/ (accessed on 28 April 2020).
13. Bunchball. 2020. Available online: https://www.bunchball.com/ (accessed on 28 April 2020).
14. Dormans, J. Machinations: Elemental feedback structures for game design. In Proceedings of the

GAMEON-NA Conference, Atlanta, GA, USA, 26–28 August 2009; pp. 33–40.
15. Swacha, J.; Queirós, R.; Paiva, J.C.; Leal, J.P. Defining Requirements for a Gamified Programming Exercises

Format. Procedia Comput. Sci. 2019, 159, 2502–2511. [CrossRef]
16. Leach, P.; Mealling, M.; Salz, R. RFC 4122: A Universally Unique IDentifier (UUID) URN Namespace. RFC

Editor 2005, 4122, 1–32. [CrossRef]
17. FGPE AuthorKit. 2020. Available online: http://fgpe.dcc.fc.up.pt (accessed on 28 April 2020).

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s10209-019-00680-z
http://dx.doi.org/10.1109/ISET.2019.00038
http://fgpe.usz.edu.pl
http://fgpe.usz.edu.pl
http://dx.doi.org/10.15446/dyna.v84n200.54017
http://gamelayer.co/
http://dx.doi.org/10.1016/j.procs.2018.07.248
https://gametize.com/
http://iactionable.com/
https://www.bunchball.com/
http://dx.doi.org/10.1016/j.procs.2019.09.425
http://dx.doi.org/10.17487/RFC4122
http://fgpe.dcc.fc.up.pt
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	GEdIL
	Multiplication Tables (Toy Domain)
	Structure

	Requirements Fulfillment for the Programming Domain
	Conclusions
	References

