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Abstract: Skeletons are well-known descriptors used for analysis and processing of 2D binary
images. Recently, dense skeletons have been proposed as an extension of classical skeletons as a dual
encoding for 2D grayscale and color images. Yet, their encoding power, measured by the quality
and size of the encoded image, and how these metrics depend on selected encoding parameters,
has not been formally evaluated. In this paper, we fill this gap with two main contributions. First,
we improve the encoding power of dense skeletons by effective layer selection heuristics, a refined
skeleton pixel-chain encoding, and a postprocessing compression scheme. Secondly, we propose
a benchmark to assess the encoding power of dense skeletons for a wide set of natural and synthetic
color and grayscale images. We use this benchmark to derive optimal parameters for dense skeletons.
Our method, called Compressing Dense Medial Descriptors (CDMD), achieves higher-compression
ratios at similar quality to the well-known JPEG technique and, thereby, shows that skeletons can be
an interesting option for lossy image encoding.

Keywords: medial descriptors; skeletonization; image compression; benchmarking

1. Introduction

Images are created, saved and manipulated every day, which calls for effective ways to compress
such data. Many image compression methods exist [1], such as the well-known discrete cosine
transform and related mechanisms used by JPEG [2]. On the other hand, binary shapes also play
a key role in applications such as optical character recognition, computer vision, geometric modeling,
and shape analysis, matching, and retrieval [3]. Skeletons, also called medial axes, are well-known
descriptors that allow one to represent, analyze, but also simplify such shapes [4–6]. As such, skeletons
and image compression methods share some related goals: a compact representation of binary shapes
and continuous images, respectively.

Recently, Dense Medial Descriptors (DMD) have been proposed as an extension of classical
binary-image skeletons to allow the representation of grayscale and color images [7]. DMD extracts
binary skeletons from all threshold sets (luminance, hue, and/or saturation layers) of an input image
and allows the image to be reconstructed from these skeletons. By simplifying such skeletons
and/or selecting a subset of layers, DMD effectively acts as a dual (lossy) image representation
method. While DMD was applied for image segmentation, small-scale detail removal, and artistic
modification [7–9], it has not been used for image compression. More generally, to our knowledge,
skeletons have never been used so far for lossy compression of grayscale or color images.

In this paper, we exploit the simplification power of DMD for image compression, with two
contributions. First, we propose Compressing Dense Medial Descriptors (CDMD), an adaptation of
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DMD for lossy image compression, by searching for redundant information that can be eliminated, and
also by proposing better encoding and compression schemes for the skeletal information. Secondly,
we develop a benchmark with both natural and synthetic images, and use it to evaluate our method to
answer the following questions:

• What kinds of images does CDMD perform on best?
• What is CDMD’s trade-off between reconstructed quality and compression ratio?
• Which parameter values give best quality and/or compression for a given image type?
• How does CDMD compression compare with JPEG?

The joint answers to these questions, which we discuss in this paper, show that CDMD is
an effective tool for both color and grayscale image compression, thereby showing that medial
descriptors are an interesting tool to consider, and next refine, for this task.

The remainder of the paper is organized as follows. Section 2 introduces DMD, medial descriptors,
and image quality metrics. Section 3 details our proposed modifications to DMD. Section 4 describes
our evaluation benchmark and obtained results. Section 5 discusses our results. Finally, Section 6
concludes the paper.

2. Related work

2.1. Medial Descriptors and the DMD Method

We first introduce the DMD method (see Figure 1). To ease presentation, we consider only
grayscale images here. However, DMD can also handle color images by considering each of the three
components of an Luv or RGB space in turn (see next Section 4). Let I : R2 → [0, 255] be an 8-bit
grayscale image.
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Figure 1. Dense medial descriptor (DMD) computation pipeline.

The key idea of DMD is to use 2D skeletons to efficiently encode isoluminant structures in
an image. Skeletons can only be computed for binary shapes, so I is first reduced to n (256 for 8-bit
images) threshold sets (see Figure 1, step 1) defined as

Ti =
{

x ∈ R2 | I(x) ≥ i
}

, 0 ≤ i ≤ n− 1. (1)

Next, a binary skeleton is extracted from each Ti. Skeletons, or medial axes, are well-known shape
descriptors, defined as the locus of centers of maximal disks contained in a shape [10–12]. Formally,
for a binary shape Ω ∈ R2 with boundary ∂Ω, let

DTΩ(x ∈ Ω) = min
y∈∂Ω

‖x− y‖ (2)

be its distance transform. The skeleton SΩ of Ω is defined as

SΩ ={x ∈ Ω | ∃f1, f2∈∂Ω, f1 6= f2: ‖f1−x‖=‖f2−x‖ = DTΩ(x)}, (3)
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where f1 and f2 are the so-called feature points of skeletal point x [13]. The pair (SΩ, DTΩ), called the
Medial Axis Transform (MAT), allows an exact reconstruction of Ω as the union of disks centered at
x ∈ SΩ having radii DTΩ(x). The output of DMD’s second step is hence a set of n MATs (STi , DTTi )

for all the layers Ti (Figure 1, step 2). For a full discussion of skeletons and MATs, we refer to [4].
Computing skeletons of binary images is notoriously unstable and complex [4,5]. They contain

many so-called spurious branches caused by small perturbations along ∂Ω. Regularization eliminates
such spurious branches which, in general, do not capture useful information. Among the many
regularization methods, so-called collapsed boundary length ones are very effective in terms of stability,
ease of use, and intuitiveness of parameter setting [14–17]. These compute simplified skeletons S̃ by
removing from S all points x whose feature points subtend a boundary fragment of length ρ shorter
than a user-given threshold ρmin. This replaces all details along ∂Ω which are shorter than ρmin by
circular arcs. However, this ‘rounds off’ salient (i.e., sharp and large-scale) shape corners, which is
perceptually undesirable. A perceptually better regularization method [13] replaces ρ by

σ(x) = ρ(x)/DTΩ(x). (4)

Skeleton points with σ below a user-defined threshold τ are discarded, thereby disconnecting
spurious skeletal branches from the skeleton rump. The final regularized S̃ is then the largest connected
component in the thresholded skeleton. Note that Equation (4) defines a saliency metric on the skeleton,
which is different from existing saliency metrics on the image, e.g., [18,19].

Regularized skeletons and their corresponding MATs can be efficiently computed on the CPU [17]
or on the GPU [7]. GPU methods can skeletonize images up to 10242 pixel resolution in a few
milliseconds, allowing for high-throughput image processing applications [8,20] and interactive
applications [21]. A full implementation of our GPU regularized skeletons is available [22].

The third step of DMD (see Figure 1) is to compute a so-called regularized MAT for each layer Ti,
defined as MATi = (S̃Ti , DTTi ). Using each such MAT, one can reconstruct a simplified version T̃i of
each layer Ti (Figure 1, step 4). Finally, a simplified version Ĩ of the input image I is reconstructed by
drawing the reconstructed layers T̃i atop each other, in increasing order of luminance i, and performing
bilinear interpolation between them to remove banding artifacts (Figure 1, step 5). For further details,
including implementation of DMD, we refer to [7].

2.2. Image Simplification Parameters

DMD parameterizes the threshold-set extraction and skeletonization steps (Section 2.1) to achieve
several image simplification effects, such as segmentation, small-scale detail removal, and artistic
image manipulation [7–9]. We further discuss the roles of these parameters, as they crucially affect
DMD’s suitability for image compression, which we analyze next in Sections 3–5.

Island removal: During threshold-set extraction, islands (connected components in the image
foreground Ti or background Ti) smaller than a fraction ε of |Ti|, respectively |Ti|, are filled in,
respectively removed. Higher ε values yield layers Ti having fewer small-scale holes and/or
disconnected components. This creates simpler skeletons STi which lead to better image compression.
However, too high ε values will lead to oversimplified images.

Layer selection: As noted in [7], one does not need all layers Ti to obtain a perceptually good
reconstruction Ĩ of the input I. Selecting a small layer subset of L < n layers from the n available ones
leads to less information needed to represent Ĩ, so better compression. Yet, too few layers and/or
suboptimal selection of these degrades the quality of Ĩ. We study how many (and which) layers are
needed for a good reconstruction quality in Section 3.1.

Skeleton regularization: The intuition behind saliency regularization (Equation (4)) follows a similar
argument as for layer selection: One can obtain a perceptually good reconstruction Ĩ, using less
information, by only keeping skeletal branches above a certain saliency τ. Yet, how the choice of
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τ affects reconstruction quality has not been investigated, neither in the original paper proposing
saliency regularization [13] nor by DMD. We study this relationship in Section 4.

2.3. Image Compression Quality Metrics

Given an image I and its compressed version Ĩ, a quality metric q(I, Ĩ) ∈ R+ measures how
perceptually close Ĩ is to I. Widely used choices include the mean squared error (MSE) and peak
signal-to-noise ratio (PSNR). While simple to compute and having clear physical meanings, they tend
not to match perceived visual quality [23]. The structural similarity (SSIM) index [24] alleviates this by
measuring, pixel-wise, how similar two images are by considering quality as perceived by humans.
The mean SSIM (MSSIM) is a real-valued quality index that aggregates SSIM by averaging over all
image pixels. MSSIM was extended to three-component SSIM (3-SSIM) by applying non-uniform
weights to the SSIM map over three different region types: edges, texture, and smooth areas [25].
Multiscale SSIM (MS-SSIM) [26] is an advanced top-down interpretation of how the human visual
system interprets images. MS-SSIM provides more flexibility than SSIM by considering variations
of image resolution and viewing conditions. As MS-SSIM outperforms the best single-scale SSIM
model [26], we consider it next in our work.

2.4. Image Compression Methods

Many image compression methods have been proposed in the literature, with a more recent
focus on compressing special types of images, e.g., brain or satellite [1,27]. Recently, deep learning
methods have gained popularity showing very high (lossy) compression rates and good quality,
usually measured via PSNR and/or MS-SSIM [28–32]. However, such approaches require significant
training data and training computational effort and can react in hard to predict ways to unseen data
(images that are far from the types present during training). Our method, described next, does not
aim to compete with the compression rates of deep learning techniques. However, its explicit ‘feature
engineering’ approach offers more control to how images are simplified during compression, is fast,
and does not require training data. Separately, technique-wise, our contribution shows, for the first
time, that medial descriptors are a useful and usable tool for image compression.

Saliency metrics have become increasingly interesting in image compression [33,34]. Such metrics
capture zones in an image deemed to be more important (salient) to humans into a so-called
saliency map and use this to drive compression with high quality in those areas. Many saliency
map computations methods exist, e.g., [35–38]; for a good survey thereof, we refer to [34].
While conceptually related, our approach is technically different, since (1) we compute saliency
based on binary skeletons (Equation (4)); (2) our saliency thresholding (computation of S̃, Section 2.1)
both detects salient image areas and simplifies the non-salient ones; and (3) as explained earlier, we use
binary skeletons for this rather than analyzing the grayscale or color images themselves.

3. Proposed Compression Method

Our proposed Compressing Dense Medial Skeletons (CDMD) adapt the original DMD pipeline
(Figure 1) to make it effective for image compression in two directions: layer selection (Section 3.1) and
encoding the resulting MAT (Section 3.2), as follows.

3.1. Layer Selection

DMD selects a subset of L < n layers Ti from the total set of n layers based on a simple greedy
heuristic: Let Ĩi be the reconstruction of image I using all layers, except Ti. The layer Ti yielding the
smallest reconstruction error min1≤i≤n SSIM(I, Ĩi) is deemed the least relevant and thus first removed.
The procedure is repeated over the remaining layers, until only L layers are left. This approach has
two key downsides: Removing the least-relevant layer (for reconstruction) at a time does not guarantee
that subsequent removals do not lead to poor quality. For an optimal result, one would have to
maximize quality over all combinations of L (kept) layers selected from n, which is prohibitively
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expensive. Secondly, this procedure is very expensive, as it requires O((n− L)2) reconstructions and
image comparisons to be computed.

We improve layer selection by testing three new strategies, as follows.
Histogram thresholding: We compute a histogram of how many pixels each layer Ti individually

encodes, i.e., |Ti \ Ti+1|. Next, we select all layers having values above a given threshold. To make this
process easy, we do a layer-to-threshold conversion: given a number of layers L to keep, we find the
corresponding threshold based on binary search.

Histogram local maxima: Histogram thresholding can discard layers containing small but visually
important features such as highlights. Furthermore, all layers below the threshold are kept, which does
not lead to optimal compression. We refine this by finding histogram local maxima (shown in Figure 2b
for the test image in Figure 2a). The intuition here is that the human eye cannot distinguish subtle
differences between adjacent (similar-luminance) layers [39], so, from all such layers, we can keep only
the one contributing the most pixels to the reconstruction. As Figure 2c shows, 15 layers are enough
for a good-quality reconstruction, also indicated by a high MS-SSIM score.

Cumulative histogram: We further improve layer selection by using a cumulative layer histogram
(see Figure 2d for the image in Figure 2a). We scan this histogram left to right, comparing each layer
Ti with layer Tj=i+m, where m is the minimally-perceivable luminance difference to a human eye (set
empirically to 5 [39] on a luminance range of [0, 255]). If the histogram difference between layers
Ti and Tj is smaller than a given threshold λ, we increase j until the difference is above λ. At that
point, we select layer Tj and repeat the process until we reach the last layer. However, setting
a suitable λ is not easy for inexperienced users. Therefore, we do a layer-to-threshold conversion by
a binary search method, as follows. Let [rmin, rmax] be the range of the cumulative histogram. At the
beginning of the search, this range equals [0, 1]. We next set λ = (rmin + rmax)/2 and compare the
number of layers L′ produced under this condition with the target, i.e. desired, user-given value
L. If L′ = L, then the search ends with the current value of λ. If L′ < L, we continue the search in
the lower half [rmin, (rmin + rmax)/2] of the current range. If L′ > L, we continue the search in the
upper half [(rmin + rmax)/2, rmax] of the current range. Since L is an integer value, the search may
sometimes oscillate, yielding values L′ that swing around, but do not precisely equal, the target L.
To make the search end in such situations, we monitor the computed L′ over subsequent iterations and,
if oscillation, i.e., a non-monotonic evolution of the L′ values over subsequent iterations, is detected,
we stop the search and return the current λ. Through this conversion, what users need to set is only
the desired number of layers, which makes it simple to use by any target group – much like setting the
‘quality’ parameter in typical JPEG compression. Compared to local maxima selection, the cumulative
histogram method selects smoother transition layers, which yields a better visual effect. For example,
in Figure 2c, the local details around the shoulder show clear banding effects; the same region is
much smoother when cumulative histogram selection is used (Figure 2e). Besides improved quality,
cumulative histogram selection is simpler to implement and use, as it does not require complex and/or
sensitive heuristics for detecting local maxima.

Figure 3 compares the four layer selection methods discussed above. We test these on a 100-image
database with 10 different image types, each having 10 images (see Table 1). The 10 types aim to capture
general-purpose imagery (people, houses, scenery, animals, paintings) which are typically rich in
details and textures; images having a clear structure, i.e., few textures, sharp contrasts, well-delineated
shapes shapes (ArtDeco, cartoon, text); and synthetic images being somewhere between the previous
two types (scientific visualization).

Average MS-SSIM scores show that the cumulative histogram selection yields the best results for
all image types, closely followed by local maxima selection and next by the original greedy method
in DMD. The naive histogram thresholding yields the poorest MS-SSIM scores, which also strongly
depend on image type. Besides better quality, the cumulative histogram method is also dramatically
faster, 3000 times more than the greedy selection method in [7]. Hence, cumulative histogram is our
method of choice for layer selection for CDMD.



Information 2020, 11, 274 6 of 18

(a)

(e) MS-SSIM:0.9339(d)

(c)MS-SSIM:0.9292(b)

Figure 2. Layer selection methods. (a) Original image. (b) Histogram of (a), with local maxima marked
in red. (c) Reconstruction of (a) using 15 most relevant layers given by (b). (d) Cumulative histogram
of (a), with selected layers marked red. (e) Reconstruction of (a) using the 15 most relevant layers given
by (d).
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Figure 3. Average MS-SSIM scores for four layer selection methods (30 layers selected) for images in
ten different classes. The cumulative histogram method performs the best and is hence used in CDMD.

Table 1. The benchmark of 100 images (available at [40]) used throughout this work for testing CDMD.

Type Description

animal Wild animals in their natural habitat

artDeco Art deco artistic images

cartoon Cartoons and comic strips

house Residential homes surrounded by greenery

nature Panorama landscapes and close-ins of plants

other Miscellaneous (fruit, planets, natural scenery)

painting Classical and modern paintings

people Portrait photos of various people

SVdata Scientific visualizations (scalar and vector fields)

text Typography of various styles and scales
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3.2. MAT Encoding

MAT computation (Section 2.1) delivers, for each selected layer Ti, pairs of skeletal pixels x with
corresponding inscribed circle radii r = DTTi (x). Naively storing this data requires two 16-bit integer
values for the two components of x and one 32-bit floating-point value for r, respectively. We propose
next two strategies to compress this data losslessly.

Per-layer compression: As two neighbor pixels in a skeleton are 8-connected, their differences in
x and y coordinates are limited to4x,4y ∈ {−1, 0, 1}, and similarly4r ∈ {−2,−1, 0, 1, 2}. Hence,
we visit all pixels in a depth-first manner [41] and encode, for each pixel, only the 4x,4y, and 4r
values. We further compress this delta-representation of each MAT point by testing ten lossless
encoding methods: Direct encoding (use one byte per MAT point in which4x and4y take up two bits
each, and4r three bits, i.e., 0xxyyrrr); Huffman [42], Canonical Huffman, Unitary [43], Exponential
Golomb, Arithmetic [44], Predictive, Compact, Raw, and Move-to-Front (MTF) [45]. To compare the
effectiveness of these methods, we use the compression ratio of an image I defined as

CR(I) =
|I|

|MAT( Ĩ))|
, (5)

where |I| is the byte-size of the original image I and |MAT( Ĩ)| is the byte-size of the MAT encoding for
all selected layers of Ĩ. Table 2 (top row) compares the 10 tested encoding methods, showing average
CR(I) value for the 10 image types in Figure 3, and 12 different combinations of parameters ε, L, and τ

per compression-run. The highest value in each row is marked in bold.
Inter-layer compression: The inter-layer compression leaves, likely, still significant redundancy in

the MATs of different layers. To remove this, we compress the MAT of all layers (each encoded
using all 10 lossless methods discussed above) with eight lossless-compression algorithms:
Lempel–Ziv–Markov Chain (LZMA) [46], LZHAM [47], Brotli [48], ZPAQ [49], BZip2 [50], LZMA2 [46],
BSC [51], and ZLib [52], all available in the Squash library [53]. Figure 4 shows CR boxplots
(Equation (5)) for all our 100 test images. Blue boxes show the 25–75% quantile; red lines are medians;
black whiskers show extreme data points not considered outliers; outliers are shown by red ‘+’ marks.
Overall, ZPAQ is the best compression method, 20.15% better than LZMA, which was used in the
original DMD method [7]. Hence, we select ZPAQ for CDMD.

Table 2. Comparison of average compression ratios (Equation (5)) for 10 lossless MAT-encoding
methods on 100 images using only per-layer compression (top row) and inter-layer compression
(bottom row).

Encoding
Method Direct Huff-

man
Cano-
nical

Uni-
tary

Exp-
Golomb

Arith-
metic

Predic-
tive

Com-
pact Raw MTF 40-Case

Per-layer 1.672 2.464 2.464 2.074 1.799 2.673 1.865 2.121 2.418 1.865 1.67

Inter-layer 4.083 2.727 2.751 2.912 2.9 1.692 2.874 3.155 2.816 2.46 4.358

Table 2 (second row) shows the average CR values after applying inter-layer compression.
Interestingly, direct encoding turns to be better than the nine other considered lossless encoding
methods. This is because the pattern matching of the inter-layer compressor is rendered ineffective
when the signal encoding already approaches its entropy. Given this finding, we further improve
direct encoding by considering all combinations among possible values of4x,4y and4r. Among the
3× 3× 5 = 45 combinations, only 40 are possible as the five cases with 4x = 4y = 0 cannot exist
in practice. This leads to an information content of log2(40) ≈ 5.32 bits per skeleton pixel instead
of 2 log2(3) + log2(5) ≈ 5.89 bits for direct encoding. Table 2 (rightmost column) shows the average
CR values with the 40-case encoding, which is 6.74% better than the best in the tested methods after
all-layer compression. Hence, we keep this encoding method for CDMD.
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Figure 4. Compression ratio boxplots for eight compression methods run on 100 images.

4. Evaluation and Optimization

Our CDMD method described in Section 3 introduced three improvements with respect to
DMD: the cumulative histogram layer selection, the intra-layer compression (40-case algorithm),
and the inter-layer compression (ZPAQ). On our 100-image benchmark, these jointly deliver the
following improvements:

• Layer selection: 3000 times faster and 3.28% higher quality;
• MAT encoding: 20.15% better compression ratio.

CDMD depends, however, on three parameters: the number of selected layers L, the size of
removed islands ε, and the saliency threshold τ. Moreover, a compressed image Ĩ is characterized by
two factors: the visual quality that captures how well Ĩ depicts the original image I, e.g., measured
by the MS-SSIM metric, and the compression ratio CR (Equation (5)). Hence, the overall quality of
CDMD can be modeled as

(MS-SSIM, CR) = CDMD(L, ε, τ). (6)

Optimizing this two-variate function of three variables is not easy. Several commercial solutions
exist, e.g., TinyJPG [54] but their algorithms are neither public nor transparent. To address this, we first
merge the two dependent variables, MS-SSIM and CR, into a single one (Section 4.1). Next, we describe
how we optimize for this single variable over all three free parameters (Section 4.2).

4.1. Joint Compression Quality

We need to optimize for both image quality MS-SSIM and compression ratio CR (Equation (6)).
These two variables are, in general, inversely correlated: strong compression (high CR) means poor
image quality (low MS-SSIM), and vice versa. To handle this, we combine MS-SSIM and CR into
a single joint quality metric

Q =
fMS-SSIM(MS-SSIM) + fCR(CR)

2
, (7)

where CR is the CR of a given image I normalized (divided) by the maximal CR value over all images
in our benchmark. The transfer functions fMS-SSIM(x) = x2 and fCR(x) = x are used to combine
(weigh) the two criteria we want to optimize for, namely quality MS-SSIM and compression ratio
CR. After extensive experimentation with images from our benchmark, we found that MS-SSIM
perceptually weighs more than CR, which motivates the quadratic contribution of the former vs. linear
of the latter. Note that, if desired, fMS-SSIM and fCR can be set to the identity function, which would
imply a joint quality Q defined as the mean of the two.
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4.2. Optimizing the Joint Compression Quality

To find parameter values that maximize Q (Equation (7)), we fix, in turn, two of the three free
parameters L, ε, and τ to empirically-determined average values, and vary the third parameter over
its allowable range via uniform sampling. The maximum Q value found this way determines the
value of the varied parameter. This is simpler, and faster, than the usual hyper-parameter grid-search
used, e.g., in machine learning [55], and is motivated by the fact that our parameter space is quite large
(three-dimensional) and thus costly to search exhaustively by dense grid sampling. This process leads
to the following results.

Number of layers: To study how L affects the joint quality Q, we plot Q as a function of L for
our benchmark images. We sample L from 10 to 90 with a step of 10, following observations in [7]
stating that 50–60 layers typically achieve good SSIM quality. The two other free variables are set
to ε = 0.02 and τ = 1. Figure 5a shows the results. We see that CDMD works particularly well for
images of art deco and scientific visualization types. We also see that Q hardly changes for L > 40.
Figure 5b summarizes these insights, showing that values L ∈ {20, 30, 40} give an overall high Q for
all image types.
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Figure 5. Quality Q as a function of number of layers L. (a) Q plots per image type. (b) Average Q for
all image types. Black dots indicate good L values (20, 30, and 40).

Island size and saliency: We repeat the same evaluation for the other two free parameters, i.e.,
minimal island size ε and skeleton saliency τ, fixing each time the other two parameters to average
values. Figure 6 shows how Q varies when changing ε and τ over their respective ranges of ε ∈ [0, 0.04]
and τ ∈ [0, 6], similar to Figure 5. These ranges are determined by considerations outlined earlier in
related work [7–9,13]. Optimal values for ε and τ are indicated in Figure 6 by black dots.
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Figure 6. Quality Q as a function of island size ε (a) and skeleton saliency simplification τ (a). Selected
optimal parameter values are marked black.
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4.3. Trade-Off between MS-SSIM and CR

As already mentioned, our method, and actually any lossy image compression method, has
a trade-off between compression (which we measure by CR) and quality (which we measure by
MS-SSIM). Figure 7 shows the negative, almost-linear, correlation between CR and MS-SSIM for the
10 house images in our benchmark, with each image represented by a different color. Same-color dots
show 3 ∗ 4 ∗ 4 = 48 different settings of L, ε, and τ parameters, computed as explained in Section 4.2.
This negative correlation is present for both the color version of the test image (Figure 7b) and its
grayscale variant (Figure 7a). However, if we compare a set of same-color dots in Figure 7a, i.e.,
compressions of a given grayscale image for the 48 parameter combinations, with the similar set in
Figure 7b, i.e., compressions of the same image, color variant for the same parameter combinations,
we see that the first set is roughly lower and more to the left than the second set. That is, CDMD
handles color images compressed better than grayscale ones, i.e., yields higher CR and/or higher
MS-SSIM values. Very similar patterns occur for all other nine image types in our benchmark. For full
results, we refer to [40].

a) Grayscale images b) Color images 

48 compressions of
one grayscale image

48 compressions
of corresponding
color image

Figure 7. Trade-off between MS-SSIM and CR on 10 grayscale house images (a) and their corresponding
color versions (b). The outlines show the compressions of a single image for 48 parameter combinations.

Besides parameter values, the trade-off between MS-SSIM and CR depends on the image type.
Figure 8 shows this by plotting the average MS-SSIM vs CR for all 10 image types in our benchmark.
Here, one dot represents the average values of the two metrics for a given parameter-setting over all
images in the respective class. We see the same inverse correlation as in Figure 7. We also see that
CDMD works best for art decoration (artDeco) and scientific visualization (SVdata) image types.
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Figure 8. Average MS-SSIM vs. CR for 10 image types for CDMD (filled dots) and JPEG (hollow dots).
Left shows results for the grayscale variants of the color images (shown right).
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4.4. Comparison with JPEG

Figure 8 also compares the MS-SSIM and CR values of CDMD (full dots) with JPEG (hollow dots)
for all our benchmark images, for their grayscale versions (a) and color versions (b), respectively.
Overall, JPEG yields higher MS-SSIM values, but CDMD yields better CR values for most of
its parameter settings. We also see that CDMD performs relatively better for the color images.
Figure 9 further explores this insight by showing ten images, one of each type, from our benchmark,
compressed by CDMD and JPEG, and their corresponding CR and MS-SSIM values. Results for the
entire 100-image database are available in the supplementary material. We see that, if one prefers
a higher CR over higher image quality, CDMD is a better choice than JPEG. Furthermore, there
are two image types for which we get both a higher CR than JPEG and a similar quality: Art
Deco and Scientific Visualization. Figure 10 explores these classes in further detail, by showing
four additional examples, compressed with CDMD and JPEG. We see that CDMD and JPEG yield
results which are visually almost identical (and have basically identical MS-SSIM values). However,
CDMD yields compression values 2 up to 19 times higher than JPEG. Figure 10(a3–d3) shows the
per-pixel difference maps between the compressed images with CDMD and JPEG (differences coded in
luminance). These difference images are almost everywhere black, indicating no differences between
the two compressions. Minimal differences can be seen, upon careful examination of these difference
images, along a few luminance contours, as indicated by the few bright pixels in the images. These
small differences are due to the salience-based skeleton simplification in CDMD.

       a1) Animal (JPEG)
MS-SSIM: 0.9993, CR: 15.61

   a2) Animal (Our method)
MS-SSIM: 0.9572, CR: 19.42

 b2) ArtDeco (Our method)
MS-SSIM: 0.9542, CR: 18.35

       b1) ArtDeco (JPEG)
MS-SSIM: 0.9997, CR: 8.79

       c1) Cartoon (JPEG)
MS-SSIM: 0.9997, CR: 10.14

  c2) Cartoon (Our method)
MS-SSIM: 0.9481, CR: 19.51

  d2) Painting (Our method)
MS-SSIM: 0.9357, CR: 14.69

      d1) Painting (JPEG)
MS-SSIM: 0.9993, CR: 10.12

       e1) House (JPEG)
MS-SSIM: 0.999, CR: 8.46

    e2) House (Our method)
MS-SSIM: 0.8953, CR: 11.08

   f2) Nature (Our method)
MS-SSIM: 0.9316, CR: 19.68

         f1) Nature (JPEG)
MS-SSIM: 0.9993, CR: 14.99

       g1) People (JPEG)
MS-SSIM: 0.9993, CR: 10.53

   g2) People (Our method)
MS-SSIM: 0.9061, CR: 13.11

  h2) SVdata (Our method)
MS-SSIM: 0.9507, CR: 26.41

        h1) SVdata (JPEG)
MS-SSIM: 0.9997, CR: 12.02

          i1) Text (JPEG)
MS-SSIM: 0.9998, CR: 13.74

     i2) Text (Our method)
MS-SSIM: 0.9674, CR: 20.42

   j2) Others (Our method)
MS-SSIM: 0.9751, CR: 67.13

         j1) Others (JPEG)
MS-SSIM: 0.9998, CR: 35.79

Figure 9. Comparison of JPEG (a1–j1) with our method (a2–j2) for 10 image types. For each image,
we show the MS-SSIM quality and compression ratio CR.
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For a more detailed comparison with JPEG, we next consider JPEG’s quality setting q. This value,
set typically between 10% and 100%, controls JPEG’s trade-off between quality and compression,
with higher values favoring quality. Figure 11 compares CDMD for the Scientific Visualization and
ArtDeco image types (filled dots) with 10 different settings of JPEG’s q parameter, uniformly spread in
the [10, 100] interval (hollow dots). Each dot represents the average of MS-SSIM and CR for a given
method and image type for a given parameter combination. We see that CDMD yields higher MS-SSIM
values, and for optimal parameters, also yields a much high CR value. In contrast, JPEG either yields
good MS-SSIM or only high CR, but cannot maximize both.

a1) Isosurface (JPEG)
      MS-SSIM: 0.9996
      CR: 18.99

a2) Isosurface (Our method)
      MS-SSIM: 0.9474
      CR: 57.85

a3) Difference map b1) Brain CT slice (JPEG)
      MS-SSIM: 0.9996
      CR: 5.95

b2) Brain CT slice (Our method)
      MS-SSIM: 0.9581
      CR: 10.96

b3) Difference map

c1) ArtDeco 1 (JPEG)
      MS-SSIM: 0.9996
      CR: 17.08

c2) ArtDeco 1 (Our method)
      MS-SSIM: 0.9702
      CR: 60.19

c3) Difference map d1) ArtDeco 2 (JPEG)
      MS-SSIM: 0.9994
      CR: 14.67

d2) ArtDeco 2 (Our method)
      MS-SSIM: 0.9719
      CR: 45.93

d3) Difference map

Figure 10. Our method (a2–d2) yields higher compression than, and visually identical quality with,
JPEG (a1–d1) for two image classes: Scientific Visualization (a,b) and Art Deco (c,d)).
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Figure 11. Average MS-SSIM vs. CR for two image classes (Art Deco, Scientific Visualization), for our
method (filled dots) and JPEG (hollow dots).

4.5. Handling Noisy Images

As explained in Section 2.2, the island removal parameter ε and the saliency threshold τ

jointly ‘simplify’ the compressed image by removing, respectively, small-scale islands and small-scale
indentations along the threshold-set boundaries. Hence, it is insightful to study how these parameters
affect the compression of images which have high-frequency, small-scale details and/or noise. Figure 12
shows an experiment that illustrates this. An original image was selected which contains high amounts
of small-scale high-frequency detail, e.g., the mandrill’s whiskers and fur patterns.
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The left column shows the CDMD results for four combinations of ε and τ. In all cases, we used
L = 30. As visible, and in line with expectations, increasing ε and/or τ has the effect of smoothing out
small-scale details, thereby decreasing MS-SSIM and increasing the compression ratio CR. However,
note that contours that separate large image elements, such as the red nose from the blue cheeks, or the
pupils from the eyes, are kept sharp. Furthermore, thin-but-long details such as the whiskers have
a high saliency, and are thus kept quite well.

MS-SSIM=0.846, CR=1.83

MS-SSIM=0.839, CR=2.22

MS-SSIM=0.834, CR=2.04

MS-SSIM=0.827, CR=2.53

Original image Salt-and-pepper noise

MS-SSIM=0.840, CR=1.70

MS-SSIM=0.834, CR=2.05

MS-SSIM=0.829, CR=1.90

MS-SSIM=0.822, CR=2.34

Gaussian white noise

MS-SSIM=0.819, CR=1.47

MS-SSIM=0.814, CR=1.72

MS-SSIM=0.809, CR=1.64

MS-SSIM=0.803, CR=1.96

Un
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Figure 12. Results of CDMD on an image with fine-grained detail (left column) additionally corrupted
by small-scale noise (middle and right columns), for different values of the ε and τ parameters.
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The middle column in Figure 12 shows the CDMD results for the same image, this time corrupted
by salt-and-pepper noise of density 0.1, compressed with the same parameter settings. We see that
the noise is removed very well for all parameter values, the compression results being visually nearly
identical to those generated from the uncorrupted image. The MS-SSIM and CR values are now
slightly lower, since, although visually difficult to spot, the added noise does affect the threshold sets
in the image. Finally, the right column in Figure 12 shows the CDMD results for the same image,
this time corrupted by zero-mean Gaussian white noise with variance 0.01. Unlike salt-and-pepper
noise, which is distributed randomly over different locations and has similar amplitudes, the Gaussian
noise has a normal amplitude distribution and affects all locations in an image uniformly. Hence,
CDMD does not remove Gaussian noise as well as the salt-and-pepper one, as we can see both from the
actual images and the corresponding MS-SSIM and CR values. Yet, even for this noise type, we argue
that CDMD does not produce disturbing artifacts in the compressed images, and still succeeds in
preserving the main image structures and also a significant amount of the small-scale details.

5. Discussion

We next discuss several aspects of our CDMD image compression method.
Genericity, ease of use: CDMD is a general-purpose compression method for any types of grayscale

and color images. It relies on simple operations such as histogram computation and thresholding, as
well as on well-tested, robust, algorithms, such as the skeletonization method in [16,17], and ZPAQ.
CDMD has three user parameters – the number of selected layers L, island thresholding ε, and skeleton
saliency threshold τ. These three parameters affect the trade-off between compression ratio and image
quality (see Section 4.2). End users can easily understand these parameters as follows: L controls how
smooth the gradients (colors or shades) are captured in the compressed image (higher values yield
smoother gradients); ε controls the scale of details that are kept in the image (higher values remove
larger details); and τ controls the scale of corners that are kept in the image (larger values round-off
larger corners). Good default ranges of these parameters are given in Section 4.2.

Speed: The most complex operation of the CDMD pipeline, the computation of the regularized
skeletons S̃, is efficiently done on the GPU (see Section 2.1). Formally, CDMD’s computational
complexity is O(R) for an image of R pixels, since the underlying skeletonization is linear in image
size, being based on a linear-time distance transform [56]. This is the best that one can achieve
complexity-wise. Given this, the CDMD method is quite fast: For images of up to 10242 pixels,
on a Linux PC with an Nvidia RTX 2060 GPU, layer selection takes under 1 millisecond; skeletonization
takes about 1 second per color channel; and reconstruction takes a few hundred milliseconds.
Obviously, state-of-the-art image compression methods have highly engineered implementations
which are faster. We argue that the linear complexity of CDMD also allows speed-ups to be gained by
subsequent engineering and optimization.

Quality vs. compression rate: We are not aware of studies showing how quality and compression
rates relate vs. image size for, e.g., JPEG. Still, analyzing JPEG, we see that its size complexity linearly
depends on the image size. That is, the compression ratio CR is overall linear in the input image
size R for a given, fixed, quality, since JPEG encodes an image by separate 8× 8 blocks. In contrast,
CDMD’s skeletons are of

√
R complexity, since they are 1D structures. While a formal evaluation

pends, this suggests CDMD may scale better for large image sizes.
Color spaces: As explained in Section 2.1, for color images, (C)DMD is applied to the individual

channels of these, following representations in various color spaces. We currently tested the RGB
and HSV color spaces, following the original DMD method proposal. For these, we obtained very
similar compression vs. quality results. We also tested YUV (more precisely, YCbCr), and obtained
compression ratios about twice as high as those reported earlier in this paper (for the RGB space).
However, layer selection in the YCbCr space is more delicate than in RGB space: While the U
and V channels can be described well with just a few layers (which is good for compression),
a slightly too aggressive compression (setting a slightly too low L value) can yield strong visual
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differences between the original and compressed images. Hence, the method becomes more difficult
to control, parameter-wise, by the user. Exploring how to make this control simpler for the end user,
while retaining the higher compression rate of the YUV space, is an interesting point for future work.

Best image types: Layer removal is a key factor to CDMD. Images that have large and salient
threshold-sets, such as Art Deco and Scientific Visualization, can be summarized by just a few such
layers (low L). For instance, the Art Deco image in Figure 10(c1) has only a few distinct gray levels,
and large, salient, shapes in each layer. Its CDMD compression (Figure 10(c2)) is of high quality, and is
more than 60 times smaller than the original. The JPEG compression of the same image is just 17 times
smaller than the original. At the other extreme, we see that CDMD is somewhat less suitable for images
with many fine details, such as animal furs and greenery (Figure 9(e2)). This suggests that CDMD
could be very well suited (and superior to JPEG) for compressing data-visualization imagery, e.g.,
in the context of remote/online viewing of medical image databases.

Preprocessing for JPEG: Given the above observation, CDMD and JPEG seem to work best
for different types of images. Hence, a valid idea is to combine the two methods rather than let
them compete against each other, following earlier work that preprocesses images to aid JPEG’s
compression [57]. We consider the same idea, i.e., use CDMD as a preprocessor for JPEG. Figure 13
shows three examples of this combination. When using only JPEG, the original images (a1–c1), at 20%
quality (JPEG setting q), yield blocking artifacts (a2–c2). When using JPEG with CDMD preprocessing,
these artifacts are decreased (a3–c3). This can be explained by the rounding-off of small-scale noise
dents and bumps that the saliency-based skeleton simplification performs [13]. Such details correspond
to high frequencies in the image spectrum which next adversely impact JPEG. Preprocessing by CDMD
has the effect of an adaptive low-pass filter that keeps sharp and large-scale details in the image while
removing sharp and small-scale ones. As Figure 13 shows, using CDMD as preprocessor for JPEG
yields a 10% to 20% compression ratio increase as compared to plain JPEG, with a limited loss of
visible quality.

a1) Original image     a2) JPEG compression
MS-SSIM: 0.9945, CR: 161.69

a3) JPEG with DMD preprocessing
      MS-SSIM: 0.9665, CR: 176.74

b1) Original image     b2) JPEG compression
MS-SSIM: 0.9724, CR: 59.45

b3) JPEG with DMD preprocessing
      MS-SSIM: 0.9211, CR: 69.57

c1) Original image     c2) JPEG compression
MS-SSIM: 0.9932, CR: 49.63

a3) JPEG with DMD preprocessing
      MS-SSIM: 0.9423, CR: 59.57

Figure 13. Comparison of plain JPEG (a2–c2) with CDMD applied as preprocessor to JPEG (a3–c3) for
three images.
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Limitations: Besides the limited evaluation (on only 100 color images and their grayscale
equivalents), CDMD is here only evaluated against a single generic image compression method,
i.e., JPEG. As outlined in Section 2.4, tens of other image compression methods exist. We did not
perform an evaluation against these since, as already noted, our main research question was to show
that skeletons can be used for image compression with good results—something that has not been
done so far. We confirmed this by comparing CDMD against JPEG. Given our current positive results,
we next aim to improve CDMD, at which point comparison against state-of-the-art image compression
methods becomes relevant.

6. Conclusions

We have presented Compressing Dense Medial Descriptors (CDMD), an end-to-end method for
compressing color and grayscale images using a dense medial descriptor approach. CDMD adapts
the existing DMD method, proposed for image segmentation and simplification, for the task of image
compression. For this, we proposed an improved layer-selection algorithm, a lossless MAT-encoding
scheme, and an all-layer lossless compression scheme.

To study the effectiveness of our method, we considered a benchmark of 100 images of 10 different
types, and did an exhaustive search of the free-parameters of our method, in order to measure
and optimize the compression-ratio, perceptual quality, and combination of these two metrics.
On a practical side, our evaluation showed that CDMD delivers superior compression to JPEG at
a small quality loss; that it delivers both superior compression and quality for specific image types.
On a more theoretical (algorithmic) side, CDMD shows, for the first time, that medial descriptors offer
interesting and viable possibilities to compress grayscale and color images, thereby extending their
applicability beyond the processing of binary shapes.

Several future work directions are possible. First, more extensive evaluations are interesting and
useful to do, considering more image types and more compressors, e.g., JPEG 2000, to find the added
value of CDMD. Secondly, a low-hanging fruit is using smarter representations of the per-layer MAT:
Since skeleton branches are known to be smooth [4], encoding them by higher-level constructs such as
splines rather than pixel-chains can yield massive compression-ratio increases with minimal quality
losses. We plan to address such open avenues in the near future.
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