
  information

Article

A Social Multi-Agent Cooperation System Based on
Planning and Distributed Task Allocation

Atef Gharbi 1,2

1 Faculty of Computing and Information Technology, Northern Border University, Rafha 91911, Saudi Arabia;
atef.gharbi@nbu.edu.sa

2 LISI, INSAT, Université de Carthage, Carthage 1054, Tunisia

Received: 3 March 2020; Accepted: 14 May 2020; Published: 18 May 2020
����������
�������

Abstract: Planning and distributed task allocation are considered challenging problems. To address
them, autonomous agents called planning agents situated in a multi-agent system should cooperate
to achieve planning and complete distributed tasks. We propose a solution for distributed task
allocation where agents dynamically allocate the tasks while they are building the plans. We model
and verify some properties using computation tree logic (CTL) with the model checker its-ctl. Lastly,
simulations are performed to verify the effectiveness of our proposed solution. The result proves
that it is very efficient as it requires little message exchange and computational time. A benchmark
production system is used as a running example to explain our contribution.

Keywords: distributed task allocation; multi-agent system; planning agent; computation tree logic
(CTL); model checker

1. Introduction

Distributed artificial intelligence (DAI) is classified under two umbrellas: the distributed system
and the multi-agent system (MAS). In the distributed system, the focus is on independent intelligent
components working together to resolve a problem [1–4]. In the multi-agent system, the autonomous
components are called agents [5–8]. Indeed, the multi-agent system is considered very important as it
combines artificial intelligence with the distributed system [9–11]. In the MAS, it is evident that there
is no central control; each agent has its own independence as well as its own resources to achieve a
goal [12–14]. This paper deals with distributed agents, where each one has to interact with the other to
maximize the number of successfully distributed tasks [15,16]. We are interested in the agents having
the following characteristics: (i) cooperative (no opponents), (ii) likely to be self-interested, (iii) have
reliable communication, (iv) heterogeneous, (v) have the possibility to join and leave unpredictably,
and (vi) must complete tasks as soon as possible [17–20]. In many of the existing studies, one or more
of the above assumptions are violated.

To ensure cooperation between agents in a multi-agent system, planning is needed, which leads
to more complications. We distinguish the following five phases to establish multi-agent planning:
(i) goal allocation to agents, (ii) goal refinement into subtasks, (iii) subtask scheduling, (iv) planning
communication, and (v) plan execution. Agent-based planning is considered as a single agent task [21–23].

In this paper, we consider a multi-agent cooperation system based on planning and distributed
task allocation, which is based on the following steps: (1) agent-based planning, (2) formal specification
and verification, and (3) evaluation.

Our main contribution in this paper is as follows. Firstly, we define the planning agents based on
planning by making action decisions that combines deliberation and reactivity. Secondly, we determine
the distributed task allocation applied by planning agents. To ensure the distributed task allocation’s
correctness, we specify it with a Petri net and we verify some properties using computation tree logic.
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The formal verification of some properties expressed in computation Tree logic (CTL) are proven to be
true by the appropriate model checker tool.

The remainder of this paper is organized as follows. Section 2 presents the related work. Section 3
introduces a simple benchmark production system to be used throughout this article to demonstrate
our contribution. Section 4 describes the agent-based planning in detail. In Section 5, we present the
distributed task allocation. Section 6 demonstrates the obtained performance gain with our solution in
comparison with the others. Finally, the conclusions and future work are summarized in Section 7.

2. Related Work

Task allocation is considered as a problem of allocating autonomous agents to a set of tasks having
some specific properties such as priority, execution time, constraints, etc. When an agent Agi has a task
and cannot execute it properly, then the agent Agi tries to find other agents that can execute this task
and assigns the task to a particular one. According to [24], the tasks in the multi-agent system can be
categorized into the following classes:

(i) Spatially organizing behavior: in this system, the agents interact among themselves to execute a
spatial configuration and have minimal interaction with the environment;

(ii) Collective explorations: in this system, the agents focus rather on interacting with the environment
than among themselves;

(iii) Cooperative decision making: in this system, the agents interact among themselves as well as
with the environment to complete a complicated task.

In this paper, we are interested in cooperative decision making, which can be divided into three
categories: centralized, distributed or combined task allocation approaches.

The centralized task allocation approach is characterized by a top-down hierarchical topology
where a central server plays a particular role as a coordinator between all agents (like in the blackboard
model) [25]. This solution achieves the best possible task allocation solution, but it is not suitable for a
large scale of tasks due to the huge computation in the server.

The distributed task allocation approach means that all the agents must cooperate together to find
a convenient task allocation solution in the whole system [26–28]. It is considered as a solution to avoid
the risk of central server deficiency (i.e., each agent is completely autonomous from the other agents).
This solution is more scalable and robust but raises the communication overhead of the agents.

A combined task allocation approach benefits from the two precedent solutions, which means it
uses centralized information and does not have any point of failure. However, this solution is not easy
to implement and can only be applied to a very specific system (such as a manufacturing system).

In this work, the distributed task allocation approach is adopted. However, our method is still
valid for a centralized solution. Many solutions have been employed in distributed task allocation such
as the market-based approach, the contract net protocol (CNP), threshold-based algorithms, coalition
formation and teamwork.

The market-based approach [29] uses a market-like mechanism where the consumers get the
resources needed after negotiation with the providers. This solution is good, but it differs from our
solution as it leads to a huge number of exchanged messages due to a large number of providers.

The contract net protocol [30,31] is well used, especially in a multi-agent system. The principle is
imitating the economic behavior of the “announce—bidding—award” mechanism. It is based on four
steps: (1) task announcement—when an agent needs a task, it announces it to the others (called auction
agent); (2) task bidding—the other agents send their proposal to the auction agent; (3) evaluation and
selection—the auction agent selects the optimal proposal; and (4) task execution—the auction agent
sends a notification to the selected agent. Though this solution is easy to implement, our solution is
better as the agents can join or leave the system during the negotiation (the CNP does not allow this
modification during the running of the algorithm; that is why the algorithm should be re-executed and
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would never give results if the modification rate was high). The second advantage of our solution is
reducing the number of involved agents.

The threshold protocol [32] was inspired by the biological behavior model of insect colonies.
An agent accepts the execution of a new task when it compares an environmental stimulus for the task
with some internal preference for the task type and finds it similar. In comparison with our solution,
this method suffers from a major inconvenience; it is impossible to deal with changes such as adding a
new task or removing an existing task while running the threshold protocol. Therefore, we cannot
profit from the previously obtained solution whenever the task set is changed.

The coalition formation and teamwork approach [33] is a complex solution consisting of task
splitting, task allocation, coordination and communication. It is assumed that the agent’s organization
is known.

Our solution is more flexible, as the coalition formation and teamwork approach is more restricted
regarding the design and behavior of the members that constitute a group.

3. Benchmark Production System

As much as possible, we will illustrate our contribution with a simple current example called
RARM [34]. We describe it informally, but it will be used as an example of the various formalisms
presented in this article. The benchmark production system RARM, depicted in Figure 1, is constituted
by two input conveyors and one output conveyor, a servicing robot and a processing–assembling unit.
Workpieces to be treated as they come irregularly one by one. The workpieces of Type A are carried via
the conveyor C1, and the workpieces of Type B, via the conveyor C2. Only one workpiece can be on
the input conveyor. A robot R transfers workpieces one after another to the processing unit. The next
workpiece can be put on the input conveyor when it has been emptied by the robot.
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Figure 1. The benchmark production system RARM.

Three production strategies can be defined (i) the first production policy consists of inserting a
Type A workpiece (through the conveyor C1) into the processing center M to be treated, then it is
evacuated by the robot to the output conveyor C3; (ii) the second production policy consists of inserting
a Type B workpiece (through the conveyor C2) into the processing center M to be treated, then it is
evacuated by the robot to the output conveyor C3; (iii) the third production policy consists of inserting
a Type A workpiece into the processing center M to be treated, then a Type B workpiece is added in the
center and the two workpieces are finally assembled. Afterward, the assembled product is taken by
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the robot and put above the C3 conveyer of output. The assembled product can be transferred on C3
only when the output conveyor is empty and ready to receive the next one produced.

Running Example

RARM is composed of autonomous conveyors, robots, and machines that we call agents. RARM
is constructed in a distributed manner since each agent can perform detailed tasks by itself. The agents
differ in the types of action that they can perform. Thus, agents should cooperate to fulfil tasks.

4. The Agent-Based Planning

In general, agents can be classified based on their decision making: (i) reactive agents, whose
decisions are taken according to sensor inputs; and (ii) planning agents, whose decisions are more
intelligent as they consider many constraints such as sensing inputs, goal, intention and/or utility.

We propose the conceptual planning model of an agent, which is composed of the following
components: (i) the sensing input, (ii) the decision making and (iii) the actuator output (Figure 2).
Thus, each planning agent is autonomous in sensing, acting and making a decision.
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Figure 2. The conceptual planning model.

Given a description of the environment in which the planning agent exists, the goal to achieve,
the set of operations to be performed, and the current state of the agent, the planning agent determines
a plan, which is an arrangement of actions to be performed to attain the goal. The planning agent is
needed either to reach a goal that satisfies some conditions or to perform several tasks in a specific order.

The most important step in the planning model is decision making. We propose the decision
making as a state machine that includes a description of different states, the initial state(s), and the
transitions from one state to another state according to some conditions defined in advance. Therefore,
a classical planning problem is represented as a state-transition model. The planning agent starts from
the current state, which constitutes the relevant part of the world, and tries to reach another state,
which represents the goal state (see Algorithm 1).

To define the internal behavior of the agent, we use the following algorithm where:

• The queue, Q, is used to save every arriving event;
• The event, ev, represents any event input;
• The state, Si,j, is an element of the state machine.
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Algorithm 1 GenericBehavior.

begin
while (Q.length() > 0) do

ev←Q.Head()
Si,j←currentStatei

If ev ∈ I(Si,j) then
For each state Si,k ∈ next(Si,j) do

1. Find the plan list that can satisfy Si,k
2. Assess every possible plan’s pre-conditions and retain only those whose pre-conditions are satisfied.
3. For every remaining plan, estimate its required resources.
4. Sort by its priority

If execute(Si,k) then
currentStatei←Si,k

break
end if

end for
end if

end while
end.

Running Example

If we consider RARM, we define the following parts:
(i) The sensing input: the planning agent knows its environment through sensors. Thus, the data

provided by the sensors present the agent’s vision of its environment. It is defined as follows:

3 The sensor sens1 (respectively sens2) is used to verify if there is a workpiece at the position p1
(respectively the position p2) on the conveyor C1;

3 The sensor sens3 (respectively sens4) checks for the existence of a workpiece at the position p3
(respectively the position p4) on the conveyor C2;

3 The sensor sens5 (respectively sens6) verifies if there is a workpiece at the position p5 (respectively
the position p6) on the conveyor C3;

3 The sensor sens7 observes if there is a Type A workpiece at the unit M;
3 The sensor sens8 enables the checking of if there is a Type B workpiece at the unit M;
3 The sensor sens9 (respectively sens10) perceives if the conveyor C1 is in its extreme left (respectively

right) position;
3 The sensor sens11 (respectively sens12) determines if the conveyor C2 is in its extreme left

(respectively right) position;
3 The sensor sens13 (respectively sens14) detects if the conveyor C3 is in its extreme left (respectively

right) position;
3 The sensor sens15 (respectively sens16) is used to decide if the robotic agent arm is in its lower

(respectively higher) position.

(ii) The actuator output: the planning agent can control the environment using the following actuators:

3 The actuator act1 ensures the movement of the conveyor C1;
3 The actuator act2 moves the conveyor C2;
3 The actuator act3 enables the movement of the conveyor C3;
3 The actuator act4 rotates a robotic agent;
3 The actuator act5 elevates the robotic agent arm vertically;
3 The actuator act6 picks up and drops a piece with the robotic agent arm;
3 The actuator act7 treats the workpiece;
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3 The actuator act8 assemblies two pieces.

(iii) The decision making: the planning agent decides the actions to perform to achieve the goal.
The set of actions is {Conveyor1_left, Rotate1_left, Rotate1_right, Conveyor2_left, Rotate2_left, Rotate2_right,
Conveyor3_left, Rotate3_left, Rotate3_right, take1, take2, take3, load1, load2, load3, put1, put2, put3, process1,
process2}. These are as follows:

3 Conveyor1_left (respectively Conveyor2_left, Conveyor3_left) means a workpiece of type A
(respectively B, AB) is moving to the left of conveyor C1 (respectively C2, C3) from position p1
(respectively p3, p5) to position p2 (respectively p4, p6);

3 Rotate1_left (respectively Rotate2_left, Rotate3_left) means the robotic agent taking a workpiece
of type A (respectively B, AB) is moving to the left from the position p2 (respectively p4, p6)
of conveyor C1 (respectively C2, C3) to the processing unit M (respectively the position p2 of
conveyor C1);

3 Rotate1_right (respectively Rotate2_right, Rotate3_right) means the robotic agent taking a workpiece
of type A (respectively B, AB) is moving to the right from the processing unit M to the position p2
(respectively p4, p6) of conveyor C1 (respectively C2, C3);

3 take1 (respectively take2, take3) means the operation of taking a workpiece of type A (respectively
B, AB);

3 load1 (respectively load2, load3) means loading a workpiece of type A (respectively B, AB);
3 put1 (respectively put2, put3) means the operation of putting a workpiece of type A (respectively B, AB);
3 process1 (respectively process2) means processing a workpiece of type A (respectively B).

5. Distributed Task Allocation

Distributed task allocation is necessary when a task cannot be executed by only one planning
agent. Planning agents situated in the multi-agent system should cooperate to achieve this task.

The formal definition of distribution task allocation in a multi-planning agent is as follows:

- a set of planning agent A = {A1, . . . , An};
- each planning agent Ai has a set of resources Ri = {Ri1, . . . , Rim};
- a set of tasks to be executed in the multi-planning agent T = {T1, . . . , Tp};
- each task Tk may require a set of resources {Rk1, . . . , Rkl}.

A distributed task allocation is accomplished if, and only if, every task Tk is executed on an agent
Ai having all the required resources for this task.

5.1. The Principle of Distributed Task Allocation

To ensure distributed task allocation, we define two kinds of planning agent:

3 Initiator: the planning agent that requests help to perform its task;
3 Participant: the planning agent having the requested resources that receives the announced task

and sends back its response.

To ensure the coherent behavior of the planning agent, we propose two possible states, i.e.,
States = {BUSY, IDLE}. Whenever a planning agent is an initiator, the planning agent state should
be BUSY. We consider a planning agent in an IDLE state when it is free, i.e., when it has no task to
do. We suppose that only an IDLE planning agent can be assigned to a new task as an initiator or as
a participant.

The idea of the algorithm is illustrated as follows.

3 The initiator agent, denoted as InitA: the planning agent that starts the distributed task allocation
process. There are many reasons to apply a distributed task allocation in the whole system such
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as the fact that the planning agent is unable to execute a task by itself, it is too busy, or it does
not have all the necessary resources. Each initiator agent InitA has a list of planning agents.
It sends a request to the planning agents: Resource_Announce_Message = ≺AgentID, TaskID,
Resource(number)�, containing the initiator agent identity, the task identity and the number of
requested resources.

The initiator agent waits for the response from the other planning agents.

3 The planning agent (called the participant agent) receives the message Resource_Announce_Message
sent by the initiator agent InitA; it checks the possibility of applying distributed task allocation
based on its state. If it is feasible (i.e., the participant agent has the requested resources and is
idle), it accepts the collaboration with the initiator agent. If the participant agent is busy, it refuses
the request.

â If the participant agent Aj is IDLE then it provides data regarding its identity, the types of
resources it owns and the executing time, explicitly, Propose_Message = ≺AgentID, Resource,
Execute�.

â If the participant agent Aj is BUSY then it sends a negative response containing the following
message Refuse_Message = ≺AgentID�.

3 After collecting the responses from all the participant agents or the timeout is over, the initiator
agent InitA then compares the available resources from these participant agents with the resources
required for its task tInitA. This leads to two cases:

If the initiator agent InitA obtains all the requested resources then the initiator agent sends
a notification message to the selected participant agent Aj. The initiator planning agent waits for
a confirmation.

3 Two cases can happen depending on the selected participant agent Aj state

â If the selected participant agent Aj is still free, it sends a confirmation message to the
initiator agent InitA and its state will be changed to BUSY: Confirm_Message = ≺AgentID�.
Consequently, the distributed task allocation protocol finishes well.

â If the selected participant agent Aj becomes busy (which means it receives a notification
message from another initiator), it sends a decline message to the initiator agent InitA:
Decline_Message = ≺AgentID�. Therefore, the initiator agent InitA repeats the same steps
from the beginning.

The different distributed task allocation steps are illustrated in Figure 3, where nbR represents the
number of participant agents related to the initiator agent InitA.
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5.2. Dynamic Planning Agent Discovery with JADE

We implement the different planning agents with the JADE (JavaTM Agent DEvelopment)
framework. JADE is a platform to develop MAS in compliance with the Foundation for Intelligent
Physical Agents (FIPA) specifications.

With the platform JADE, we find the directory facilitator (DF) providing a Yellow Pages service
where the initiator agent can find other planning agents providing the resources it needs to accomplish
its tasks. The jade.domain.DFService class provides static utility methods that facilitate the interactions
with the DF: register(), modify(), deregister(), and search() [35]. The first step is that the planning agent
publishes its provided resources. The second step is that the initiator agent searches in the directory
facilitator to discover the planning agents providing the required resources.

5.2.1. Publish a Provided Resource

The planning agent can publish a provided resource by creating a proper description, which is
an instance of the DFAgentDescription class, and call the register() method of the DFService class.
The planning agent must provide a description of:

â The agent AID (unique identifier);
â A collection of resource descriptions (class ServiceDescription):

• The resource type (e.g., “Resource1”);
• The resource name (e.g., “Resource”);
• The languages, ontologies and interaction protocols that must be known to exploit the service.
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Running Example
/// Register the Planning Agent in DFService

DFAgentDescription reg = new DFAgentDescription();
reg.setName(getAID());
ServiceDescription desc = new ServiceDescription();
desc.setType(“Resource1”);
desc.setName(“Resource”);
reg.addServices(desc);
try {

DFService.register(this, reg);
}
catch (FIPAException fe) {

fe.printStackTrace();
}

5.2.2. Search a Required Resource

The initiator agent can search for some required resources by providing the directory facilitator
with a template description. The result of the research is a list of all the descriptions matching the
template. The search() method of the DFService class provides the result. The final result will be the
set of planning agents providing the requested resource.

Running Example

DFAgentDescription template = new DFAgentDescription();
ServiceDescription desc = new ServiceDescription();

desc.setType(“Resource1”);
template.addServices(desc);

DFAgentDescription[[] result;
try {

do
{

result = DFService.search(myAgent, template);
planningAgents = new AID[result.length];

for (int i = 0; i < result.length; i++)
planningAgents[i] = result[i].getName();

}
while (result.length <= 0);

}
catch (FIPAException fe) {

fe.printStackTrace();
}

nbR = planningAgents.length;

5.3. Message Exchanged between Initiator and Planning Agents with JADE

A multi-agent system interacts through exchanging asynchronous messages. All participant agents
communicate using messages that correspond to the FIPA ACL specification. This format comprises
a number of fields and in particular (1) the communicative intention (also called “performative”),
indicating what the sender intends to achieve by sending the message (for instance the performative can
be REQUEST, INFORM, QUERY_IF, CFP, PROPOSE, ACCEPT_PROPOSAL, REJECT_PROPOSAL, etc.);
(2) the content, i.e., the actual information included in the message, which may be a string in simple
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cases—otherwise, we need a content language, a corresponding ontology and a protocol; and (3) the
list of receivers.

5.3.1. Creating a Message According to FIPA ACL Specification

Sending a message to another participant agent is as simple as filling the fields of an ACLMessage
object and then calling the send() method of the agent class.

Running Example

// The code below creates a new message with the following content:
ACLMessage msg = new ACLMessage(ACLMessage.INFORM); // (1) the performative: INFORM,
msg.addReceiver(new AID(“Agent1”, AID.ISLOCALNAME)); // (3) the receiver: Agent1
msg.setContent(“I need the help from others”); // (2) the content: requesting help from other agents
send(msg); // sending the message

5.3.2. Receiving a Message with a Matching Method

When a template is specified, the receive() method returns the first message (if any) matching
it, while ignoring all non-matching messages. Such templates are implemented as instances of the
jade.lang.acl.MessageTemplate class, which provides a number of factory methods to create templates
in a very simple and flexible way.

Running Example

The action() method is modified so that the call to myAgent.receive() ignores all messages except those
whose performative is PROPOSE:

public void action() {
MessageTemplate mt = MessageTemplate.MatchPerformative(ACLMessage. PROPOSE);
ACLMessage msg = myAgent.receive(mt);
if (msg != null) {
// REQUEST Message received. Process it
...
}
else {
block();
}
}

5.4. Agent Behavior in JADE

A behavior represents a task that a participant agent can carry out. A behavior is a kind of control
thread for the agent where the method action() is similar to Thread.run(). New behaviors can be added
at any time during the agent’s life (Figure 4).

• Behaviour class: it is implemented as an object of a class that extends
jade.core.behaviours.Behaviour. The Behaviour class is an abstract class having several abstract
methods. The action method defines the operation to be performed when the behavior is in
execution. The done method returns a boolean value to indicate whether or not a behavior has
completed. The Behaviour class also provides two methods, named onStart and onEnd. These
methods can be overridden by user defined subclasses when some actions are to be executed
before and after running behavior execution.

• SimpleBehaviour class: it is an abstract class representing simple atomic behaviors (which means
it is composed of only one behavior). It can be overridden by user defined subclasses which are
OneShotBehaviour and CyclicBehaviour classes.
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• OneShotBehaviour class: it represents atomic behaviors that must be executed only once and
cannot be blocked. Two subclasses inherit from the OneShotBehaviour class, which are the
WakerBehaviour and the TickerBehaviour classes.

3 The WakerBehaviour class implements a one-shot task that must be executed only once just
after a given timeout has elapsed, which is specified in the handleElapsedTimeout method.

3 The ReceiverBehaviour class, which triggers when a given type of message is received or a
timeout expires.

• CyclicBehaviour class: it models atomic behaviors that must be executed forever. Thus, its done
method always returns false. The CyclicBehaviour class represents “Cyclic” behaviors that never
complete and whose action method executes the same operations each time it is called.

3 The TickerBehaviour class implements a cyclic task that must be executed recurrently.
The periodic actions are determined in the onTick method.

• CompositeBehaviour class: This abstract class models behaviors that are made up of a
number of other behaviors (children). Thus, the actual operations performed by executing
this behavior are not defined in the behavior itself but inside its children, while the composite
behavior only takes care of child scheduling according to a given policy (sequentially for the
SequentialBehaviour class, concurrently for the ParallelBehaviour class and as a finite state
machine for the FSMBehaviour class).

3 ParallelBehaviour class: this behavior controls a set of sub-behaviors that execute in parallel.
The most important thing is the termination condition; it is possible to specify the termination
of ParallelBehaviour when all of its sub-behaviors terminate or any sub-behavior is ended.

3 SequentialBehaviour class: this behavior is composed of a set of sub-behaviors where each
one is executed after the other. The SequentialBehaviour terminates when all its sub-behaviors
have terminated.

• ReceiverBehaviour class: a behavior with a timeout that waits until the reception of a message or
the elapsing of a given timeout.

Information 2020, 11, x FOR PEER REVIEW 11 of 21 

 

 The WakerBehaviour class implements a one-shot task that must be executed only once 
just after a given timeout has elapsed, which is specified in the handleElapsedTimeout 
method.  

 The ReceiverBehaviour class, which triggers when a given type of message is received or 
a timeout expires. 

• CyclicBehaviour class: it models atomic behaviors that must be executed forever. Thus, its done 
method always returns false. The CyclicBehaviour class represents “Cyclic” behaviors that never 
complete and whose action method executes the same operations each time it is called.  

 The TickerBehaviour class implements a cyclic task that must be executed recurrently. The 
periodic actions are determined in the onTick method. 

• CompositeBehaviour class: This abstract class models behaviors that are made up of a number 
of other behaviors (children). Thus, the actual operations performed by executing this behavior 
are not defined in the behavior itself but inside its children, while the composite behavior only 
takes care of child scheduling according to a given policy (sequentially for the 
SequentialBehaviour class, concurrently for the ParallelBehaviour class and as a finite state 
machine for the FSMBehaviour class). 

 ParallelBehaviour class: this behavior controls a set of sub-behaviors that execute in 
parallel. The most important thing is the termination condition; it is possible to specify the 
termination of ParallelBehaviour when all of its sub-behaviors terminate or any sub-
behavior is ended. 

 SequentialBehaviour class: this behavior is composed of a set of sub-behaviors where each 
one is executed after the other. The SequentialBehaviour terminates when all its sub-
behaviors have terminated. 

• ReceiverBehaviour class: a behavior with a timeout that waits until the reception of a message 
or the elapsing of a given timeout. 

 
Figure 4. Behavior class hierarchy in JADE. Figure 4. Behavior class hierarchy in JADE.



Information 2020, 11, 271 12 of 21

Running Example

We can design the dynamic initiator agent behavior with JADE. To make the initiator agent execute
a task implemented by a behavior object, the behavior should be added to the agent by means of the
addBehavior() method of the agent class in the setup() method or inside another behavior. First of all,
the initiator agent broadcasts a message with the performative Query_REF to all the participant agents.
The behaviors include:

3 A ParallelBehaviour, which is composed of a sub-behavior set. Each sub-behavior is a
ReceiverBehaviour class, which means it waits until the reception of a message, an answer
from a particular participant agent or a given timeout is elapsed. The termination of this
ParallelBehaviour is ensured when all of its sub-behaviors (i.e., ReceiverBehaviour) terminate.
The ReceiverBehaviour have 0.5 s as a timeout period.

3 After that, there is a delay (1 s) before sending a REQUEST to the best answer from a specific
participant agent.

3 The final behavior is a receiver behavior, which waits for an AGREE/REFUSE message from this
specific participant agent with a common conversation ID.

In the case of failure, our initiator agent launches another round of negotiation by simply calling
setup again.

public class Initiator extends Agent
{

private Initiator myAgent;
private int requested;
private int resourceType;
int bestExecute;

ACLMessage message, bestProposal;
static protected Random genAleatoire = new Random();

protected void setup()
{

Object[[] args = getArguments();
if (args != null && args.length > 0) {

resourceType=((Integer)args[0]).intValue();
}

bestExecute = 1000;
bestProposal = null;
// number of resources requested: generated rondom

requested=(int) Math.floor(genAleatoire.nextDouble() *10;
myAgent=this;

// Register the resource offered by the Initiator agent in DFService
DFAgentDescription dfd = new DFAgentDescription();
dfd.setName(getAID());
ServiceDescription sd = new ServiceDescription();
sd.setType(String.valueOf(resourceType));
sd.setName("Resource");
dfd.addServices(sd);
try {

DFService.register(this, dfd);
}
catch (FIPAException fe) {



Information 2020, 11, 271 13 of 21

fe.printStackTrace();
}

// Add a TickerBehaviour that searches Planning agents every 2 seconds in the DF
addBehaviour(new TickerBehaviour(this, 2000)
{
protected void onTick() {

// Update the list of Planning agents
DFAgentDescription template = new DFAgentDescription();

ServiceDescription desc = new ServiceDescription();
desc.setType(resourceType);
template.addServices(desc);

DFAgentDescription[[] result;
try {

do
{

result = DFService.search(myAgent, template);
planningAgents = new AID[result.length];
for (int i = 0; i < result.length; i++)

planningAgents[i] = result[i].getName();
}

while (result.length <= 0);
}

catch (FIPAException fe) {
fe.printStackTrace();

}
nbR= planningAgents.length;
}

};
message = newMsg( ACLMessage.REQUEST );

MessageTemplate template = MessageTemplate.and(
MessageTemplate.MatchPerformative( ACLMessage.PROPOSE ),
MessageTemplate.MatchConversationId(message.getConversationId() ));

SequentialBehaviour seq = new SequentialBehaviour();
addBehaviour( seq );

ParallelBehaviour par = new ParallelBehaviour( ParallelBehaviour.WHEN_ALL );
seq.addSubBehaviour( par );

for (int i = 0; i < planningAgents.length; i++)
{

message.addReceiver( new AID(planningAgents[i], AID.ISLOCALNAME ));
par.addSubBehaviour( new ReceiverBehaviour( this, 500, template)

{
public void handle( ACLMessage message)
{

if (message != null) {
int execute = Integer.parseInt( message.getContent());
if (execute < bestExecute) {
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bestExecute = execute;
bestProposal = message;

}
}

}
});

}

seq.addSubBehaviour(new DelayBehaviour(this, 1000)
{

public void handleElapsedTimeout()
{

if (bestProposal != null) {
//The best proposal is obtained through bestProposal.getSender()
ACLMessage reply = bestProposal.createReply();
reply.setPerformative( ACLMessage.ACCEPT );
send ( reply );

}
}

});

seq.addSubBehaviour( new ReceiverBehaviour( this, 500,
MessageTemplate.and(
MessageTemplate.MatchConversationId(message.getConversationId()),

MessageTemplate.or(
MessageTemplate.MatchPerformative( ACLMessage.CONFIRM ),
MessageTemplate.MatchPerformative( ACLMessage.REFUSE ))) )

{
public void handle( ACLMessage message)
{

if (message != null ) {
if( message.getPerformative() == ACLMessage. CONFIRM)
System.out.println("Distributed Task Allocation is Finished”);
else
// repeat the same steps in case of failure
setup();

}
else {

//The time is elapsed without response so repeat the same steps
setup();

}
}

});

send ( message );
}
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5.5. The Model Checking of Distributed Task Allocation

The model checking of distributed task allocation consists of two steps. The first step is to represent
the distributed task allocation with the Petri net, which permits the representation of a concurrent
process. The second step is the verification of some properties using computation tree logic (CTL)
with the model checker its-ctl [36].

As explained in the previous section, we distinguish two kinds of participating agents, which
are the initiator and the participant agent (Figure 5). For further explanation of the Petri net diagram
(especially the transition meanings), refer to Table 1.Information 2020, 11, x FOR PEER REVIEW 15 of 21 
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Table 1. The meaning of the main transitions related to Figure 5.

Transition Meaning

t0 The initiator agent needs to apply a distributed task allocation

t1 The initiator agent sends a request to a participant agenti

t3 The initiator agent receives a positive answer from the participant agenti

t4 The initiator agent receives a negative answer from the participant agenti

t5 The initiator agent accepts the proposition from the participant agenti to apply the new
distributed task allocation

t7 The initiator agent refuses the proposition from the participant agenti to apply the new
distributed task allocation

t9 A participant agentj receives the request from the initiator agent for distributed task allocation

t10 The participant agentj receives a disapproval message from the initiator agent

t11 The participant agentj sends a proposition to the initiator agent

t12 The participant agentj receives an approval message from the initiator agent

t13 The participant agentj send a confirmation to the initiator agent

t16 The participant agentj refuses to help the initiator agent

CTL properties: To verify that our Petri net model is correct, we present some properties expressed
with the CTL formalism. These properties are checked by the ITS-CTL model checker [36]

• Property 1: Whenever an initiator agent needs to ensure a task but does not have all the necessary
resources, the initiator agent informs the participant agentj.

AG (P1 = > EF P9).

• Property 2: During the negotiation, the initiator agent receives a positive response from the
participant agentj or receives a disapproval message.

EF P1 AND EF (P11 OR P15).

• Property 3: The participant agenti could not receive two different decisions from the initiator agent
at the same time (i.e., either the initiator agent accepts or refuses the new distributed allocation).

NOT EF (P5 AND P6).

All these properties are proven to be true with the ITS-CTL model checker.
eCTL properties: The following eCTL property is proven to be true:
Property 4: Whenever the participant agentj accepts the new distributed task allocation, it awaits

the final decision from the initiator agent, which can be a confirmation to apply a new distributed
allocation or to cancel the new distributed allocation.

AGA t11 XAGA (t5 OR t7) X p14.

6. Evaluation

To evaluate our proposed solution for distributed task allocation in a multi-agent system, we test
its efficiency compared with a second approach [37] and the greedy distributed allocation protocol
(GDAP) [38]. We choose these two approaches because they are closed and similar to our work.

With the second approach [37], we find three kinds of agents: the manager (the same as the
initiator agent in this paper); the participant (the same as the planning agent in this paper), which
offers to perform the announced task; and the mediator, which helps the manager to find resources by
requesting its own neighbors. This approach is good but gives the priority to direct linked neighboring
agents (for the manager), which could affect the solution. The main difference between the second
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approach [37] and our solution is as follows: in the second approach [37], the neighbors can be related
to the manager as well as the mediator, but in our solution, the neighbors are only related to the
initiator agent having the requested resources that can be involved in the solution.

The greedy distributed allocation protocol (GDAP) [38] can be described briefly as follows:
there are many manager agents (each manager is responsible for a task) and many contractor agents
(each contractor controls a resource). All manager agents (the same as the initiator agent in this paper)
try to find contractor agents (the same as the participants in this paper) who can help them with
their tasks. Contractor agents offer help to the manager agent by sending a bid (consisting of all the
available resources to be allocated to the task). In the end, there is a possibility that the manager agent
collects all the required resources and so informs the corresponding contractors. The GDAP can lead
to many unallocated tasks due to static neighbors. In our approach, we try to resolve this problem by
dynamically discovering the neighboring agents providing the requested resources.

We implemented the three approaches for the distributed task allocation algorithm in the JADE
Framework, and we tested them. The performance of our solution is evaluated through a different
number of neighboring agents. The only changing variable in this setting is the average number of
neighbors. This setting, as shown in Table 2, intends to represent the influence of neighbors’ numbers
on the performance of three approaches.

Table 2. The details of the settings.

Setting Quantity

Number of agents 10
Average number of neighbors [1..10]

Tasks 5
Available resources 6

The algorithms have been evaluated according to three criteria in this experiment:
the communication cost, the execution time and the utility ratio.

Firstly, we compare the three approaches by counting the maximum number of exchanged
messages between agents after each distributed task allocation scenario. For our approach, we denote
by numberMsg messages such the number when we use only two kinds of agents, which are initiator
and participant agents. For the second approach [7], we denote by numberMsgMd messages such the
number when we use manager, mediator and participant agents in coordination.

If we apply our approach, in this case, the initiator agent has to inform all the planning agents
(i.e., N) to apply any distributed task before waiting for their responses and, after that, decide to accept
or to refuse the offer; then, numberMsg = 2 * N.

If we apply the second approach [37], in this case, the manager agent has to inform all its
neighboring agents (i.e., N) to apply any distributed task. The worst case is needing the help of another
agent (mediator), which also in turn needs another mediator, and so forth. If we consider that each
mediator agent sends the request to its neighboring agents, P represents the number of mediator agents
existing in the distributed system (where P << N). Then, numberMsgMd = (2 * N) * P.

If we apply the GDAP, the manager agent has to request only its neighbors (in the best case).
In the worst case, there is a failure in task allocation and the same process has to be repeated several
times by another managers. The worst case is to have the number of manager agents existing in the
distributed system being equal to all the agents. Then, numberMsgMd = (2 * N) * N.

The algorithms have been evaluated according to the number of exchanged messages as a criterion in
this experiment. All the results are obtained by applying the logarithm function.

From Figure 6, it is clear that whenever the number of neighboring agents is reduced, the three
approaches have approximatively the same performance. Whenever the number of neighboring
agents is elevated, it is evident that our approach is the best as it reduces the communication cost.
In conclusion, our proposed solution is very efficient (especially when the neighboring agent number
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is high) as it requests little message exchange. The approach in [37] suffers from a very high message
exchange rate in the case of the neighboring agent number being important.

The second criterion is the execution time. The unit of execution time is the millisecond.
For simplicity, we suppose that once a task has been allocated to an agent, the agent would successfully
finish this task without failure. We would like to test, in this experiment, the impact of different average
numbers of neighbors on the execution time applied for these three approaches.
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Figure 6. Comparison between the three approaches based on exchanged messages.

We notice in Figure 7 that our approach tracks the lowest execution time amongst the other ones.
The third criterion is the utility ratio, which is defined as the sum of completed tasks divided by

the total number of tasks.

Utility Ratio =

∑
success f ul− completed− task

Total− o f − Tasks

We would like to test, in this experiment, the influence of different average numbers of neighbors
on the three algorithms. We notice in Figure 8 that the utility ratio of our algorithm in different
networks is more reliable than that of the GDAP algorithm. We notice also that the GDAP solution
utility is the worst in the majority of cases.

Whenever the number of neighboring agents is reduced, our solution performs moderately in
terms of utility. This is can be explained by the following:

- Not all the planning agents having the requested resources are registered in the directory facilitator
(some of them are selfish and do not like sharing their resources).

- Even when the initiator agent searches the neighboring agent providing the requested resources
(the number is reduced), some of the planning agents refuse to participate in the distributed task
allocation for the simple reason that the resource can be used by itself later.

Therefore, the probability of finding a solution with a reduced number of neighboring agents is
low. However, when the number of neighboring agents is elevated, there is more chance of finding
a solution, which means among all these neighboring agents, there are at least some that are free
and willing to help the initiator agent. Whenever the number of neighboring agents is elevated (it is
expected that there are many resources), our approach works fine and gives a result similar to that of
the second one [37].

For more details about the implementation as well as the data used in this paper, a useful link is
shared with the public [39].
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7. Conclusions 

In this paper, we consider the problem of multi-agent cooperation systems based on planning 
and distributed task allocation. The problem is divided into two parts: agent-based planning and 
distributed task allocation. There are many contributions as follows. (1) In the first part, we define 
the planning agents based on planning by making action decisions that combine deliberation and 
reactivity. (2) In the second part, we determine the distributed task allocation applied by planning 
agents. To ensure the communication protocol’s correctness, we specify it with the Petri net, and we 
verify some properties using computation tree logic. Our method can be used for solving the multi-
agent planning problem, in which agents can plan cooperatively more flexibly. Planning agents 
behave more as though they are thinking, by making decisions about task allocation and predicting 
the effects of their decisions. 

The experimental results prove that the proposed approach has good performance. The main 
goals of our solution are to ensure robustness (the formal verification of certain properties that 
demonstrate the correct behaviour of the system based on computation tree logic), reliability (even if 
an agent is unable to execute a task, it can be done by another), scalability (there no limit to the 
possible agents or tasks that can be added), openness (the agents can join or leave the system at any 
time), communication reduction (minimal exchanged messages), and structure flexibility (there is no 
need to be organized in groups). 

Furthermore, several issues are worth future research. Fault tolerance is a crucial point to study; 
it can be considered in future work. 
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7. Conclusions

In this paper, we consider the problem of multi-agent cooperation systems based on planning
and distributed task allocation. The problem is divided into two parts: agent-based planning and
distributed task allocation. There are many contributions as follows. (1) In the first part, we define the
planning agents based on planning by making action decisions that combine deliberation and reactivity.
(2) In the second part, we determine the distributed task allocation applied by planning agents.
To ensure the communication protocol’s correctness, we specify it with the Petri net, and we verify
some properties using computation tree logic. Our method can be used for solving the multi-agent
planning problem, in which agents can plan cooperatively more flexibly. Planning agents behave more
as though they are thinking, by making decisions about task allocation and predicting the effects of
their decisions.

The experimental results prove that the proposed approach has good performance. The main goals
of our solution are to ensure robustness (the formal verification of certain properties that demonstrate
the correct behaviour of the system based on computation tree logic), reliability (even if an agent
is unable to execute a task, it can be done by another), scalability (there no limit to the possible
agents or tasks that can be added), openness (the agents can join or leave the system at any time),
communication reduction (minimal exchanged messages), and structure flexibility (there is no need to
be organized in groups).

Furthermore, several issues are worth future research. Fault tolerance is a crucial point to study;
it can be considered in future work.
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