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Abstract: Travel time is one of the most critical indexes to describe urban traffic operating states.
How to obtain accurate and robust travel time estimates, so as to facilitate to make traffic control
decision-making for administrators and trip-planning for travelers, is an urgent issue of wide concern.
This paper proposes a reliable estimation method of urban link travel time using multi-sensor data
fusion. Utilizing the characteristic analysis of each individual traffic sensor data, we first extract
link travel time from license plate recognition data, geomagnetic detector data and floating car data,
respectively, and find that their distribution patterns are similar and follow logarithmic normal
distribution. Then, a support degree algorithm based on similarity function and a credibility algorithm
based on membership function are developed, aiming to overcome the conflicts among multi-sensor
traffic data and the uncertainties of single-sensor traffic data. The reliable fusion weights for each
type of traffic sensor data are further determined by integrating the corresponding support degree
with credibility. A case study was conducted using real-world data from a link of Jingshi Road in
Jinan, China and demonstrated that the proposed method can effectively improve the accuracy and
reliability of link travel time estimations in urban road systems.

Keywords: multi-sensor traffic data fusion; urban link travel time; reliable estimation; support
degree; credibility

1. Introduction

Travel time is critical traffic information for road users and traffic managers [1]. It can better
measure traffic congestion and transportation efficiency of urban roads, which is used as an indicator of
traffic operating performance. Urban link travel time estimation plays an important role in evaluating
urban traffic conditions and developing urban traffic management strategies.

The rapid development of intelligent transportation systems (ITS) has brought various road traffic
perception technologies, promoting the wide-scale deployment and application of different types of
traffic sensors. It is more common for a road link to be monitored by multiple sensors simultaneously.
Fixed sensors of urban road networks, such as geomagnetic sensors and camera detectors, can obtain
nearly-full-sample spot traffic state information near the installation location, but they cannot fully
capture traffic operating states of the entire road links [2,3]. Mobile sensors that rely on mobile internet
technology, such as GPS-based floating cars, can continuously track traffic flow information of the
entire road links while failing to guarantee uniform coverage of effective floating cars in temporal and
spatial dimensions [4,5]. Different types of traffic sensors have their own characteristics, which are
closely related and complementary. Therefore, to obtain accurate and reliable estimations of urban
link travel time, it is very necessary to fuse multi-sensor traffic data, take advantage of the detection
advantages of different sensors and avoid the deficiencies of individual sensors.
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Many research efforts have focused on data fusion approaches to enhance the accuracy and
robustness of travel time estimates using multi-sensor traffic data. Current research findings of
travel time fusion estimation can be broadly divided into three categories: statistical-based fusion
algorithms, probability-based fusion algorithms, and artificial intelligence-based fusion algorithms [6].
In the statistical fusion algorithms, the statistical information of data quality is used to determine
the weight of each traffic sensor data, and then data fusion is achieved by the weighted average
method [7]. Tarko and Rouphail proposed a data fusion method of travel time based on the squared
estimation error in ADVANCE (Advanced Driver and Vehicle Advisory Navigation Concept) project,
namely the simple convex combination [8]. El Faouzi also extended the simple convex combination
to the Bar–Shalom/Campo combination, by considering the covariance of different estimates [9].
Although these algorithms are relatively simple and widely used, they are less efficient when
encountering multiple inconsistent or even conflicting data sources. Probabilistic fusion algorithms
adopt the probability distribution or density functions to characterize the data uncertainty, and then
combine the mathematical reasoning rules of Bayesian theory or evidence theory to achieve data
fusion. Nantes et al. presented a real-time traffic state estimation model for arterial corridors by
fusing heterogenous data sources, i.e., loop detector, GPS and Bluetooth data, through a Bayesian
observer [10]. Mil and Piantanakulchai combined a modified Bayesian data fusion approach with the
Gaussian mixture model to obtain travel time fusion estimates of different types of traffic sensors [11].
Evidence theory is a generalization of Bayesian theory, regardless of prior information. El Faouzi
and Lefevre developed a classifiers and distance-based evidential fusion approach to estimate travel
time [12]. Xia et al. fused two ITS data sources, i.e., microwave vehicle detector data and vehicle plate
identification data, to estimate link travel time, based on the Dempster–Shafer evidence reasoning
theory [13]. However, data fusion methods based on evidence theory may produce counter-intuitive
results when fusing highly conflicting pieces of evidence [14,15]. Artificial intelligence-based fusion
algorithms mainly include neural network, k-nearest neighbor and deep learning. Kolanowski et al.
used the Elman artificial neural network to fuse multi-sensor data for the purpose of positioning [16].
Chen et al. proposed space discretization travel time calculation algorithm and speed integral travel
time calculation method by combining the neural network with data fusion [17]. Tak et al. designed a
multi-level k-nearest neighbor method with data fusion to predict travel time [18]. Liu et al. summarized
existing urban big data fusion methods based on deep learning (DL) model and classified them into
three categories, namely DL-output-based fusion, DL-input-based fusion and DL-double-stage-based
fusion [19]. Zhao et al. adopted a gated recurrent unit model to predict travel time based on multi-source
data [20]. These methods can tackle complex data fusion problems, but have a higher requirement for
the number of training samples.

Considering the imperfection and diversity of traffic sensor technologies, and the nature of the
application environment, all traffic sensor data may have some quality issues, such as imperfection,
inconsistency and disparateness [21]. To tackle the aforementioned data issues and deficiencies of the
existing methods, we propose a reliable estimation method of urban link travel time using multi-sensor
data fusion. The main contributions of this paper are as follows: first, a support degree algorithm
among multi-sensor traffic data is proposed based on similarity function and log-normal distribution
model, so as to solve the conflicts of different traffic data sources; second, a credibility algorithm
of single-sensor traffic data based on membership function is developed to eliminate unrealistic
erroneous data and exclude uncertainty of data detection, incorporating the effects of sample vehicle
penetration rate; third, the reliable fusion weights of each type of traffic sensor data are determined by
integrating the support degree with the credibility, which further achieves accurate and reliable link
travel time estimates.

The remaining part of the paper is organized as follows. In Section 2, urban link travel time
extraction algorithms based on each single-sensor traffic data are presented respectively. Section 3
proposes a novel multi-sensor data fusion method to estimate link travel time. In Section 4, a case
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study is conducted to validate the effectiveness of the proposed method. The last section concludes
this paper.

2. Link Travel Time Extraction Algorithms Based on Single-Sensor Traffic Data

New urban traffic data sources are increasing with the large-scale deployment and application
of urban road traffic flow sensors. In order to understand the traffic operating mechanism of urban
road system, it is crucial to efficiently extract valuable and accurate information from multi-sensor
traffic data. The mainstream front-end traffic detectors for urban roads mainly include geomagnetic
sensor, license plate recognition detection, and floating car detection. The obtained traffic sensor data
collect the same urban traffic spatiotemporal information, but describe real traffic conditions from
different scales and dimensions. The extraction algorithms of link travel time based on three types of
single-sensor traffic data are given respectively.

2.1. Travel Time Extraction from License Plate Recognition Data

In the past few years, license plate recognition (LPR) camera systems have achieved rapid
development in many countries and been widely used in the fields of traffic monitoring, law enforcement
management, and automatic toll collection. When vehicles pass through the camera detection
area, vehicle passing events are accurately recorded, including license plate number, passing time,
instantaneous speed, intersection number, approach number, and lane number. Compared with
conventional aggregate traffic data (such as five-minute flow data), high-resolution LPR event data can
provide more detailed traffic flow information [22]. The rich data items make LPR data source have
some unique characteristics [23,24]. First, it accurately records all the vehicle departing timestamps at
the stop line of the intersection. Second, it can continuously track the vehicle trajectories based on the
uniqueness of license plate number. Third, it can monitor traffic flows from different directions of the
intersection at lane level. The detection advantages of LPR data enable it to become an emerging traffic
data source for evaluating urban traffic states.

In this study, the urban road network is divided into many links with the stop lines as the
breakpoints, that is, the distance between the stop lines at the upstream and downstream intersections
is considered as a complete road link. As shown in Figure 1, the arriving vehicles on the observed link are
composed of three different directions of traffic flows at the upstream intersection, i.e., through arrival
vehicles Ut, right arrival vehicles Ur, and left arrival vehicles Ul. The uniqueness of the license
plate information enables a repeated identification between the arrival and departure vehicles on the
observed link. The travel time records are obtained according to the matched vehicles. The average
travel time Tt

i j,LPR using LPR data can be calculated by the following formula:

Tt
i j,LPR =

∑Nt
i j,LPR

n=1 (dtn
ij,LPR − utn

ij,LPR)

Nt
i j,LPR

, (1)

where Nt
i j,LPR is the number of matched vehicles on the observed link (vi, v j) at the timestep t; dtn

ij,LPR
is departure time of the nth matched vehicle on the observed link (vi, v j); utn

ij,LPR is arrival time of the
nth matched vehicle on the observed link (vi, v j).
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Figure 1. Illustration of arrival vehicles from the upstream intersection. 
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Figure 1. Illustration of arrival vehicles from the upstream intersection.

The above original travel time records contain some problem data, due to the misidentification
of the license plate information or the vehicles stopping on the way. Therefore, it is necessary to
preprocess the original data by removing outlier travel time records. The rough screening and mean
absolute deviation (MAD) algorithms are adopted [25]. First, the range of rough screening is set
to 10th percentile of travel time ≤ dtn

ij,LPR − utn
ij,LPR ≤ 3600 s, and the records beyond this range are

removed. Then the MAD algorithm is used for further screening to obtain valid travel time records.
The evaluation criterion of this algorithm is set as tmedian

i j,LPR − 3MAD ≤ dtn
ij,LPR − utn

ij,LPR ≤ tmedian
i j,LPR + 3MAD,

where tmedian
i j,LPR is the median of all the travel time records at the timestep t. Moreover, the MAD is

calculated by:

MAD =

∑Nt
i j,LPR

n=1

∣∣∣∣(dtn
ij,LPR − utn

ij,LPR) − tmedian
i j,LPR

∣∣∣∣
Nt

i j,LPR

, (2)

2.2. Travel Time Extraction from Geomagnetic Detector Data

In the past, vehicle arrivals on the road links were always detected using loop coil detectors.
This type of traffic sensor is buried under the ground, which causes great damage to the road surface
and requires a large amount of maintenance. The geomagnetic detector is not only stable and reliable
with high detection accuracy, but also convenient to install and maintain. These two magnetic detectors
can obtain similar traffic flow information, such as traffic flow rate and occupancy rate. As an alternative
to the loop coils, the geomagnetic detectors are developing into an important fixed urban road detector.

Geomagnetic detector data (GDD) belong to point traffic flow data, and the certain mathematical
models need to be constructed to obtain the corresponding average travel time. The previous
studies [26,27] show that the link travel time series in highway and urban road environments
are greatly affected by the fluctuation of traffic flows, but they exhibit different function relationships.
The BPR (Bureau of Public Roads) function [28] is a travel time estimation model with traffic flow rate
as an independent variable for highway environment. Its mathematical formula is as follows:

Tt
i j,GDD = Ti j, f (1 + α(

qt
i j,GDD

ci j
)

β

), (3)

where Tt
i j,GDD is the average travel time estimate of observed link (vi, v j) using the GDD at the

timestep t; Ti j, f is the travel time of observed link (vi, vj) in free flow state; qt
i j,GDD is the actual traffic

flow of observed link (vi, v j) obtained from the GDD at the timestep t; cij is the capacity of observed
link (vi, v j); α and β are impedance parameters. The BPR function shows three important relationship
characteristics: (i) the link travel time is close to the free-flow travel time when actual traffic flow is
small enough; (ii) the link travel time varies slowly and is proportional to traffic flow when actual flow
is far less than the link capacity; (iii) the link travel time increases rapidly with the change of traffic
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flow when actual flow approaches or exceeds capacity. Unlike the highway environment, there are
signal controls in urban road networks. As traffic congestion is increasingly heavier, urban link travel
time will not get continuous growth. This means that when traffic flow exceeds the capacity and road
link reaches the certain congested level, the flow begins to decrease and the travel time increases to
a stable high value. So, the BPR function model cannot be directly applied to urban roads, and the
uniformly calibrated BPR model achieves poor estimation in the congested state. In view of this, the
BPR model is calibrated by differentiating traffic conditions, so as to make better use of the GDD to
estimate urban link travel time [29]. This paper considers the product of traffic flow and occupancy
rate from the GDD as road traffic state index. The specific calculation formula is as follows:

It
i j,GDD = qt

i j,GDD · o
t
i j,GDD, (4)

where It
i j,GDD is traffic state index of observed link (vi, v j) using the GDD at the timestep t; qt

i j,GDD and

ot
i j,GDD are actual flow and occupancy rate of observed link (vi, v j) from the GDD at the timestep t.

Taking the historical GDD and LPR data of Jingshi Road in Jinan as an example, the results show
that the traffic state index is relatively consistent with the trend of link travel time series, as shown
in Figure 2. The link traffic state is classified into three categories according to the change trend of
this index: (i) when 0 ≤ It

i j,GDD < 40, the traffic state index is low and stable, and the observed link is

smooth at the timestep t; (ii) when 40 ≤ It
i j,GDD < 200, the traffic state index increases and the observed

link is in a blocked state at the timestep t; (iii) when It
i j,GDD ≥ 200, the traffic state index is high and the

observed link is in a congested state at the timestep t.
The BPR function is calibrated in the above three states of smooth, blocked and congested,

respectively. The calibrated BPR function is as follows:

Tt
i j,GDD =


Ti j, f (1 + 2.96(qt

i j,GDD/ci j)
1.2
), 0 ≤ It

i j,GDD < 40

Ti j, f (1 + 4.13(qt
i j,GDD/ci j)

1.94
), 40 ≤ It

i j,GDD < 200

Ti j, f (1 + 4.85(qt
i j,GDD/ci j)

0.37
), It

i j,GDD ≥ 200

. (5)
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2.3. Travel Time Extraction from Floating Car Data

Vehicles with on-board positioning systems and communication devices can detect real-time
traffic flow information when driving on the road. These mobile vehicles are called floating cars and
the detected data are floating car data (FCD). These data contain license plate number, latitude and
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longitude, instantaneous speed, GPS time, status code, etc. Compared to fixed traffic sensors, floating
car detection can continuously capture road traffic state information and get a wide coverage of road
networks, without destroying road infrastructure. Recently, floating car data have become an important
traffic data source for urban road systems and achieved a wide variety of applications, such as road
monitoring, traffic management and travel service [30]. From the perspective of the characteristics of
the FCD, this paper adopts a suitable travel time extraction method.

First, the GPS positioning data of floating cars are matched with the road electronic map to
obtain the observed trajectories of vehicles. The return frequency of the FCD used in this paper is 3 s.
Considering a large number of detection points of each vehicle on the observed link, the time deviation
between the first and last detection points is taken as a link travel time record τn

ij,FCD.
For some road links, the observed vehicle trajectories do not completely cover the entire road link.

The link travel time record τn
ij,FCD needs to be extended to the entire link by using the coefficient 1/θn

ij,FCD
and the calculation formula is as follows:

tn
ij,FCD =

1
θn

ij,FCD
τn

ij,FCD, (6)

where tn
ij,FCD is the whole link travel time extended from link travel time record of the nth floating car;

θn
ij,FCD is the ratio of the length covered by the nth observed vehicle trajectory to the total link length.

The credibility of the obtained link travel time is proportional to the overlap between the observed
vehicle trajectories and the detection link. So, the proportion of the overlapping part in the total link
length is assigned to each whole travel time as the corresponding weight, and the average link travel
time using the FCD at the timestep t is calculated as follows:

Tt
i j,FCD =

∑Nt
i j,FCD

n=1 θn
ij,FCDtn

ij,FCD∑Nt
i j,FCD

n=1 θn
ij,FCD

. (7)

3. Urban Link Travel Time Estimation Method Using Multi-Sensor Data Fusion

Multi-sensor traffic data fusion aims at obtaining a consistent interpretation or description of
observation objects and achieving the best estimation or decision tasks, by processing and fusing
multi-sensor traffic information in different time and space domains. Each individual traffic sensor
data in the urban road system have some uncertainties, such as the incompleteness of data, unreliability
of data acquisition and the contradictions of different data sources. The fusion of these uncertain
information is essentially an uncertainty reasoning and decision-making process. Evidence theory is an
effective method to resolve the problem of uncertainty information fusion. Data fusion using evidence
theory is mainly to estimate the credibility of different evidences, and different credibility measures
will produce different fusion effects. Considering multi-sensor traffic data as different evidences for
observing the same traffic parameter, we propose a reliable estimation method of urban link travel
time using multi-sensor data fusion.

In this method, three travel time series are first extracted from the LPR, GDD and FCD respectively,
according to Section 2. On the basis of obtaining distribution functions of three link travel time series,
we develop a support degree algorithm based on similarity function and a credibility algorithm based
on membership function. Then, an integrated credibility is proposed based on the support degree
among multi-sensor traffic data and the credibility of single-sensor traffic data, which further achieve
accurate and reliable link travel time estimates. The flowchart of the proposed method is shown
in Figure 3.
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3.1. Support Degree Algorithm of Multi-Sensor Traffic Data

In the urban road systems, the GDD, FCD and LPR data can extract average link travel time that
fits the lognormal distribution. We suppose that the three types of traffic sensor data are regarded as
different types of evidence, i.e., R = {LPR, GDD, FCD}. The average link travel time series extracted
from traffic data sources a and b are denoted by the vector Xa and Xb, a, b ∈ R. The corresponding
probability density functions are denoted by pa(x) and pb(x), which are used as the characteristic
functions of traffic data sources. xt

a and xt
b are the average link travel time at the timestep t in Xa and

Xb. The conflict degree between various traffic data sources at the same time step is measured using
the confidence distance, which is specifically calculated as:

dt
a,b = 2

∫ xt
b

xt
a

pa(x/xt
a)dx, (8)

where dt
a,b is the confidence distance measure between xt

a and xt
b. When the average link travel time of

traffic data source a follows a lognormal distribution, the characteristic function is given by:

pa(x/xt
a) =

1
√

2πδax
exp

−1
2
(

ln x− ln xt
a

δa
)

2
. (9)



Information 2020, 11, 267 8 of 15

The average travel time of the same road link at the same timestep is observed by multi-sensor
traffic data. Accordingly, dt

a,b, a, b ∈ R can be calculated based on the travel time estimates at the
timestep t. Then, the confidence distance matrix Dt is obtained by:

Dt =


dt

LPR,LPR dt
LPR,GDD dt

LPR,FCD
dt

GDD,LPR dt
GDD,GDD dt

GDD,FCD
dt

FCD,LPR dt
FCD,GDD dt

FCD,FCD

. (10)

The smaller the confidence distance measure dt
a,b is, the smaller the conflict degree between xt

a and xt
b.

This means that traffic data source a is highly supported by b. Therefore, the similarity measure st
a,b

between xt
a and xt

b is defined as:
st

a,b = 1− dt
a,b, a, b ∈ R. (11)

The corresponding similarity matrix of the three traffic data sources can also be obtained, namely:

St =


st

LPR,LPR st
LPR,GDD st

LPR,FCD
st

GDD,LPR st
GDD,GDD st

GDD,FCD
st

FCD,LPR st
FCD,GDD st

FCD,FCD

. (12)

The support degree of traffic data source a from other data sources can be calculated by the
following formula:

Supa(t) =
∑

∀b∈R,b,a

st
a,b. (13)

The normalized support degree S̃upa(t) of traffic data source a is given by:

S̃upa(t) =
Supa(t)∑
∀r∈R Supr(t)

. (14)

3.2. Credibility Algorithm of Multi-Sensor Traffic Data

The average travel time obtained by each type of traffic sensor data may have quality issues, such
as false data and an unrealistic outlier. This paper adopts the principle of threefold standard deviation
to determine the reasonable range of travel time, i.e., [µ− 3δ,µ+ 3δ]. Moreover, given the fact that
the floating cars are unevenly distributed in space and time domains, the proportion of samples also
needs to be considered. So, the membership function for each type of traffic sensor data is developed
to represent the credibility of each estimation, which is calculated as follows:

Cra(t) =

 ρt
a

(
1− |ln xt

a−µa|
3δa

)
,

∣∣∣ln xt
a − µa

∣∣∣ < 3δa

0,
∣∣∣ln xt

a − µa
∣∣∣ ≥ 3δa

, (15)

where Cra(t) is the credibility of link travel time estimate xt
a at the timestep t based on traffic data

source a; µa and δa are the mean and standard deviation of logarithm of link travel time estimates based
on traffic data source a. ρt

a is the sample vehicle penetration rate of traffic data source a at the timestep t,
i.e., the ratio of the number of sample vehicles to the link traffic flow. So, the license plate recognition
penetration rate and the floating car penetration rate can be calculated by the following formulae:

ρt
LPR = Nt

i j,LPR/qt
i j,GDD, (16)

ρt
FCD = Nt

i j,FCD/qt
i j,GDD, (17)
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where Nt
i j,LPR is the number of sample vehicles (matched vehicles) in the LPR data; Nt

i j,FCD is the

number of floating car samples in the FCD; qt
i j,GDD is the real-time traffic flow detected by the GDD.

Considering that the link travel time extracted by the GDD is an indirect estimate and does not involve
vehicle penetration rate, we adopt Equations (16) and (17) to derive ρt

GDD, that is:

ρt
GDD =

{
1− ρt

LPR − ρ
t
FCD, ρt

LPR + ρt
FCD < 1

0, ρt
LPR + ρt

FCD ≥ 1
. (18)

The credibility of each type of traffic sensor data is obtained by the normalization processing,
and the specific calculation is as follows:

C̃ra(t) =
Cra(t)∑
∀r∈R Crr(t)

. (19)

3.3. Reliable Fusion of Average Link Travel Time

The support degree among multi-sensor traffic data reflects the contradictions of the average link
travel time parameters extracted by different traffic data sources. The credibility of multi-sensor traffic
data characterizes the imperfection and unreliability of a single data source itself. To obtain accurate
urban traffic flow information, this paper proposes an integrated credibility estimation of traffic data
source based on the support degree and the credibility, which is calculated as follows:

Ecra(t) = C̃ra(t) × S̃upa(t), a ∈ R. (20)

where Ecra(t) is the integrated credibility of traffic data source a at the timestep t.
The integrated credibility of each type of traffic sensor data is adjusted by the normalization

processing, that is:

Ẽcra(t) =
Ecra(t)∑
∀r∈R Ecrr(t)

, a ∈ R. (21)

Taking the above normalized credibility of each type of traffic sensor data as the fusion weight,
the average link travel time using multi-sensor traffic data fusion is calculated as follows:

T̂i j(t) = ẼcrLPR(t)Tt
i j,LPR + ẼcrGDD(t)Tt

i j,GDD + ẼcrFCD(t)Tt
i j,FCD. (22)

where Tt
i j,LPR, Tt

i j,GDD and Tt
i j,FCD are average travel time estimates of observed link (vi, v j), using the

LPR, GDD and FCD at the timestep t, respectively.
In addition, the scalability of this proposed method for more data sources needs to be elaborated.

Similar to the LPR, GDD and FCD in this paper, we first extract link travel time series from new data
sources and estimate the corresponding distribution functions. For the support degree algorithm of
multi-sensor traffic data, the confidence distance matrix and similarity matrix are extended from 3× 3 to
n× n, where n is the total number of traffic data sources. The calculation of the elements in the matrices
is exactly the same as that in Section 3.1. For the credibility algorithm of multi-sensor traffic data, the
penetration rate of new data sources should be determined based on its own detection characteristics.
Simultaneously, the penetration rate of GDD is updated. Then, the integrated credibility of each data
source can be calculated respectively. Finally, the fusion formula of link travel time, i.e., Equation (22),
should be expanded according to the total number of traffic data sources.

4. Case Study and Results

To verify the effectiveness of the proposed fusion method in this paper, three types of traffic
sensor data, including the LPR data, the GDD and the FCD are used for the calibration and accuracy
test of the average link travel time fusion estimation method. The LPR data are converted from the
traffic flow information detected by the cameras at the intersections. The GDD are collected by the
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detectors installed near the stop lines at the intersections. The FCD are derived from the floating cars
with on-board GPS devices. The test area is a link of Jingshi Road in Jinan City. The link length is
720 m including two intersections. Note that LPR data are obtained based on the random arrival
vehicles and do not have a fixed sampling time interval. The sampling time intervals of GDD and
FCD are 5 min and 3 s, respectively. Although these raw data are asynchronous, their reference time
is consistent. In this case study, the unit of the average link travel time extracted from each traffic
data source is 15 min. The data collection time is all Wednesdays (0:00–24:00) in March 2016. The first
four Wednesdays (March 2, March 9, March 16 and 23) are historical data for parameter calibration of
the proposed fusion method. Additionally, the data of last Wednesday (March 30) is used for testing
the proposed fusion method in this paper. From the above data, the LPR, GDD and FCD involve an
average of 27,138, 36,810 and 1218 vehicles per day, respectively.

4.1. Distribution Fitting of Average Link Travel Time Series

The average link travel time series are extracted from three traffic data sources. The corresponding
probability histogram is drawn based on the historical travel time series. The preliminary analysis
shows that the average link travel time distributions based on three traffic data sources are asymmetric
and exhibit a long tail. The commonly used normal distribution is a symmetric distribution, which
will not give a good fit. Hence, we adopt the log-normal distribution function to fit the average
link travel time based on the distribution fitting toolbox of MATLAB [31]. Figures 4–6 display the
probability histograms of three types of single-sensor traffic data and the corresponding probability
density function (PDF) curves of the fitted distributions. Furthermore, a Kolmogorov–Smirnov test is
employed to evaluate the quality of the fitted distribution functions. Table 1 gives the distribution
parameters of average link travel time series, based on three types of single-sensor traffic data and
corresponding goodness-of-fit test results. As can be observed in Table 1, their test statistics are less
than the critical value at significance level of 0.05, which indicates the average travel time series
following the fitted distribution functions.

Information 2020, 11, x FOR PEER REVIEW 10 of 16 

 

test of the average link travel time fusion estimation method. The LPR data are converted from the 
traffic flow information detected by the cameras at the intersections. The GDD are collected by the 
detectors installed near the stop lines at the intersections. The FCD are derived from the floating cars 
with on-board GPS devices. The test area is a link of Jingshi Road in Jinan City. The link length is 720 
m including two intersections. Note that LPR data are obtained based on the random arrival vehicles 
and do not have a fixed sampling time interval. The sampling time intervals of GDD and FCD are 5 
min and 3 s, respectively. Although these raw data are asynchronous, their reference time is 
consistent. In this case study, the unit of the average link travel time extracted from each traffic data 
source is 15 min. The data collection time is all Wednesdays (0:00–24:00) in March 2016. The first four 
Wednesdays (March 2, March 9, March 16 and 23) are historical data for parameter calibration of the 
proposed fusion method. Additionally, the data of last Wednesday (March 30) is used for testing the 
proposed fusion method in this paper. From the above data, the LPR, GDD and FCD involve an 
average of 27,138, 36,810 and 1218 vehicles per day, respectively. 

4.1. Distribution Fitting of Average Link Travel Time Series 

The average link travel time series are extracted from three traffic data sources. The 
corresponding probability histogram is drawn based on the historical travel time series. The 
preliminary analysis shows that the average link travel time distributions based on three traffic data 
sources are asymmetric and exhibit a long tail. The commonly used normal distribution is a 
symmetric distribution, which will not give a good fit. Hence, we adopt the log-normal distribution 
function to fit the average link travel time based on the distribution fitting toolbox of MATLAB [31]. 
Figures 4–6 display the probability histograms of three types of single-sensor traffic data and the 
corresponding probability density function (PDF) curves of the fitted distributions. Furthermore, a 
Kolmogorov–Smirnov test is employed to evaluate the quality of the fitted distribution functions. 
Table 1 gives the distribution parameters of average link travel time series, based on three types of 
single-sensor traffic data and corresponding goodness-of-fit test results. As can be observed in Table 
1, their test statistics are less than the critical value at significance level of 0.05, which indicates the 
average travel time series following the fitted distribution functions. 

 
Figure 4. Probability histogram and probability density function (PDF) curve of average travel time 

based on license plate recognition (LPR) data. 

Table 1. Parameters and goodness of fit test results of three average link travel time distributions. 

Traffic 
Sensor 
Data 

Distribution Parameter Kolmogorov–Smirnov Test 
Mean 

 
Standard 

Deviation  
Test 

Statistics 
Critical Value at 0.05 

Significance Level Result 

LPR 4.5276 0.5612 0.0823 0.1388 Accepted 
GDD 4.6254 0.5561 0.1206 0.1388 Accepted 

aμ aδ

Figure 4. Probability histogram and probability density function (PDF) curve of average travel time
based on license plate recognition (LPR) data.



Information 2020, 11, 267 11 of 15
Information 2020, 11, x FOR PEER REVIEW 11 of 16 

 

FCD 4.6923 0.6410 0.0873 0.1388 Accepted 

 
Figure 5. Probability histogram and PDF curve of average travel time based on geomagnetic 

detector data (GDD). 

 
Figure 6. Probability histogram and PDF curve of average travel time based on floating car data 

(FCD). 

4.2. Analysis of Case Results 

Average link travel time at a certain time step is defined as the arithmetic mean of travel time 
records of all vehicles on the observed link. However, none of the existing traffic data sources can 
obtain travel time records of all vehicles. The average penetration rate of matched vehicles from the 
LPR detectors at peak hours is as high as 80%. And related research shows that the travel delay error 
from the LPR system is within 6% [32]. Therefore, the average link travel time extracted from four-
day historical LPR data is used as the basic data for comparative analysis.  

We adopt an existing weight distribution fusion method to make a comparative analysis with 
the proposed fusion method in this paper [7]. This method assigns the weights of travel time 
estimates based on multiple traffic data sources, ensuring that the total mean square error of the data 
fusion result is minimized. Then, the weighted average method is used to obtain the travel time 
fusion estimates. The weight of the link travel time estimate at the timestep t based on traffic data 
source a is calculated as follows: 

2 2

1( )
( ) 1 ( )a

a rr R

w t
t tσ σ

∀ ∈

=


,  (23) 

Figure 5. Probability histogram and PDF curve of average travel time based on geomagnetic detector
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Figure 6. Probability histogram and PDF curve of average travel time based on floating car data (FCD).

Table 1. Parameters and goodness of fit test results of three average link travel time distributions.

Traffic Sensor
Data

Distribution Parameter Kolmogorov–Smirnov Test

Mean µα
Standard Deviation

δα
Test

Statistics
Critical Value at 0.05

Significance Level Result

LPR 4.5276 0.5612 0.0823 0.1388 Accepted
GDD 4.6254 0.5561 0.1206 0.1388 Accepted
FCD 4.6923 0.6410 0.0873 0.1388 Accepted

4.2. Analysis of Case Results

Average link travel time at a certain time step is defined as the arithmetic mean of travel time
records of all vehicles on the observed link. However, none of the existing traffic data sources can
obtain travel time records of all vehicles. The average penetration rate of matched vehicles from the
LPR detectors at peak hours is as high as 80%. And related research shows that the travel delay error
from the LPR system is within 6% [32]. Therefore, the average link travel time extracted from four-day
historical LPR data is used as the basic data for comparative analysis.

We adopt an existing weight distribution fusion method to make a comparative analysis with the
proposed fusion method in this paper [7]. This method assigns the weights of travel time estimates
based on multiple traffic data sources, ensuring that the total mean square error of the data fusion result
is minimized. Then, the weighted average method is used to obtain the travel time fusion estimates.
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The weight of the link travel time estimate at the timestep t based on traffic data source a is calculated
as follows:

wa(t) =
1

σ2
a(t)

∑
∀r∈R 1/σ2

r (t)
, (23)

where σ2
a(t) is the squared error between the estimation of traffic data source a at the timestep t and the

estimation of historical LPR data at the timestep t−1.
The mean absolute percentage error (MAPE), mean absolute error (MAE) and root mean square

error (RMSE) are adopted to evaluate the accuracy and stability of the proposed fusion method, and
the calculation formulae are as follows:

MAPE =
1
n

∑∣∣∣∣∣∣T − T̂
T

∣∣∣∣∣∣× 100% (24)

MAE =
1
n

∑∣∣∣T − T̂
∣∣∣ (25)

RMSE =

√
1
n

∑
(T − T̂)2 (26)

The average link travel time series obtained by the proposed fusion methods and three single-sensor
traffic data extraction methods are shown in Figure 7. Figure 8 displays the traffic flow rate series
based on GDD data. We found that different average link travel time estimation methods exhibit
more consistent estimation results for low-flow traffic scenarios. However, during the morning and
evening rush hours, there were some estimation differences among four different methods. This is due
to the fact that as traffic flows increase, vehicles experience different levels of queuing and delays at
signalized intersections, generating travel time records with large differences. To further confirm this,
we calculated the standard deviation of 15 min travel time records, and the average value at night is 7.3
and the average value of peak hours is 36.2. So, three single-source traffic data extraction methods with
different sample sets and sample sizes produce clear differences in estimation results for peak hours.
At this time, the support and credibility algorithms act together, making the fusion results in this paper
more inclined to the estimates with strong support degree and high credibility. This also explains that,
unlike the evening peak, the fusion estimate of the morning peak is not significantly close to the two
similar estimates (i.e., extracted by the GDD and FCD), due to the effect of higher LPR penetration rate.
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Figure 8. Traffic flow rate based on GDD data.

The comparative analysis of the errors is shown in Table 2. As shown in Table 2, the estimation
accuracy and stability of the two fusion methods outperform the single-sensor traffic data extraction
methods. It can be seen that multi-sensor traffic data fusion can effectively avoid the limitations of
single-sensor data and improve the problems of insufficient accuracy and poor stability. Compared
with the weight distribution fusion method, the estimation of the proposed fusion method in this
paper is closer to the basic data, and the corresponding MAPE and MAE have increased by 10.11% and
8.98%, respectively. The RMSE has improved by 16.55%, which indicates that the stability of the fusion
method in this paper is more stable than the weight distribution fusion method.

Table 2. Error analysis of average link travel time based on multi-sensor traffic data.

Methods MAPE/% MAE RMSE

GDD extraction method 22.34 26.82 35.59
FCD extraction method 27.43 31.37 44.72
LPR extraction method 12.31 15.43 22.72

Weight distribution fusion method 10.39 11.46 16.07
The proposed fusion method 9.34 10.43 13.41

5. Conclusions

This paper proposes an urban link travel time estimation method using multi-sensor traffic data
fusion to capture the real traffic operating states of the urban road network system. Based on the the
characteristic analysis of each individual traffic sensor data, the link travel time series are first extracted
from three single-sensor traffic data. We adopt the logarithmic normal distribution function to fit the
link travel time series and reveal the corresponding distribution laws. On this basis, a support degree
algorithm based on similarity function is developed to measure the conflicts among multi-sensor traffic
data. Moreover, a credibility algorithm based on membership function is presented by incorporating
the effects of sample vehicle penetration rate, so as to accurately characterize the imperfections of
single sensor data. Furthermore, an integrated credibility estimation method is proposed to determine
the fusion weights of each traffic sensor datum, deriving a reliable fusion result of link travel time.

Future research will be conducted to integrate the goodness of fit of average link travel time
distribution into the proposed fusion method. The effects of the goodness of fit on the fusion results
should also be explored. In addition, a single source of floating car data in this paper fails to ensure the
randomness of the sample vehicles when exploring the travel time distribution, which causes some
estimation deviation. How to evaluate and revise this estimation deviation of travel time is another
research priority.
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