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Abstract: The present paper discusses a comparative application of image processing techniques, i.e.,
Discrete Fourier Transform, K-Means clustering and Artificial Neural Network, for the detection of
defects in the industrial context of assembled tires. The used Artificial Neural Network technique
is based on Long Short-Term Memory and Fully Connected neural networks. The investigations
focus on the monitoring and quality control of defects, which may appear on the external surface of
tires after being assembled. Those defects are caused from tires which are not properly assembled
to their respective metallic wheel rim, generating deformations and scrapes which are not desired.
The proposed image processing techniques are applied on raw high-resolution images, which are
acquired by in-line imaging and optical instruments. All the described techniques, i.e., Discrete Fourier
Transform, K-Means clustering and Long Short-Term Memory, were able to determine defected and
acceptable external tire surfaces. The proposed research is taken in the context of an industrial project
which focuses on the development of automated quality control and monitoring methodologies,
within the field of Industry 4.0 facilities. The image processing techniques are thus meant to be
adopted into production processes, giving a strong support to the in-line quality control phase.

Keywords: In-line image processing; product traceability; image features extraction; 3D image
processing; real time production monitoring; Discrete Fourier Transform; K-Means image processing;
neural network

1. Introduction

Within the automotive field, the assembling process between the tire and its corresponding wheel
rim represents an industrial activity which requires highly engineered technologies. Such technologies
are continuously improving to enhance the efficiency in production. This process is usually required
by the main automotive companies, which may assign the activity to third-party industries, which
have to ensure a high-quality standard. To achieve the highest results, it is possible to take advantage
of the most modern analytical approaches. In particular, the Lean Methodology [1–3] is used in
case of activities including the evaluation of defects. Starting from the analysis of the tire-wheel rim
assembling process [4], image processing techniques can provide important insights about possible
defects, visible as patterns, which may occur on the external surface of the tire [5]. Those analyses
are combined with the Ethernet network [6], as enabling Industry 4.0 technology. Many companies
are therefore implementing the combination of Ethernet systems and Internet of Things (IoT) [7] to
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enhance the traceability in production [8], collecting significant improvements. A comprehensive
scenario of the production processes may be shown by using either fishbone diagrams or a roof-shaped
L-matrix diagrams, which immediately show information about defects [9] and enhance the production
according to the ISO 9001:2015 quality standards. Some authors [10] have adopted IoT techniques
to identify tire defects. Different approaches for the detection and classification of defects have been
recently investigated in various fields, including generative adversarial networks [11,12], variational
autoencoders [13–17] and iterative energy-based projection [18]. The previously mentioned approaches
enable unsupervised anomaly detection by leveraging the ability of these methods to detect anomalies
by comparing test examples with images reconstructed by the models. Important approaches for the
detection of tire defects consist of the image processing algorithms [19,20]. The angle of view is a
critical aspect concerning non-destructive image inspection [20].

The main content of this paper focuses on the analysis of assembled tire images which are in-line
acquired to support the quality control phase. Specifically, image vision techniques are applied to
analyse the presence of defects within the assembled tires in terms of scratch and folded tire rubber
which may be unsafe for the assembled products. K-Means, Discrete Fourier Transform (DFT) and
Long Short-Term Memory-Fully Connected (LSTM-FC) neural networks (as a method in the field
of Artificial Neural Network—ANN) techniques are applied and compared in order to identify the
presence of defects within the components. Following the state-of-the-art mentioned in this paper,
different tools and combined approaches are investigated for future development and improvements of
an industrial platform designed for in-line monitoring. This platform will be enhanced from the image
processing techniques hereby described, to provide defect recognition and classification. The proposed
work is therefore exploring the capability of those techniques, i.e., K-Means, DFT and LSTM-FC,
to correctly detect defects and infer which is the most effective tool, following Industry 4.0 principles.

2. Materials and Methods: Measurement Setup

The industrial system (Coditech) used for data acquisition of the tire-wheel assembly is mainly
made of a laser profilometer and a detector, as shown in Figure 1. The profilometer acquires 1280 points
per profile, with axes X, Z resolutions varying within ranges 0.019–0.060 mm and 0.150–0.300 mm,
respectively. The laser class is 3R. The assembled wheel is rotated by 360◦ over the support shown
in Figure 2a, while the laser is fixed on the top of the apparatus to scan the lateral profile of the
wheel, Figure 2b. The captured profile is therefore processed by the software, which produces the
3D reconstruction of the tire profile. The 3D reconstruction is converted to a 2D image as shown in
Figure 3, in order to decrease the computing time which is required for the whole analysis. This process
is made by interpolating the pictures obtained by slicing the z-axis of the profile. The 2D pictures
are saved as TIFF compressed images of the tire sidewall, with a file size of about 1200 kb. The total
processing time lasts about 12 s. This time is fundamental to comply with the requirements given from
the company, which has to ensure a fast quality control, which can be comparable to the cycle time
required for the assembling of a complete set, i.e., four tires. The 2D pictures represent the input data
which are analysed by the image processing techniques proposed in this paper.

The ImageJ Surface Plot 3D library (in this case, the third dimension is given from the colour
intensity axis), is used as an image manipulation tool which enables the possibility to highlight the
presence of possible undesired defects and morphological information of the tire. This tool has been
described in literature about the morphology investigations of micro and nano-structured surfaces [21],
where the 3D reconstruction has provided many details about the nano-scale morphology. In this
application, the image processing approach is followed to highlight the presence possible undesired
tire stresses generated by an incorrect assembly process. The tire-wheel rim assembly produces large
deformations and displacements on the tire, due to the pressure which is required to carry out the
assembly. Stresses and deformations are mostly reflected on the elastic properties of the tire, due to
the high stiffness of the wheel [22]. Unusual deformations and stresses, caused by possible incorrect
procedures, have to be controlled in order to guarantee the correct functionality of the product. For this
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purpose, the reconstruction is processed with isolines approach in order to trace the defect pattern. The
library “3D Surface Plot” by ImageJ is adopted for the purpose. A I7-9700 computer processor (M.2 512
GB PCIe NVMe, Intel H310) with a CUDA Cores 256 board (GPU Memory 2 GB GDDR5) is adopted
for data processing. This processor is employed to run the ImageJ software, DFT, K-Means and ANN.
The defects can therefore be pre-classified and stored into a database system as performed in [23,24].

Figure 1. Scheme showing the in-line inspection system. Optical tools are used for quality control of
the assembled tires.

Figure 2. Pictures showing (a) the apparatus used for quality control of the tire-wheel assembly and
(b) the measuring phase seen from the top of the control apparatus.

As a summary, the following flowchart in Figure 4 shows the detailed steps which are followed in
this research article. The K-Means and DFT techniques followed a similar path, as highlighted from
the flowchart.

Before showing the obtained results, the next Section 3 will theoretically discuss the
above-mentioned techniques.
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Figure 3. Pictures showing the (a) 3D reconstruction operated by the in-line quality control apparatus
and (b) conversion to a 2D picture.

Figure 4. Flowchart describing the methodological approach followed from the present research.

3. Defect Detection Techniques

When considering the assembling process of tires, their inspection represents a fundamental task
made to ensure the product quality and investigate the presence of defects [25]. The quality control
has to comply with several requirements, e.g., flexibility, promptness and accuracy, due to the rapid
transition towards Industry 4.0.
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As mentioned in the previous section, the detection and morphology classification of surface
defects can be performed by image processing techniques, i.e., Discrete Fourier Transform (DFT),
K-Means Clustering and Artificial Neural Networks. These techniques are hereby investigated in
terms of computational time and accuracy. The aim is to evaluate the most effective method for
defect detection.

3.1. K-Means Clustering

The K-Means technique has been largely described in literature [26–28], e.g., when monitoring
photovoltaic panels [29], thus suggesting its application in other fields which involve defect evaluations.
The algorithm used by K-Means is based on the segmentation of the image into different non-overlapping
areas, which are characterised by the same properties (e.g., shape, intensity, scale).

Pixels which have the same intensity (grey scale level) are classified into clusters. The K-Value,
which is related to the number of clusters, is chosen to be representative of the spatial features of the
image to be analysed: a high number of clusters may easily detect an anomalous area. However, a too
large number of clusters may negatively influence the defect evaluation process [30]. For this purpose,
it is important to set the correct trade-off value of clusters in order to optimize the detection capabilities
and computational cost. The ImageJ library is suitable to carry out the K-Means image processing [31].

3.2. Discrete Fourier Transform

DFT is one of the most used techniques to characterize the spatial morphology of an image and
infer the presence of image patterns in the spatial domain [32–35]. The DFT spectra is found to be used
in other literature cases, in the context of diagnostic tools for quality control. For example, Fanti and
Basso [36] investigated the occurrence of mechanical defects in the case of gear pumps. By analysing
the discharge pressure, the signal is processed via Fourier Transform to detect the presence and position
of defects. Spectra obtained from defected gears present additional peaks which differed from the
non-defected case.

For our purposes, the detection algorithm is based on the analysis of the amplitude spectrum of
the Fourier transform, which provides the amplitude of each component of the image in the spatial
frequency domain. A defect can be easily detected and spatially characterized as a variation of the
amplitude of the Fourier spectrum with respect to the one obtained by analysing a homogeneous
image region.

The analysis is performed by using the DFT ImageJ library. The frequency spectrum is shown on
a logarithmic scale by considering the results of the Fourier domain origin at volume-centre. The 3D
image processing of the DFT frequency spectrum is obtained by using the 3D Surface Plot library.
Results are stored into a database [23,24].

3.3. Neural Networks

Neural network techniques have shown state-of-the-art performance in many computer vision
tasks [37]. Neural networks usually adopted in computer vision (based on Convolutional Neural
Networks, CNN) requires a large number of labelled examples to train and test the neural network.
In our case study, the insufficient number of images that were actually collected do not allow to build a
neural network based on feature extraction on images. Moreover, since tire sidewalls are characterized
by different types of features (e.g., brand, size, shape, texture), the labelling of defects may require
manual data annotation by experts who have specialized skills. An alternative approach is based on the
use of Long Short-Term Memory (LSTM) method, a variant of recurrent neural networks. The method
is based on the patterns learning in timeseries data, which, in our case study, is represented by a single
tire sidewall. Importantly, this method assumes that each image can be considered as a unique train
dataset for a specific neural network, since it is based on splitting a single image into a collection of sub
images that will be used as training dataset. On the other hand, since a neural network is built on each
single image, this method might be limited in terms of practical use. The time dimension, according to
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our approach, is therefore given by the horizontal dimension of the image. Wang et al. [38] showed
a defect recognition application based on the FCN approach, which was applied to the tire treads.
They concluded that the method may be suitable to be adopted for different types of defect.

We split the image of the tire sidewall (with resolution 13,095 × 500 pixels) along the horizontal
dimension (length of tire sidewall) into a number of sub images with size 10 × 500, each of which is
shifted from the previous one by one pixel along the horizontal dimension of the image. Moreover, for
each of the latter images we consider the adjacent slice of image with dimension 1 × 500 as the image
that the neural network will predict. All the dataset is therefore made by 13,084 couple of images
representing the image time sequence over which the neural network will be trained (see the left panel
of Figure 5). The images are not resized in order to avoid losing resolution. We build up a linear stack
of neural network layers made by long-short time memory and fully-connected neural networks in
order to train a model able to recognize all the main morphological features of the single tire and
the spatial (time) distribution of the feature along the tire. In detail, we stack two LSTM layers on
top of each other and three fully-connected neural networks, with the output sequence of one layer
forming the input sequence for the next. Figure 5 shows the structure of the stack of LSTM and FC
layers proposed in this paper. While the LSTM layers are devoted to infer the recurrent features of
the tire sidewall taking into account the long-range dependencies, the FC layers capture the spatial
dependencies between adjacent pixel layers. The neural network is trained for 25 epochs using a
learning rate of 0.0002. The mean squared error function is adopted as loss function to measure the
performance of the network. As previously described, a defect can be classified as a non-recurrent
feature in a tire sidewall that does not belong to any features identified by the neural network.

Figure 5. Overview of the architecture of the stack of neural networks.

In order to detect the defects, we use the model over the same collection of images and compute,
for each sub image, the mean squared error between the real and predicted model. This approach
allows us to infer the regions where the model fail to predict the next slices of pixel taking into account
the recurrent morphological features thanks to the use of the LSTM architecture. In other word, we use
the memory capabilities of the LSTM to infer which slice of pixel shows a defect since its spatial features
are not consistent with the features of the whole tire.

Using this approach, a defect can be automatically identified as a region of the tire where the
mean squared error is maximized. To this aim, the algorithm includes a routine aimed at finding the
maxima of the mean squared error function computed on each predicted image. For simplicity, a defect
is identified as the region where the maximum of the mean squared error function falls outside one
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standard deviation from the mean of the function. It is worth remarking that the proposed neural
network enables unsupervised learning, avoiding the need for labelled training data.

4. Results

The raw images are collected by means of the inline setup shown in Figure 1, capturing the frontal
view of the tire as shown in Figure 6a. As described in Section 2, the image is linearized and cropped
around the edges in order to show the tire sidewall (Figure 6b).

Figure 6. (a) Tire positioned on the rotary encoder and areas detected by the camera; (b) part of the raw
linearized image of the tire sidewall containing assembly defect.

The comparative analysis is carried out on a large number of images (around 100 images), showing
the same performance of defect detection of the three different algorithms. For the sake of conciseness,
we limit the presentation of results over those related on a representative dataset. This dataset is made
of images of sidewalls of four tires with different brand and surface texture, as shown in Figure 7.

Figure 7. Dataset of images of tire sidewalls.
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4.1. K-Means

Figure 8 shows the results of the application of the K-Means algorithm with different number
of clusters on a homogeneous region of one of the images of the dataset. By setting a large number
of clusters (K-Value) it can be noticed that the number of adjacent pixels characterized by the same
intensity decreases. The parallel line pattern describes a homogeneous tire region. We observe that
for a K-Value larger than 20, the text code of the tire is even visible. By analysing the capabilities
of the algorithm in terms of accuracy and practical use, we find that K = 30 is the best trade-off

between resolution and computational cost (see Appendix A). The choice of the K-Value can be further
optimized by enhancing the hardware technology used for processing and improving the available
number of rotary encoders. Figure 9 illustrates an example of a defect classification obtained by using
the K-Means processing approach on different regions of the image, using a value of K = 35. The defect
classification of Figure 9 is performed by analysing the difference between a homogeneous region with
respect to an inhomogeneous one. The observed defects are mainly represented as distributed stresses
(Figure 9a), local defects (see Figure 9b) that can be detected as local deviations of contour lines from
the vertical, and partially distributed local defects (see Figure 9c) where the distributed stresses are
observed in a partial region.

Figure 8. K-Means image processing of a homogenous region with different K cluster number.

Figure 9. K-Means image processing: (a) distributed stress defect; (b) local defects; (c) partially distributed
local defect.

Figure 10 shows all the four images in the dataset after being processed by the K-Means algorithm.
For most of the images, the K-Means algorithm enhances regions of defects, showing spatial changes
in the distribution of image intensity.
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Figure 10. K-Means image processing of the images in the dataset with K = 30.

In order to investigate the practical use of the algorithm, the method is applied on noisy images
of a tire sidewall. It might occur that external effects acting on the image acquisition system or the
low resolution of images might affect the performance of defect detection algorithms. In order to
mimic such effects, Gaussian blurring and white noise with a dispersion factor of 8 pixels are used to
generate noisy images starting from one representative image of the dataset. In Figure 11 is shown the
pre-processed images where the two type of noise are applied (left) and the related K-Means images
(right). It can be noticed that, while a decrease of image resolution of a factor 8 might worsen the
detection performance of defects, external effects producing small scale noise on the captured image
might compromise the detection capability of the K-mean algorithm.
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Figure 11. K-Means image processing of noisy images with (top) Gaussian blurring and (bottom) white
noise with a dispersion factor of 8 pixels.

4.2. Discrete Fourier Transform

The defect detection is then carried out by the DFT analysis on the same image analysed in
Section 4.1. We start the analysis by selecting the homogeneous and the inhomogeneous intensity
regions of the image in order to compare the results of the application of the DFT algorithm in two
different cases.

Firstly, a region of homogeneous intensity of the raw image is processed (see the yellow box in
Figure 12a). The amplitude spectrum in the frequency domain is shown in Figure 12b. The image
processed with K-Means, which is shown in Figure 12c, confirms that the analysed part does not
show any defects, since the pixel clusters contours are perfectly parallel in the vertical direction
(see Section 4.1). Figure 12d shows the DFT spectrum profile along a horizontal central slice (see yellow
line in Figure 12b).
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Figure 12. (a) Tire sidewall linearized image selecting a homogeneous region. (b) Discrete Fourier
Transform (DFT) transform. (c) K-Means image processing of the selected homogeneous region (K = 35).
(d) DFT power frequency spectrum across the yellow line shown in Figure 12b.

Secondly, by carrying out the same analysis on an inhomogeneous region of the raw image
(shown in Figure 13a), an apparently similar DFT frequency spectrum is observed (see Figure 13b).
However, as confirmed by the K-Means image shown in Figure 13c, the region is characterized by
a defect.

Figure 13. (a) Tire sidewall linearized image selecting an inhomogeneous region. (b) Frequency
spectrum of the DFT transform. (c) K-Means image processing of the selected homogeneous region
(K = 35). (d) DFT frequency spectrum.

By comparing both the DFT responses in the homogeneous and inhomogeneous cases (Figure 12d
or Figure 13d), Figure 14 highlights the DFT curve which is characterized by a broader profile and by a
higher pixel level intensity.

While the peak intensity is related to the total intensity of the image, the difference in broadening
of the amplitude spectra can be ascribed to the different range of spatial frequencies over which
the images is decomposed. The images of the tire showing the defect is characterized by a broader
spectrum in frequency due to the presence of large-scale changes in morphology of the spatial intensity
patterns with respect to the homogenous vertical patterns. Broader amplitude spectra indicate that
the spatial patterns of the image at higher spatial frequency are characterized by a higher intensity,
thus implying that deviation from the homogeneous patterns are significant. The broadening of the
spectrum can be measured by computing the Full Width Half Maximum (FWHM), i.e., the width in
frequency of the amplitude spectrum when the amplitude reaches a value equal to half of the maximum
of the spectrum. Linking the entity of the defect with the FWHM of the amplitude spectrum is beyond
the scope of this paper. However, we note that the defect shown in Figure 13c is spatially extended
over the whole spatial domain of the image. Therefore, the FWHM of the amplitude spectrum shown
in Figure 14 is expected to be the broadest compared to the one related to spectra of images of tire
sidewalls with a smaller spatial extent of defects. Due to the discrete nature of Fourier Transform of
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images, the amplitude spectrum can be fitted by a continuous function, such as a Gaussian function or
a sinc function, in order to better characterize the broadening of the spectrum. Moreover, Figure 14
shows the profile of the DFT amplitude spectra across one slice. Generally, the amplitude spectra can
be fitted in the 2d spatial frequency space by means of a bidimensional Gaussian function or the Bessel
function of the first kind. It is worth remembering that the bidimensional Gaussian function and the
Bessel function of the first type are the Fourier transform of a Gaussian like intensity image and a
uniform image, respectively.

Figure 14. Comparison between the DFT amplitude spectra shown in Figure 12d or Figure 13d.

The broadening of the spectrum can be observed in all the sections of images in the dataset
showing a defect. Figure 15 shows the comparison of the DFT amplitude profile across a slice for the
different images of the dataset shown in Figure 7 in the image regions showing a defect (Figure 10).

Figure 15. Comparison of DFT amplitude profile of the images shown in Figure 6.
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In order to further characterize the defected regions and investigate the combination of two
different algorithms, the DFT approach is applied to the K-Means image shown in Figure 12c or
Figure 13c. This DFT analysis contains further information about the defect characterization which
can be highlighted by showing the 3D imaging of the DT in the spatial frequency. By observing
Figures 16 and 17, it can be noticed that the DFT spectrum of the defected region (Figure 17) is
characterized by several fluctuations in amplitude. As mentioned above, the significance of the defect
can be measured by fitting the DFT spectrum with a 2D function, such as a Gaussian function, and
the broadening of the fitting function along the frequency axes can be related to the significance of
the defect.

Figure 16. (a–c) DFT of the K-Means image: different perspectives of the 3D DFT processing of the
homogeneous region.

Figure 17. (a–c) DFT of the K-Means image: different perspectives of the 3D DFT processing of the
inhomogeneous region highlighting amplitude fluctuations.

Figure 18 shows a comparison between the DFT spectra of the K-Means images of homogeneous
and inhomogeneous regions (shown in Figures 16 and 17), highlighting more accentuated fluctuations
if compared with results of Figure 14, related to the DFT directly applied on the raw image. The DFT
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amplitude spectrum of the clustered image related to the image of the defected tire is characterized by
a larger broadening, as observed for the DFT of the raw image.

Figure 18. Comparison between the K-Means DFT amplitude spectrum of the K-Means image (K = 35)
for defect and no defect region, respectively.

4.3. Neural Networks

Finally, the comparative analysis is focused on the application of the neural network techniques for
defect detection (Section 3.3). In Figure 19 is shown the regions of the tire sidewall in different images
in the dataset where the mean squared error between the predicted and real model is maximized.
The red circles indicate the region where the defect is localized on the tire sidewall with a small number
of false positives.

Figure 19. Defect detections in different images. Red areas indicate the position of defects. (Above)
Common defect; (below left) extended defect; (below right) other defect type with different orientation.



Information 2020, 11, 257 15 of 20

The loss function of the neural networks trained on each of the four images in the dataset are
shown in Figure 20 along the epochs over which are trained. It can be noticed that the loss function
decreases sharply to values close to the null values, implying that the neural networks are well trained.

Figure 20. Semi-log plot of the loss function for the neural networks trained over the four different
images in the dataset.

Since the training of the neural network needs to be performed on each tire (due to the different
texture of the tire surfaces), this method requires a larger computational effort in terms of computing
time compared to other methods. On the other hand, the K-Means and DFT algorithm do not require
the knowledge of the morphological feature of the whole tire, while the neural network needs to be
trained over the whole tire in order to learn the main morphological features of the tire surface and
identify the defects. Since the computational time could be consistent, the integration of this method in
inline image vision process can be considered difficult to implement. Moreover, due to the relatively
high computational time of this algorithm, a method based of a combination of neural networks and
DFT or K-Means would be not convenient to implement in practice.

5. Summary and Discussion

The presented results show the DFT amplitude spectra could be used to infer the presence of
a defect by analysing the broadening of the spectrum over the frequency domain. The broadening
of the spectrum could be measured by computing the FWHM of the amplitude profile. Generally,
the amplitude could be fitted in the bidimensional frequency domain by means of continuous functions
such as Gaussian or Bessel functions, with the aim to better measure the FWHM and infer a reliable
estimate of the spectrum broadening. Comparing the amplitude spectra of different region of the tire
sidewall, the measure of the spectrum broadening makes the operator possible to easily find which
tire regions present defects. The measure of the spectrum broadening is calibrated by identifying the
expected spectrum obtained from a similar non-defective tire sidewall. This is necessary since the tire
sidewalls are usually characterized by different standard spatial patterns.

Moreover, the results show that the K-Means clustering applied to the image can improve the
feasibility of defect detection. The DFT of the clustered images was characterized by fluctuations with
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a morphology that is directly related to the significance of the defect. Moreover, our results illustrate
that other methods based on neural networks could be considered as an alternative tool to detect
defects on tire’s surface. However, due to the relatively large computational weight required to train
the network, it was concluded that DFT and the K-Means algorithms could be used to effectively detect
defects according to Industry 4.0 paradigm.

Finally, image processing techniques based on neural networks are analysed, showing a high
accuracy in detecting defects but long computational time.

To summarize our findings, in Table 1 is outlined a comparison of some metrics to evaluate
the performance of the three algorithms described in this paper. As previously mentioned, the
K-Means and the DFT algorithm perform better than the neural network-based algorithms both in
terms of computational time and because they do not require the advance knowledge of the whole
image of the tire under investigation. In detail, while the accuracy of the algorithms is comparable,
the computational time of the DFT or K-Means algorithm is around one-two order of magnitude lower
than the computational time of the algorithm based on neural networks.

Table 1. Comparison of performance indicators of the three different algorithms presented in the paper.

Algorithm Accuracy Computational Time Advance Knowledge of the Whole Image

DFT High < 1 s not required

K-Means High Around 10 s not required

LSTM-FC High > 1 min required

Moreover, due to the short computational time and the high accuracy, the DFT and K-Means
method can be used to quickly analyse a larger number of images, making them scalable and of
practical relevance for inline monitoring.

6. Conclusions

The paper is focused on the application of image processing techniques used to detect possible
defects obtained after the tire-wheel rim assembling process. In detail, the following conclusions are
considered from the research:

• The comparison of the DFT, K-Means and LSTM-FC neural network algorithms reveal the
possibility to in-line monitor and identify the produced defects. The mentioned techniques were
successfully applied in the quality control case of the assembled tires, making possible to detect
and characterize the defects generated from possible material stresses not correct tire-wheel rim
coupling caused during assembling;

• The methodology includes the individual and simultaneous application of 2D image processing
techniques, i.e., the DFT approach and the K-Means image processing, which are fundamental to
infer the presence of possible defects on the tire surface. All the image processing aspects, i.e.,
computational cost, sensitivity, error and integration, are analysed in the work;

• The usage of LSTM-FC proves to be effective on identifying the defects of assembled tires. However,
the computational cost is seen to be largely affecting the results. Further network optimisation
in terms of computational time would be required to train the network, in order to make this
technique more promising for an industrial application;

• The proposed approach is suitable for image processing techniques in the field of Industry 4.0
technologies and can be applicable also to other manufacturing processes for quality check.

In conclusion, the paper suggests that the combination of DFT and K-Means provides the best
method for defect detections applied on tire sidewalls in terms of accuracy and computational cost.
The integration of these tools with in-line quality control based on image processing techniques is
suggested to enhance the efficiency of industrial processes. Future works may be focused on the
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application of these methods combined with auto-actuated systems, capable to correct process values.
Such application is oriented to the context of auto-adaptive Industry 5.0 facilities.
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Appendix A

Figure A1 shows the trend of computational time and the iteration number versus the cluster
number. By analysing the same image, the computational cost is observed to increase up to K = 20.
Then, it decreases and increases again for K larger than 30. The value K = 30 was assumed to be enough
for image analysis, but K = 35 provided a better processing resolution.

Figure A1. Time and iteration number versus the cluster number k (image processing of the same image).

In Figure A2 is illustrated an example of cluster error trend versus the iteration number. It can be
noticed that, in all the cases, the error approaches the null value after few iteration steps.
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Figure A2. Cluster error versus the iteration number (for K=5) for the different images in the dataset.
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