
 information

Article

A New Approach to Nonlinear Invariants for Hybrid
Systems Based on the Citing Instances Method

Honghui He 1,2,3,4 and Jinzhao Wu 1,2,3,∗

1 Chengdu Institute of Computer Application, Chinese Academy of Sciences, Chengdu 610041, China;
HongHuiHe@vip.henu.edu.cn

2 University of Chinese Academy of Sciences, Beijing 100049, China
3 Guangxi Key Laboratory of Hybrid Computation and IC Design Analysis, Guangxi University for

Nationalities, Nanning 53006, China
4 School of Computer Software, Henan University, Kaifeng 475001, China
* Correspondence: wujinzhao@gxun.edu.cn

Received: 20 March 2020; Accepted: 9 April 2020; Published: 2 May 2020

Abstract: In generating invariants for hybrid systems, a main source of intractability is that transition
relations are first-order assertions over current-state variables and next-state variables, which doubles
the number of system variables and introduces many more free variables. The more variables, the less
tractability and, hence, solving the algebraic constraints on complete inductive conditions by a
comprehensive Gröbner basis is very expensive. To address this issue, this paper presents a new,
complete method, called the Citing Instances Method (CIM), which can eliminate the free variables
and directly solve for the complete inductive conditions. An instance means the verification of a
proposition after instantiating free variables to numbers. A lattice array is a key notion in this paper,
which is essentially a finite set of instances. Verifying that a proposition holds over a Lattice Array
suffices to prove that the proposition holds in general; this interesting feature inspires us to present
CIM. On one hand, instead of computing a comprehensive Gröbner basis, CIM uses a Lattice Array
to generate the constraints in parallel. On the other hand, we can make a clever use of the parallelism
of CIM to start with some constraint equations which can be solved easily, in order to determine some
parameters in an early state. These solved parameters benefit the solution of the rest of the constraint
equations; this process is similar to the domino effect. Therefore, the constraint-solving tractability
of the proposed method is strong. We show that some existing approaches are only special cases of
our method. Moreover, it turns out CIM is more efficient than existing approaches under parallel
circumstances. Some examples are presented to illustrate the practicality of our method.

Keywords: citing instances method; comprehensive Gröbner basis; hybrid system; lattice array; invariant

1. Introduction

In the real world, there exist many systems exhibiting mixed discrete–continuous behavior,
which cannot be described in a proper way by using either a discrete or continuous model.
The notion of a hybrid automaton has been introduced for modeling such systems [1]. For example,
embedded systems are often modeled as hybrid systems due to their involvement in both digital
control software and analog plants, the physical process of which is often specified in the form of
differential equations.

Safety verification is among the most challenging problems in verifying hybrid systems,
which consists of asking whether a set of bad (unsafe) states can be reached from a set of initial
states. The safety verification problem for systems described by non-linear differential equations is
particularly complicated, as computing the exact reachable set is usually intractable [2–4], with the

Information 2020, 11, 246; doi:10.3390/info11050246 www.mdpi.com/journal/information

http://www.mdpi.com/journal/information
http://www.mdpi.com
http://dx.doi.org/10.3390/info11050246
http://www.mdpi.com/journal/information

Information 2020, 11, 246 2 of 26

exception of some severely restricted sub-classes, such as timed automata [5] and initialized rectangular
automata [6].

However, for purposes of verification of safety properties, it often suffices to compute an
over-approximation of the reachable set of states—if the over-approximation does not intersect the set
of bad states, then the original system will never reach a bad state. So far, the existing approaches are
mainly based on approximate reachable set computations [7–9] and abstraction [10–14].

An over-approximation of the reachable states is also called an invariant of the system. The most
precise invariant of a system is its exact reach set. The standard technique for proving a safety property
ϕ is to generate an inductive invariant ψ that implies ϕ. Moreover, invariants have the benefit of
avoiding computing the exact reachable set of hybrid systems and are very useful for hybrid systems
which are described by non-linear differential equations which cannot be solved analytically.

Some typical techniques for invariants are based on templates, which are used to search for
inductive invariant assertions with standard computational techniques in algebraic geometry involving
Gröbner basis [3,15]. The intuitive idea behind these techniques is that of first fixing a template
assertion (i.e., a parametric polynomial with unknown coefficients and of bounded degree in the system
variables) and encoding inductive conditions into constraints on unknown coefficients, such that any
solution to these constraints is an inductive assertion. This technique guarantees that the invariant
must be found if the system has it in that form. However, the key challenges for these techniques is
how to define an inductive condition with completeness and how to efficiently compute an inductive
invariant that satisfies the inductive condition. Usually, these two aspects contradict each other; that is,
an inductive condition with completeness often encounters the computability or complexity problem.
Sankaranarayanan et al.’s approach [3], for example, makes significant strides in generating non-linear
polynomial equations as invariants of a hybrid system. Their approach consists of the following four
main steps:

1. Guessing a template polynomial of fixed degree as a candidate inductive invariant.
2. Defining complete inductive conditions.
3. Utilizing a comprehensive Gröbner basis to encode complete inductive conditions into constraints

on parameters and, therefore, reducing the invariant generation problem to a non-linear constraint
solving problem.

4. Solving constraints on parameters. Any solution with respect to the constraints is an
inductive invariant.

In order to encode the complete inductive conditions, a comprehensive Gröbner basis is involved,
which is an exact but impractical encoding as the construction of the comprehensive Gröbner basis is
very expensive. Hence, Sankaranarayanan et al. resorted to more tractable (but incomplete) inductive
conditions (as shown in Tables 7 and 8) to avoid the explicit construction of a comprehensive Gröbner
basis. However, in doing so, their approach sacrifices completeness [3]. The exact steps of [3] go
as follows.

1. Guessing a template polynomial of fixed degree as candidate inductive invariant.
2. Defining alternative inductive conditions—which are incomplete but more tractable—to take the

place of complete inductive conditions.
3. Utilizing a Gröbner basis to encode the alternative inductive conditions into constraints on

parameters.
4. Solving the constraints. Any solution with respect to the constraints is an inductive invariant.

To address this issue, instead of computing a comprehensive Gröbner basis, this paper presents a
new technique, called Citing Instances Method (CIM). By substituting real numbers for the variables
in the complete inductive conditions, CIM can easily derive a set of constraints on the parameters,
which can be solved more efficiently by the elimination of free variables. This idea is inspired by the
Parallel Numerical Method, which was first presented in [16,17]. The paper showed that a theorem

Information 2020, 11, 246 3 of 26

can be proved by carrying out a series of numerical verifications of one certain instance. Their method
was firstly used to prove geometric theorems; furthermore, many classic theorems, such as Simson’s
Theorem and Ptolemy’s Theorem, were proved using this technique. Differing from the parallel
numerical method, CIM is used to generate constraints on parameters. For example, it is well-known
that there are many methods to generate a constraint on {a, b} which guarantees that the identity
below holds,

x3 − 4x2 + 2x + 1− (x− 1)(x2 + ax + b) ≡ 0. (1)

1. Zero Polynomial Theorem [3]: x3 − 4x2 + 2x + 1− (x− 1)(x2 + ax + b) ⇔ x3 − 4x2 + 2x + 1−
(x3 + (a− 1)x2 + (b− a)x − b) ⇔ −(a + 3)x2 + (2− b + a)x + 1 + b. By the Zero Polynomial
Theorem, three constraint equations are obtained synchronously, {a+ 3 = 0, 2− b+ a = 0, 1+ b =

0}, solving {b = −1, a = −3}.
2. CIM (this paper): Take four arbitrary distinct values {−1, 0, 1, 2} of x and substitute them for

x in the left side of (1), respectively. Then, equate the left side of (1) to zero (e.g., when x = 0,
then 1 + b = 0 is obtained). Hence, four constraint equations can be derived independently:
{−4− 2a + 2b = 0, 1+ b = 0, 0 = 0,−7− 2a− b = 0}. Solving, we get {b = −1, a = −3}. Here is
an intuitive explanation of CIM: when {b = −1, a = −3} and the degree of the polynomial in
the left side of (1) is 3, the equation must have at most three roots. However, the left side of (1)
vanishes over {−1, 0, 1, 2}, which means that the equation (1) has at least four roots. Therefore,
the equation (1) must be identically equal to zero .

In this paper, by an instance, we mean a verification of the proposition by substituting numbers
for the variables in the proposition. CIM exhibits two interesting features: (1) the constraint equations
can be obtained in parallel. As a result, we can make hla clever use of this feature to speed up
our computation. In fact, some special assignments to variables tend to generate constraints easily
and some parameters may be determined in the early stage. For example, x = 0 ⇒ b = −1 in (1):
this solution can be used to simplify the rest of the constraint equations on the parameters. Thus,
solving constraint equations becomes easier. (2) By substituting real values for the variables, all or
some of the variables are, in fact, eliminated by an instance. The main source of the intractability
of hybrid systems is that transition relations are first-order assertions on current-state variables and
next-state variables, which doubles the number of system variables and may introduce many more free
variables and encoding inductive conditions by a comprehensive Gröbner basis will be very expensive.
In contrast, CIM can be used to eliminate these free variables. Generally, to automatically discover
invariants, the more variables, the less tractability.

Inspired by [16,17], this paper presents a new and complete algorithm for invariant generation in
hybrid systems. A lattice array, which is a key notion introduced in this paper and essentially a finite
set of instances, will be directly applied to the complete inductive conditions to generate the constraint
on parameters, and any solution to the constraint produces an inductive assertion. The main idea of
our approach is sketched as follows:

1. Guessing a template of a fixed degree as an invariant template.
2. Defining the complete inductive conditions.
3. Applying a lattice array to the complete inductive conditions to generate the constraint on the

parameters.
4. Solving the constraint. Any solution to the constraint guarantees the template an

inductive invariant.

The main contributions of this paper are as follows: Firstly, we propose a complete method for
constructing invariants of hybrid systems which can solve the complete inductive conditions rather
than alternative incomplete inductive conditions. Secondly, CIM takes the place of a comprehensive
Gröbner basis in the invariant generation process, and the tractability of constraint-solving is stronger.
On one hand, CIM utilizes instances to eliminate the free variables (fewer variables leads to higher

Information 2020, 11, 246 4 of 26

tractability). On the other hand, the generation of constraint equations by CIM is parallelized by
their independence from each other. Therefore, we can make a clever use of the parallelizability
of CIM to start with constraint equations generated by special instances and spread the solutions
to some parameters determined in the early stage to other constraint equations, which hence
simplifies the constraint equations obtained; this whole process works a bit like the Domino Effect.
Therefore, the tractability of the constraint-solving is stronger than comprehensive Gröbner basis
computation. Thirdly, CIM involves less symbolic computation and that is why it requires fewer
computational resources.

Related Work

Recently, many researchers have devoted effort towards finding the non-linear invariants of hybrid
systems. Based on the theory of ideals and Gröbner bases, Sankaranarayanan et al. [3] presented
an approach for generating polynomial equation invariants for hybrid systems with more general
(non-linear) polynomial dynamics. To control the complexity of the constraint solving, however,
this method has to make a trade-off between the complexity of the invariant generation process and
the strength of the resulting invariants and several stronger conditions replace the complete conditions.
Differing from Sankaranarayanan et al.’s approach, the paper [18] presented a complete method that
was not based on guessing a template. However, it is only complete for linear systems. Without
resorting to Gröbner bases, the paper [19] implemented the promising algorithm Fastind. Although its
use is limited to a discrete system, Fastind executes significantly faster than implementations using
Gröbner bases. Fastind is based on remainder computations over parameterized polynomials, and is
still an incomplete method. Not coming singly but in pairs, Kong et al. [15] proposed an approach
to automatically generate invariant clusters for semi-algebraic hybrid systems by computing the
remainder of the Lie derivative of a template polynomial with respect to its Gröbner basis. The benefit
of invariant clusters is that they can precisely overapproximate trajectories of the system. Another
approach considered barrier certificates based on different inductive conditions [4,20–22] which can be
solved efficiently by sum-of-squares (SOS) programming. The zero level set of barrier certificates forms
the boundary of the reach set of a hybrid system and, hence, is an invariant. However, this approach
is limited by the conservative inductive condition. On the whole, the verification problem of hybrid
systems is undecidable: it is doomed to be impossible to find a universal approach for all hybrid
systems. This implies that various inductive invariants and computational methods can be proposed
for different classes of hybrid systems with some simplification or restriction. Some other approaches,
which focus on different features of systems, have also been proposed for the construction of inductive
invariants [23–27].

The paper is organized as follows. Section 2 is devoted to details about the modeling framework
and some elementary lemmas on which CIM is based. We introduce the theory of the proposed CIM
and describe the algorithms in Section 3. Constraint generation by CIM and techniques for solving
these constraint equations are discussed in Section 4. In Section 5, we show that the approach of [3] is
a special case of CIM. In Section 6, the technique is illustrated with a few examples. Finally, Section 8
concludes our work and discusses the future work in this direction.

2. Preliminaries

In this section, we introduce the lemmas on which CIM is based, as well as presenting our
computational model of algebraic hybrid systems. First, we clarify some notation used throughout the
paper.

We denote by K[x1, · · · , xn] the polynomial ring in n indeterminates {x1, · · · , xn} over the field
K. For conciseness, we also use boldface lowercase letters to denote vectors throughout the paper (e.g.,
~x = x = (x1, · · · , xn)). If n = 1,K[x] is called a univariate polynomial ring; it is called a multivariate
polynomial ring when n > 1. Let the variables be ordered as x1 ≺ x2 ≺ · · · ≺ xn. Moreover, we
assume K = R throughout the paper unless otherwise specified.

Information 2020, 11, 246 5 of 26

For a multivariate polynomial ring, K[x] = K[x1, · · · , xk−1, xk, xk+1, · · · , xn] =

K[x1, · · · , xk−1, xk+1, · · · , xn][xk]. This means that a multivariate polynomial p ∈ K[x] can be written

as a univariate polynomial; that is, p = ∑ ai1i2...in xi1
1 ...xin

n = cmxm
k + cm−1xm−1

k + · · ·+ c0 =
m
∑

i=0
cixi

k,

where ci ∈ K[x1, · · · , xk−1, xk+1, · · · , xn], m = deg(p, xk). For example, p(x1, x2, x3, x4) = x5
2 +

x4
3x2

4 + (2x2 + x1)x3
4 can be considered as a univariate polynomial in x2, namely p(x1, x2, x3, x4) =

x5
2 + 2x3

4x2 + x1x3
4 + x4

3x2
4.

An atomic algebraic assertion φ over K[x] has the form of p(x1, x2, · · · , xn) = 0. An algebraic
assertion is a conjunction of atomic algebraic assertions (i.e.,

∧
i pi(x1, x2, · · · , xn) = 0, where pi ∈ K[x]).

We denote by x̂ an assignment of x.

2.1. Basic Lemmas

Lemma 1 ([16]). Let f (x) and g(x) be univariate polynomials of degree less than n. If there are n + 1 distinct
numbers b0, b1, · · · , bn ∈ K such that for every bk one has f (bk) = g(bk) with k = 0, 1, · · · , n. Then,

f (x) ≡ g(x). (2)

It is very easy to understand Lemma 1. If h(x) = f (x)− g(x) = 0, then h(x) has n + 1 roots at
least. Meanwhile, h(x) is a univariate equation, the degree of which is less than n and which has n
roots at most. As h(x) is not identical to zero, it contradicts the fact that h(x) has at least n + 1 roots.
In this paper, we call the n + 1 distinct numbers {b0, b1, · · · , bn} n + 1 instances. Lemma 1 shows
that, in order to prove that two univariate polynomials are identical, it suffices to test n + 1 instances.
Moreover, the n + 1 instances can be chosen arbitrarily. Lemma 1 can be extended to multivariate
polynomials. For this purpose, we need the following definition.

Definition 1 (Lattice Array [16]). Suppose S1, S2, . . . , Sm ⊂ K such that |Sj| = tj with j ∈ {1, · · · , m},
where |Sj| denotes the size of Sj. We call the Cartesian product of the above m subsets,

S = S1 × S2 × . . .× Sm,

the m-dimensional lattice array on K. Clearly, S has t1t2 . . . tm elements.

For the convenience of discussion in what follows, we denote |S| by (t1, t2, . . . , tm).

Lemma 2 (Multi-Instances Numerical Verification [16]). Let f (x1, · · · , xm) ∈ K [x1, · · · , xm],
deg(f , xk) = nk, nk ∈ Z+, k = 1, 2, · · · , m. If there exists an m-dimensional lattice array S of size
(n1 + 1, n2 + 1, · · · , nm + 1) such that f (x1, · · · , xm) vanishes along S, i.e., for every (x̂1, x̂2, · · · , x̂m) ∈
S, f (x̂1, x̂2, · · · , x̂m) = 0, then f is identically equal to zero.

In order to safely conclude whether a proposition is true or false, Multi-Instances Numerical
Verification needs a finite set of instances to test it, which has requirements for both the numbers of
instances and the relations between instances. The lattice array is defined for this purpose. We first
assign variables freely; once variables are assigned, the instances are determined by Definition 1.

Example 1. Prove (3) by Lemma 2:

(x + y) (x− y) ≡ x2 − y2. (3)

1. Determining the size of the lattice array. By observation, the degrees of (3) in x and y are both less than or
equal to 2, such that the lattice array size is (2 + 1, 2 + 1).

Information 2020, 11, 246 6 of 26

2. Determining the members of the lattice array. Essentially, the variables x, y can be assigned freely, so we
can assign variables which are easy to test. For our convenience, let x = 0, 1, 2 and y = 0, 1, 2. Then, the
nine instances in the lattice array are (0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), and (2, 2).

3. Substituting instances for x and y one by one, test whether the left side of (3) is equal to the right side of
(3). If one of them leads to the left side of (3) differing from the right side of (3), it is a counterexample for
(3) not being an identity. Otherwise, we can conclude that (3) is an identity.

Note: Arbitrarily taking nine points, such as (0,0), (1,1), (3,2), (4,0), (7,1), (2,2), (9,10), (2,7), and
(8,9), can these nine points be used to safely prove (3)? Of course, the answer is no. The reason is that
these nine points do not conform to the definition of a lattice array. It is easy to find a counterexample
(see Figure 1): x + 2y + 3z− 7 = 14x + 9y− z− 15 is an equation, rather than an equality; however, it
is easy to find (1+1,1+1,1+1) points (lying on the intersection) which satisfy x + 2y + 3z− 7 (the left
side) = 14x + 9y− z− 15 (the right side).

Figure 1. Points lying on the intersection of two planes cannot consist of a lattice array.

Lemma 3 (Pseudo-Remainder Formula for Multivariate Polynomials [28]). Let F, G ∈ K [x1, . . . , xn] ,
and xk be a fixed variable, such that

F = amxm
k + am−1xm−1

k + . . . + a0,
G = b`x`k + b`−1x`−1

k + . . . + b0,

where ` = deg(G, xk), m = deg(F, xk), and ai, bi ∈ K [x1, . . . , xk−1, xk+1 . . . , xn]. Let G 6= 0 and m ≥ `.
To pseudo-divide F by G, there exists an algorithm to obtain two polynomials, Q and R, such that lc(G, xk)

sF =

QG + R, where lc(G, xk) is the leading coefficient of G with respect to xk, 0 ≤ s ≤ m− `+ 1, deg(R, xk) < `.
Q and R are called the pseudo-quotient and the pseudo-remainder, respectively.

In our algorithm, the size of the lattice array depends on the degree of the pseudo-remainder. The
following lemma is given for the purpose of determining an upper bound on the degree.

Lemma 4 ([16]). Let f and g be the polynomials in the variables (u1, u2, . . . , un, x) over a field K:

f = amxm + am−1xm−1 + . . . + a0,
g = b`x` + b`−1x`−1 + . . . + b0,

where m ≥ 1, ` ≥ 1, ak, bk are polynomials in the variables (u1, u2, . . . , un) over K, and am, b` are not zero
polynomials. Then there exists a mechanical method to determine the polynomials P, Q, and R in the variables
(u1, u2 . . . un) over K such that

P f + Qg = R

and deg(P, x) ≤ `− 1, deg(Q, x) ≤ m− 1, deg(R, x) = 0. The bound on deg(R, uj) is estimated as follows:

Information 2020, 11, 246 7 of 26

Suppose ` ≥ m, and
A0 = deg

(
f , uj

)
A1 = deg

(
g, uj

)
+ (`−m + 1) A0

Ak+1 = 2Ak + Ak−1.

Then deg
(

R, uj
)
≤ Am

In particular, if 1 ≤ m ≤ 2, deg(R, uj) ≤ Am can be simply expressed as follows:

deg(R, uj) ≤ m deg(g, uj) + (m`−m + 1)deg(f , uj).

2.2. Characteristic Set

The mathematical concept of a characteristic set was discovered in the late forties by J.F. Ritt [29].
In the late seventies, the Chinese mathematician Wen-Tsün Wu specialized it with modifications to
commutative algebra and demonstrated its power for mechanical theorem proving [30,31].

Let f ∈ K[x1, · · · , xn], the class of f , denoted by class(f), is the largest i such that xi occurs in f .
If f ∈ K, then class(f) = 0. Let c = class(f) > 0. We call xc , denoted by lv(f), the leading variable of
f . Considering f as a polynomial in xc , we can write f as

anxn
c + an−1xn−1

c + · · ·+ a0

where an, · · · , a0 are in K[x1, · · · , xc−1], and an 6= 0. We call an the initial or leading coe f f icient of f
and n the leading degree of f , denoting them as lc(f) and ld(f), respectively.

Definition 2 (Ascending Set [32]). A sequence of polynomials F = [F1, · · · , Fr] ⊆ K[x1, · · · , xn] is said to
be an ascending set (or chain), if one of the following two conditions holds:

1. r = 1 and F1 s not identically zero;
2. r > 1 and 0 < class(F1) < class(F2), · · · ,< class(Fr) ≤ n, and each Fi is reduced with respect to the

preceding polynomials, F′j s(1 ≤ j < i).

Definition 3 (Characteristic Set [32]). Let P ⊆ K[x] is nonempty set of polynomials, and I = 〈P〉 be the ideal
generated by P, ascending set F = [F1, · · · , Fr] is the Characteristic Set of P, if F ⊆ 〈P〉, and prem(P, F) = {0}.

The Wu–Ritt Process [32] described how to obtain such the ascending set. Besides Gröbner basis
method, characteristic set provides an alternative algorithmic way for solving multivariate polynomial
equations or differential equations.

2.3. Hybrid System

In this paper, we adopt the hybrid automata proposed in [1] as our modeling framework.
Many other models for hybrid systems can be found in [33–36].

A hybrid system can be defined as follows:

Definition 4 (Hybrid System). A hybrid system is a tupleH : 〈V, L, T , `0, Θ〉, where

• L is a finite set of locations (or modes);
• V is a set of real-valued system variables. The hybrid system state space is denoted by Σ = L×R|V|, a

state is denoted by 〈`, s〉 ∈ Σ, and s ∈ R|V| is a continuous state of the variables over the real numbers;

• T ⊆ L × L × 2R
|V| × (R|V| 7→ R|V|) is a set of discrete transitions. A discrete transition τ =

〈`1, `2, ρτ , ατ〉 consists of the pre- and post-locations `1, `2, a guard ρτ (which is a boolean function
of the variables V), and an action ατ , which is a first-order assertion over V′ ∪ V, where V denotes the
current-state variables and V′ denotes the next-state variables;

Information 2020, 11, 246 8 of 26

• F : L 7→ (R|V| 7→ R|V|) is a map that maps each location ` ∈ L to a differential rule f ; that is, F(`) = f ,
of the form v̇i = fi(x). The differential rule F(`) specifies how the system variables evolve at the location `,
which is also known as a vector field or a flow field;

• F : L 7→ (R|V| 7→ R|V|) is a map that maps each location ` ∈ L to a differential rule ~f ; that is, F(`) = ~f ,
of the form v̇i = fi(x). The differential rule F(`) specifies how the system variables evolve at the location `,
which is also known as a vector field or a flow field;

• I : L 7→ 2R
|V|

is a map that maps each location ` ∈ L to a location condition (location invariant), which is
an assertion over V and defines all possible continuous states that the system is allowed to move to while at
location `;

• Θ is an assertion specifying the initial condition; and
• `0 ∈ L is the initial location. We assume that the initial condition satisfies location invariance at the initial

location; that is, Θ |= I(`0).

The transition and dynamic structures of the hybrid system define a set of trajectories. A trajectory
is a sequence of states starting from a state 〈`0, x̂0〉 ∈ Θ, where Θ ∈ Σ is an initial state set, consisting of
a series of interleaved continuous flows and discrete transitions. During the continuous flows, the
system evolves following the vector fields at some location ` until the invariant condition I(`) is
violated. At some state 〈`, x̂〉, if there is a discrete transition τ from location ` to `′ such that ρτ(x̂) =
true, then the discrete transition can be taken.

Definition 5 (Trajectory). A trajectory of a hybrid systemH is an infinite sequence of states 〈`, x̂〉 ∈ L×R|V|
of the form

〈`0, x̂0〉 , 〈`1, x̂1〉 , 〈`2, x̂2〉 , . . . ,

such that
Initiation: x̂0 |= Θ specifies an initial state.
Furthermore, for each consecutive state pair 〈`i, x̂i〉, 〈`i+1, x̂i+1〉, one of the two consecution conditions

below is satisfied.
Discrete Consecution: there exists a transition τ : 〈`1, `2, ρτ , ατ〉 ∈ T such that τ is enabled; that is,

ρτ(x̂i)= true and x̂i+1 = ατ(x̂i). Or,
Continuous Consecution : `i = `i+1 = `; in other words, the location does not change and there

exists a time interval, δ > 0, along which a smooth (continuous and differentiable to all orders) function
Ψ : [0, δ] 7→ R|V| exists, such that Ψ evolves from x̂i to x̂i+1 according to the differential rule at location ` while
satisfying the location condition I(`). Formally,

1. Ψ(0) = x̂1, Ψ(δ) = x̂2 and ∀t ∈ [0, δ], Ψ(t) |= I(`),
2. ∀t ∈ [0, δ],

〈
Ψ(t), Ψ̇(t)

〉
|= F(`).

A hybrid state 〈`, x̂〉 is called a reachable state if it appears in some trajectory ofH.
A linear constraint over V is an inequality of the form a1x1 + . . . + anxn + b ≤ 0, and a linear

assertion over a set of variables V is a conjunction of linear constraints over V. The set of points
satisfying a linear assertion forms a polyhedron.

A non-linear constraint is an inequality of the form P ≤ 0, where P is a polynomial in {x1, . . . , xn}.
The constraint is said to be algebraic if P = 0. A non-linear assertion is a conjunction of non-linear
constraints. The set of points satisfying a non-linear assertion is called a semi-algebraic set .

Throughout the paper, given an assertion ψ over the variables V, ψ′ denotes the assertion obtained
by replacing each variable v ∈ V by v′ ∈ V′.

General hybrid systems can be specialized into algebraic hybrid systems such that, for each
transition τ, the transition relation ρτ is an algebraic assertion over V′ ∪V and the initial condition Θ
is an algebraic assertion over V.

Information 2020, 11, 246 9 of 26

Definition 6 (Algebraic Hybrid Systems). An algebraic hybrid system is a hybrid system
〈V, L, T , `0, Θ〉, where:

1. For each transition τ : 〈`1, `2, ρτ , ατ〉, ατ is an algebraic assertion.
2. The initial condition Θ and the location conditions I(`) are also algebraic assertions.
3. Each rule F(`) is of the form

∧
v̇i = fi(v1, . . . , vn), where fi ∈ R[v1, . . . , vn].

This paper focuses on algebraic hybrid systems.

Definition 7 (Invariant). An invariant of a hybrid system H at a location ` is an assertion ψ such that, for
any reachable state 〈`, x̂〉 at `, x̂ |= ψ.

Template polynomials play an important role in Sankaranarayanan et al.’s approach. Given a
degree d, a template polynomial is essentially a generic degree d polynomial; that is, p =

∑i1+···+in≤d L (a1, · · · , a`) xi1
1 ...xin

n , where {a1, · · · , a`} are coefficients to be decided. Sankaranarayanan
et al. treat these coefficients {a1, · · · , a`} as unknowns and encode inductive conditions by a Gröbner
basis to generate constraints on the coefficients such that any solution corresponds to an inductive
assertion. Formally,

Definition 8 (Template). Let a = (a1, · · · , al) be template variables and L(a) be the polynomial of the form
∑β cβaβ, where each cβ is a real-valued coefficient β = (β1, · · · , βn), βn ≥ 0. A d-degree template over {a, x}
is a polynomial in the variables x with coefficients L (a) (i.e., p = ∑i1+···+in≤d L (a1, · · · , a`) xi1

1 ...xin
n).

Hybrid systems generally consist of many locations and, hence, an invariant can be seen as a
mapping to map each location to an assertion which is true under any system state reaching the
location. Thus, the following two definitions come very naturally.

Definition 9 (Algebraic Assertion Map). Given a domain of algebraic assertions D, an algebraic assertion
map for an algebraic hybrid system is a map η : L → D that associates each location of the system with an
algebraic assertion, where each algebraic assertion η(`) is of the form p = 0.

For simplicity, we shall use η(`) to denote both the algebraic assertion p = 0 and the polynomial
p, as long as it will not cause any ambiguity.

Definition 10 (Template Map). LetH ≡ 〈V, L, T , `0, Θ〉 be an algebraic hybrid system. Assuming a set of
template variables a = (a1, · · · , al), a template map overH is a map η : L→ L(a)[V] that maps each location
in L to a template over {a, V}.

It is a well-known fact, from the pioneering work of Floyd and Hoare [37,38], that if η is an
inductive assertion map, then η(`) is invariant at `. In fact, all known invariant generation methods
are inductive assertion generation methods.

Definition 11 (Inductive Algebraic Assertion Map). An inductive algebraic assertion map η(`) is a map
that associates with each location ` ∈ L an assertion η(`) that holds initially and is preserved by all discrete
transitions and continuous flows. More formally, an inductive assertion map satisfies the following requirements:

Initiation: The algebraic assertion at `0 subsumes the initial condition; that is, Θ |= η (`0).
Discrete Consecution: For each transition τ :

〈
`i, `j, ρτ , ατ

〉
starting from a state satisfying η(`i), taking

τ leads to a state satisfying η(`j). Formally, η (`i) ∧ ρτ ∧ ατ |= η
(
`j
)′.

Continuous Consecution: For every location ` ∈ L and states 〈`, x̂1〉, 〈`, x̂2〉 such that x̂1 evolves from x̂2

according to the differential rule F(`) at `, if x̂1 |= η(`), then x̂2 |= η(`). If η(`) is an assertion of the form

Information 2020, 11, 246 10 of 26

f`(x) = 0 and f` ∈ R[v1, . . . , v|V|] is a real-valued smooth function, we can express continuous consecution by
the following condition:

I(`)(x) ∧ (f`(x) = 0) |= ḟ`(x) = 0.

Note that ḟ` denotes the Lie derivative of f (`) along the vector field F(`).

An important concept used in this paper is the Lie derivative. In our context, the Lie derivative
evaluates the change of a scalar function ϕ(x) along the flow of a vector field of the form ẋ = f (x),
where f (x) = (f1(x), . . . , fn(x)). Formally,

Definition 12 (Lie Derivative).

L f ϕ(x) ,
∂ϕ

∂x
f (x) =

n

∑
i=1

∂ϕ

∂xi
ẋi =

n

∑
i=1

∂ϕ

∂xi
fi(x).

3. Theory of CIM

Assuming {a1, · · · , al} are the parameters to be decided, there exists a system of
k polynomial equations that involve {l + d + k} indeterminates in formula (4); that is,
{a1, · · · , al , u1, · · · , un, x1, · · · , xk}. Let the {l + d + k} indeterminates be ordered as x1 ≺ x2 ≺ · · · ≺
xk ≺ u1, · · · ,≺ un ≺ a1, · · · ,≺ al . By Wu–Ritt’s Algorithm [39], the indeterminates are divided into
two categories: dependent variables (x1, · · · , xk) and independent variables (u1, · · · , un, a1, · · · , al).

k∧
m=1

fm(a1, · · · , al , u1, · · · , un, x1, · · · , xk) = 0. (4)

However, for the convenience of discussion, this paper divides the {l + d + k} indeterminates into
three categories: x = (x1, · · · , xk), u = (u1, · · · , un), and a = (a1, · · · , al), which are called dependent
variables, independent variables, and template variables (parameters), respectively. The ring of
polynomials with coefficients in K can also be written as K[a, u, x].

In Sankaranarayanan et al.’s approach, encoding complete inductive conditions into the constraint
by a comprehensive Gröbner basis will lead to computability problems. In our approach, CIM is used
to take the place of a comprehensive Gröbner basis in encoding the complete inductive conditions.
Concretely, given an algebraic hybrid systemH, we first define a d-degree polynomial as template (i.e.,
∑i1+···+in≤d L(a)xi1

1 ...xin
n , where a = (a1, · · · , al) are the template variables to be decided). CIM is an

algorithm for finding all the assignments â = (â1, · · · , â`) to the template variables a that guarantee
the truth of a formula of the form:

∀(u, x) :
k∧

m=1

fm(â, u, x) = 0 |= G(â, u, x) = 0, (5)

where a = (a1, · · · , al), u = (u1, · · · , un), and x = (x1, · · · , xk), fm, G ∈ L(a)[u, x] are all algebraic
assertions. The indeterminates in formula (5) are divided into three groups: a denotes the template
variables (parameters), u denotes independent variables, and x denotes dependent variables, as they
are constrained by k polynomial equations in the hypothesis of formula (5).

Note: For an invariant generation, the implication (5) will contain more system variables,
as transition relations are algebraic constraints on both current-state and next-state variables,
which doubles the number of system variables and introduces many more free variables.

3.1. Basic Lemma and Theorem

We first prove a lemma.

Information 2020, 11, 246 11 of 26

Lemma 5. Let R ∈ L(a)[u] with u = (u1, · · · , un), such that deg(R, ui) = di; SR = S1 × S2 × · · · × Sn be
an n-dimensional lattice array of size (d1 + 1, · · · , dn + 1); and Ω be the following system of equations over a:

Ω : R(a, ûi) = 0, i = 1, · · · , |SR|, (6)

where ûi ∈ SR. Then, for any vector â, â is a solution to Ω iff â satisfies the following identity:

R(â, u) ≡ 0. (7)

Proof. =⇒. Suppose that â is a solution to the system of equations (6); that is,
R(â, û1) = 0
R(â, û2) = 0
· · ·
R(â, û|SR |) = 0

. (8)

In other words, R(â, u) vanishes over SR. By Lemma 2, R(â, u) ≡ 0.
⇐=. Suppose that there exists â which satisfies R(â, u) ≡ 0, then R(â, u) must vanish over SR;

that is, for every ûi ∈ SR,
R(â, ûi) = 0.

In other words, (8) holds; that is, â is a solution to (6).

Example 2. (from [3]) Compute the constraint on {a1, a2, a3} such that p = (2a2 + 3)x1x2
2 + 3a3x2 + 4(a3 +

a1 + 10) ≡ 0.

1. By observation, the lattice array size of p is (1+1,2+1). Let x1 = 0, 1 and x2 = −1, 0, 1. Then, six instances
in the lattice array are (0,−1) , (0, 0) , (0, 1) , (1,−1), (1, 0) , (1, 1).

2. For each instance, the constraint is obtained by substituting, which consists of the six equations shown in
Table 1.

Table 1. The six constraint equations generated in parallel.

x1 x2 a1, a2, a3

0 0 4a3 + a1 + 10 = 0
0 1 7a3 + a1 + 10 = 0
0 −1 a3 + a1 + 10 = 0
1 0 4a3 + a1 + 10 = 0
1 1 7a3 + 2a2 + a1 + 13 = 0
1 −1 a3 + 2a2 + a1 + 13 = 0

3. Solving the above six equations: a1 = −10, a2 = − 3
2 , a3 = 0, as in [3].

Problem: Given a formula in the form of (5), how do we compute all the possible values â for a
for which (5) holds?

The traditional method is to construct a Gröbner basis [3] of { f1, · · · , fk}. Let I =

Ideal({ f1, · · · , fk}) be the ideal generated by { f1, · · · , fk} and G be a polynomial. By Hilbert’s
Nullstellensatz [40], the formula (5) holds is equivalent to that there exists an integer m ≥ 1 such that
Gm belongs to I. Therefore, according to Hilbert’s Nullstellensatz, to compute all the possible â that
make the formula (5) hold, one has to enumerate all the m ≥ 1 to find all the â that make Gm ∈ I based
on Gröbner basis, which is apparently not possible because there is an infinite number of m.

For the above reason, Sankaranarayanan et al. chose to set m = 1 to find all the â that make G ∈ I
in [3]. There are two drawbacks to this approach. Firstly, since G ∈ I is just a sufficient condition for
the formula (5) to hold, the approach can only find part of the solutions to (5) which is not complete.

Information 2020, 11, 246 12 of 26

Secondly, computing â in this way involves constructing a comprehensive Gröbner basis [41], a variant
of the Gröbner basis, which is very expensive (double exponential in the dimension of the variables).
To avoid this issue, the basic idea of CIM is “turning the difficulty of quality into the complexity of
quantity”. We now introduce our Theorem 1:

Theorem 1. Given x1 ≺ x2 ≺ · · · ≺ xk ≺ u1, · · · ,≺ un ≺ a1, · · · ,≺ al , let F = { fi, i = 1, · · · , k} be
defined as in formula (5) and Fi(a, u, x1, · · · , xi), i = 1, · · · , k be the ascending set of F obtained by Wu–Ritt’s
Algorithm [39]. Then, there must exist a sequence of polynomials Pi(a, u, x), i = 1, · · · , k, Q(a, u, x), and
R(a, u), such that the following equation holds:

k

∑
i=1

PiFi + QG = R. (9)

Moreover, for any assignment â to a, the formula (5) holds if R(â, u) ≡ 0 and the following system of
equations has no solution {

Fi(â, u, x1, · · · , xi) = 0, i = 1, · · · , k,
Q(â, u, x) = 0.

(10)

Proof. For the convenience of proof, let formula (11) denote the hypothesis of (5) and formula (12)
denote the conclusion of the formula (5):

k∧
m=1

fm(a, u, x) = 0, (11)

G(a, u, x) = 0. (12)

Now, we show how to construct such a series of polynomials Pi, Q, and R ∈ L(a)[u] satisfying
equation (9).

By applying Lemma 4 to Fk and G, we can obtain P̃kFk + QkG = Rk(a, u, x1, . . . , xk−1). Similarly,
by applying Lemma 4 to Fk−i and Rk−i repeatedly, we get the following sequence of equations,

P̃kFk + QkG = Rk,

P̃k−1Fk−1 + Qk−1Rk = Rk−1,

P̃k−2Fk−2 + Qk−2Rk−1 = Rk−2,

.............

P̃2F2 + Q2R3 = R2,

P̃1F1 + Q1R2 = R1,

(13)

where R1 ∈ L(a)[u], Ri ∈ L(a)[u, x1, · · · , xi−1], i = 2, · · · , k and P̃i and Qi ∈ L(a)[u, x1, · · · , xi], i =
1, · · · , k. Note that R1 does not contain the variable xi any more.

Next, by a sequence of substitutions of Rk−i in (13), in a top-down order, we can easily derive the
following equation:

P̃1F1 +
k

∑
j=2

(
j−1

∏
i=1

Qi

)
P̃jFj +

(
k

∏
j=1

Qj

)
G = R1. (14)

Information 2020, 11, 246 13 of 26

Now, let R = R1, P1 = P̃1, Pj =
(

∏
j−1
i=1 Qi

)
P̃j, j = 2, . . . , k, and Q =

(
∏k

j=1 Qj

)
. Then, we can

obtain the following equation:
k

∑
i=1

PiFi + QG = R.

Suppose that there exists an assignment â to a that satisfies R(â, u) ≡ 0 and the system of
equations (10) has no solution; we prove the formula (5) holds. As R ≡ 0, we get

k

∑
i=1

PiFi = −QG. (15)

In addition, as the system of equations (10) has no solution, for any (û, x̂), Fi(â, û, x̂) = 0 we
can deduce that Q(â, û, x̂) 6= 0. Then, by the equation (15), we deduce that G(â, û, x̂) = 0 as well.
Therefore, formula (5) holds. Note that, in Wu–Ritt’s algorithm, Q = ∏k

j=1 Qj 6= 0 is called the
non-degenerate condition [39].

Remark 1. According to Theorem 1, we know that the solutions â to a that satisfy R(â, u) ≡ 0 and the
system of equations (10) have no solution satisyfing formula (5) as well. Therefore, the idea for finding â to
make formula (5) hold is that we must first solve the constraint on a derived from R(a, u) ≡ 0 to find all the
solutions â and decide whether the system of equations (10) has a solution, given a = â. For the first step,
we use Lemma 5. Regarding whether the non-degenerate condition is true or not, we can make use of the
criterion presented in [39] (i.e., I1 I2 · · · Ik 6= 0, Ii is the initial of Fi). From the above analysis, we can see that
the solution to R(a, u) ≡ 0 cannot ensure that formula (5) holds. If the non-degenerate condition is false,
formula (5) may or may not hold, which is crucial to the theorem’s proof by CIM or by Wu–Ritt’s Algorithm
[39]. Fortunately, for invariant generation, it only means we need another step to verify the obtained invariant.
Generally, verifying invariants is less expensive than generating invariants, which also means that our invariant
generation algorithm is a two-phase algorithm.

3.2. Generate the Constraint for Implication by CIM

By Lemma 5, in order to generate a constraint over the template variables a that guarantees
R(a, u) to be identical to zero, we only need test whether R(a, u) vanishes over a lattice array SR of
size (deg(R, u1) + 1, deg(R, u2) + 1, · · · , deg(R, un) + 1), where the upper bound of deg(R, ui) can be
estimated by Lemma 4.

More specifically, take û ∈ SR, substitute for u in (11) and (12), compute R(a) by the division
algorithm (Lemma 4), and then equate R(a) = 0 to obtain the constraint equations. This process is
similar to Wu’s division method, but is simpler as the u = (u1, · · · , un) have been replaced by the
numbers (instances). However, the aforementioned benefits come at a cost. The benefits are that the free
variables are eliminated, the cost is that the implication (5) turns into |SR| simpler implications without
free variables. This is the main idea of CIM: “turning the difficulty of quality into the complexity
of quantity”. If (5) is too difficult to deal with, CIM is meaningful. We outline our algorithm for
generating constraints by computing R in Algorithm 1.

Information 2020, 11, 246 14 of 26

Algorithm 1: Generating constraint for implication by R.
input : The hypothesis of implication fm(a1, · · · , a` , u1, · · · , un , x1, · · · xk), the conclusion of implication

G(a1, · · · , a` , u1, · · · , un , x1, · · · , xk) = 0, and Ai the upper bound of deg(R, ui), U is the set of independent variables, MaxA
is the maximum ofAi , inst is a an n-dimension vector of the form 〈û1, · · · , ûn〉, LA is the set of n-dimension vector.

output : C, the set of constraints on template variables {a1, · · · , a`}, a log file to record the process details.

1 /*by default C and LA are ∅ */;
2 C = ∅ ;
3 LA = ∅ ;
4 /*The nested loop structure aims to generate a lattice array for independent variables of {u1, · · · , un} of size (MaxAn); for simplicity,

ui = 0, · · · , MaxA */
5 for i = 0 to MaxA do
6 /*generate an instance*/
7 foreach u in U do
8 u = i;
9 inst[u] = i;

10 end
11 /*add the instance to Lattice Array*/
12 LA = LA + inst;
13 end
14 foreach inst in LA do
15 /*instantiate {u1, · · · , un} to real values*/
16 foreach u in U do
17 u = inst[u];
18 end
19 /*substitute real values for {u1, · · · , un} in { f1, · · · , fk}*/

20
k∧

m=1
f ′m(a1, · · · , a` , x1, · · · , xk)←

k∧
m=1

fm ;

21 /*substitute real values for {u1, · · · , un} in G*/

22 G′ (a1, · · · , a` , x1, · · · , xk)← G ;

23 /*transform
k∧

m=1
f ′m into ascending set of

k∧
m=1

Fm by Wu–Ritt’s algorithm*/

24
k∧

m=1
Fm(a1, · · · , a` , x1, · · · , xk) = 0←

k∧
m=1

f ′k

25 /*compute R*/
26 R(a1, · · · , a`) = computeR({F1, . . . , Fk}, G) ;
27 /*Generate constraints on a1, · · · , a`*/
28 C = C ∪ {R(a1, · · · , a`) = 0};
29 /*write log to record the details*/

30 writelog(u,{F1, . . . , Fk},{ f ′1 , . . . , f ′k },G
′
,R,C);

31 /*utilize C to simplify the implication*/
32 Simplify (f1, · · · , fk , G) by C ;
33 end
34 return C ;

1. u = {u1, · · · , un} and x = {x1, · · · , xk} are independent variables and dependent variables,
respectively.

2. Lines 5–13 aim to generate Lattice Array.
3. Lines 16–22 aim to substitute real values for {u1, · · · , un} in fi and G and, hence, eliminate the

independent variables. It is obvious that instances will simplify the computation of proposition (5).
4. Lines 14–33 are a ForEach loop, hence, the algorithm is easy to parallelize.
5. To make Algorithm 1 simpler, we can use Max(deg(fm, ui), deg(G, ui)) to take the place of Ai,

the upper bound of deg(R, ui), which is not allowed for theorem proving, as |SR| is crucial to
theorem proving by CIM. However, for invariant generation, it only means we need to verify the
obtained constraint in the second phase (Section 4).

Complexity Analysis

Assuming that the degree of each variable in fi is no more than d (i.e., deg(fi) ≤ d, 1 ≤ i ≤ k),
and no more than δ in g (i.e., deg(g) ≤ δ), our method consists of three main steps. In the first
step, we transform the equations (11) into triangular sets (i.e., equations in triangular form) by
Wu–Ritt’s method. By [32], the complexity of computing the characteristic set of (11) isO(kO(`+n+k)(d+

1)O
(`+n+k)3

); however, CIM eliminates the independent variables {u1, · · · , un}, such that the complexity

of computing the characteristic set for every instance is O(kO(`+k)(d + 1)O
((`+k)3)

). As the size of the

lattice array is n(d+1) at most, the total complexity is O(n(d+1)kO(`+k)(d + 1)O
(`+k)3

). The second step

Information 2020, 11, 246 15 of 26

is the process of constructing R by applying the pseudo-division algorithm to f and g, which can
be decomposed into a series of steps to eliminate the highest power in xi. Assuming deg(Fi) ≤
λ, by [32], the complexity of computing R is O(δO(`+n+k)(λ + 1)O

((`+n+k)k)
) at most, and CIM

eliminates the independent variables {u1, · · · , un} and, so, the complexity of computing R is
O(n(d+1)δO(`+k)(λ + 1)O

((`+k)k)
). Thus, complexities of Wu–Ritt’s method and CIM in steps 1 and 2 are

O(kO(`+n+k)2
(d + 1)O

(`+n+k)4
) and O(n(d+1)kO(`+k)2

(d + 1)O
(`+k)4

), respectively. Therefore, according
to the above analysis, we can see that our approach is exponential in the degree of the involved
polynomials, the number of variables as well as the number of the involved polynomials. However,
according to [42], the complexity of computing Gröbner basis is d2(`+n+k+O(1))

, which is double
exponential. Therefore, the approach in [3] is obviously more expensive than CIM approach.

4. Illustration of CIM

In this section, we illustrate CIM by an example taken from [3], and discuss some skills in
computing R by different kinds of implications generated in every step. Note that the main idea of
CIM is “turning the difficulty of quality into the complexity of quantity” and, hence, can solve the
complete inductive conditions, under which the approach by a comprehensive Gröbner basis in [3]
is intractable.

V = {y, vy, δ},
L = {l},
T = {τ}, where

τ : 〈l, l,

[
δ > 0∧ y = 0∧ y′ = y
∧v′y =

vy
2 ∧ δ′ = 0

]
〉,

Θ = (y = 0∧ vy = 16∧ δ = 0),

F(l) = (ẏ = vy ∧ δ̇ = 1∧ v̇y = −10),

I(l) = y ≤ 0,

`0 = l.

Example 3 (Bouncing Ball, from [3]). Figure 2 shows a graphical representation of a ball bouncing on a soft
floor, which can be modeled as a hybrid system. The variable y represents the position of the ball (obviously,
y = 0 represents the ball being at floor level), vy represents its velocity, and δ denotes the time elapsed since its
last bounce. A bounce is modeled by the transition τ, in which the velocity vy of the ball is halved and the ball
reverses direction.

5

l : y ≥ 0

ẏ = vy

v̇y = −10

δ̇ = 1

y = 0,
δ > 0,
v′y = −vy

2 ,
y′ = y
δ′ = 0,

τ

Figure 1. The hybrid automaton for a bouncing ball

Furthermore, for each consecutive state pair 〈li, ~xi〉, 〈li+1, ~xi+1〉, one of
the two consecution conditions below is satisfied.

Discrete Consecution: there exists a transition τ : 〈`1, `2, ρτ 〉 ∈ T
such that li = `1, li+1 = `2, and 〈~xi, ~xi+1〉 |= ρτ , where the
unprimed variables refer to ~xi and the primed variables to ~xi+1, or

Continuous Consecution: li = li+1 = `, and there exists a time
interval δ > 0, along with a smooth (continuous and differentiable
to all orders) function f : [0, δ] 7→ Rn, such that f evolves from
~xi to ~xi+1 according to the differential rule at location `, while
satisfying the location condition I(`). Formally,

1. f(0) = ~x1, f(δ) = ~x2, and (∀ t ∈ [0, δ]), f(t) |= I(`),

2. (∀t ∈ [0, δ)),
〈

f(t), ḟ(t)
〉

|= D(`).

A state 〈`, ~x〉 is called a reachable state of a hybrid system Ψ if it
appears in some computation of Ψ.

Example 1 (Bouncing Ball). Figure 1 shows a graphical represen-
tation of the following hybrid system, representing a ball bouncing on
a soft floor (y = 0):

V = {y, vy, δ}
L = {l},
T = {τ}, where, τ =

〈

l, l,

[
δ > 0 ∧ y = 0 ∧ y′ = y ∧
v′y = −vy

2 ∧ δ′ = 0

]〉

Θ = (y = 0 ∧ vy = 16 ∧ δ = 0)

D(l) =
(

ẏ = vy ∧ v̇y = −10 ∧ δ̇ = 1
)

I(l) = (y ≥ 0)
`0 = l

differential.tex; 18/02/2005; 9:15; p.5

Figure 2. The hybrid automaton for a bouncing ball.

Our approach consists of the following steps:

1. Guessing a template of fixed degree as an invariant template.
2. Defining the complete inductive conditions.
3. Applying a lattice array to the complete inductive conditions to generate the constraint on

the parameters

Information 2020, 11, 246 16 of 26

4. Solving the constraint. Any solution to the constraint guarantees the template an
inductive invariant

Different from the existing approaches, we use CIM to encode the complete inductive conditions.
Step 1. Predefine the template map
Just as in [3], we set the degree of the invariant at 2, as there is only one location l. We set η(l) to

be a generic quadratic form on
{

y, vy, δ
}

, as follows:

η (l) :

[
a1y2 + a2vy

2 + a3δ2 + a4yvy + a5vyδ

+a6yδ + a7y + a8vy + a9δ + a10

]
.

Step 2. Generate constraint for the initial condition

(y = 0∧ vy = 16∧ δ = 0) |= η(l) (16)

In (16), there are three variables, which are constrained by three equations in Θ. Thus, there are
no independent variables. By Algorithm 1, R = a10 + 256a2 + 16a8 and, then, we obtain the constraint
a10 + 256a2 + 16a8 = 0; the same result as in [3].

Step 3. Encode the discrete consecution
By Definition 11, the discrete consecution can be expressed by the following implication:

η(l) = 0∧ ρτ ∧ ατ |= η(l)′ = 0,

ρτ : y = 0,

ατ :

y′ = y
δ′ = 0
v′y = − vy

2

.

(17)

1. In (17), there are six variables that are constrained by five equations. We might as well assume
that {y, y′, v′y, δ, δ′} are dependent variables, and {vy} is the independent variable. The degree of
{vy} is 2 and the size of the lattice array is (2+1). and, so, three implications are obtained (Table 2).

2. Applying Algorithm 1. We get three simpler implications and three corresponding R by Lemma 3
(Table 2).

Table 2. Implications and R generated by Citing Instances Method (CIM) on the encoding initial
condition.

vy Implication R

0 a3δ2 + a9δ + a10 = 0 |= a10 = 0 a10
1 a3δ2 + a5δ + a9δ + a10 + a2 + a8 = 0 |= a10 +

1
4 a2 − 1

2 a8 = 0 a10 +
1
4 a2 − 1

2 a8
2 a3δ2 + 2a5δ + a9δ + a10 + 4a2 + 2a8 = 0 |= a10 + a2 − a8 = 0 a10 + a2 − a8

At last, we get three constraint equations {a10 = 0, a10 +
1
4 a2 − 1

2 a8 = 0, a10 + a2 − a8 = 0}.
Solving, we obtain {a10 = 0, a2 = 0, a8 = 0}.

Step 4. Encode the Continuous Consecution
By Definition 11, the continuous consecution can be expressed by the implication

I(l) ∧ (η(l) = 0) |= (˙η(l) = 0), (18)

where ˙η(l) is the Lie Derivative of η(l) with respect to F(l),

˙η(l) =
∂η(l)

∂y
ẏ +

∂η(l)
∂δ

δ̇ +
∂η(l)
∂vy

v̇y;

Information 2020, 11, 246 17 of 26

that is,

˙η(`) = a4v2
y + 2a1yvy + a6δvy + (−20a2 + a5 + a7)vy

+ (2a3 − 10a5)δ + (−10a4 + a6)y + (a9 − 10a8).
(19)

In (18), there are three variables which are constrained by one equations (we ignore I(l) = y ≥ 0).
We might as well assume that {vy} is the dependent variable and that {y, δ} are independent variables.
The degree of y and δ is 2 and the size of the lattice array is (2+1,2+1). Applying Algorithm 1 to (18).
Thus, nine implications are obtained (Table 3). We analyze some implications to illustrate the domino
effect:

1. 0 = 0 |= a4v2
y + (a5 + a7)vy + a9 = 0

By Algorithm 1,Fi is a constant, the consequent of implication is R, i.e., R = a4v2
y +(a5 + a7)vy + a9,

and the constraint equations are {a5 = −a7, a4 = 0, a9 = 0}. We will use this solution to simplify
the remaining eight implications and the same below. Thus, the resulting implications become
more and more simple (Table 4), we call it the domino effect, which is the benefit of parallelism in
CIM.

2. −a7vy + 2a3 = 0 |= a6vy + 2a3 + 10a7 = 0
By Algorithm 1, R = 2a3a7 + 10a2

7 + 2a3a6 and 2a3a7 + 10a2
7 + 2a3a6 = 0 is the constraint equation.

However, by comprehensive Gröbner basis, we need to compute the remainder under two
situations: a7 = 0 and a7 6= 0. If a7 is polynomial, situation becomes very complicated. This is
why Sankaranarayanan et al. defined Alternative Consecution Relations to eliminate template
variables in the antecedent of implication to avoid construction of comprehensive Gröbner basis.
However, every coin has two sides. In Wu–Ritt’s Algorithm, a7 = 0 means non-degenerate
condition is false, the solution to 2a3a7 + 10a2

7 + 2a3a6 = 0 may or may not satisfy the formula
(5), which is crucial to the theorem’s proof by CIM. Fortunately, for invariant generation, it only
means we need another step to verify the obtained invariant. Generally, verifying invariants is
less expensive than generating invariants.

3. a1 + a7 = 0 |= 2a1vy + a6 = 0
By Algorithm 1, a1 + a7 is a constant, so R = 2a1vy + a6 and a1 = 0, a6 = 0. We continue to
simplify the implications(Table 5).

4. −a7vy + a3 = 0 |= 2a3 + 10a7 = 0
By Algorithm 1, R = 2a3 + 10a7 and the constraint is a3 = −5a7, continue to simplify the
implications(Table 6).

Table 3. Implications generated by CIM on the encoding continuous consecution.

δ y Implication

0 0 0 = 0 |= a4v2
y + (a5 + a7)vy + a9 = 0

0 1
a4vy + a1 + a7 = 0
|= a4v2

y + 2a1vy + (a5 + a7)vy − 10a4 + a6 + a9 = 0

0 2
2a4vy + 4a1 + 2a7 = 0
|= a4v2

y + 4a1vy + (a5 + a7)vy − 20a4 + 2a6 + a9 = 0

1 0
a5vy + a3 + a9 = 0
|= a4v2

y + a6vy + (a5 + a7)vy + 2a3 − 10a5 + a9 = 0

1 1
a4vy + a5vy + a1 + a3 + a6 + a7 + a9 = 0
|= a4v2

y + 2a1vy + a6vy + (a5 + a7)vy + 2a3 − 10a5 − 10a4 + a6 + a9 = 0

1 2
2a4vy + a5vy + 4a1 + a3 + 2a6 + 2a7 + a9 = 0
|= a4v2

y + 4a1vy + a6vy + (a5 + a7)vy + 2a3 − 10a5 − 20a4 + 2a6 + a9 = 0

Information 2020, 11, 246 18 of 26

Table 3. Cont.

δ y Implication

2 0
2a5vy + 4a3 + 2a9 = 0
|= a4v2

y + 2a6vy + (a5 + a7)vy + 4a3 − 20a5 + a9 = 0

2 1
a4vy + 2a5vy + a1 + 4a3 + 2a6 + a7 + 2a9 = 0
|= a4v2

y + 2a1vy + 2a6vy + (a5 + a7)vy + 4a3 − 20a5 − 10a4 + a6 + a9 = 0

2 2
2a4vy + 2a5vy + 4a1 + 4a3 + 4a6 + 2a7 + 2a9 = 0
|= a4v2

y + 4a1vy + 2a6vy + (a5 + a7)vy + 4a3 − 20a5 − 20a4 + 2a6 + a9 = 0

Table 4. Domino effect (1).

δ y Implication

0 0 0 = 0 |= 0 = 0

0 1 a1 + a7 = 0 |= 2a1vy + a6 = 0

0 2 4a1 + 2a7 = 0 |= 4a1vy + 2a6 = 0

1 0 −a7vy + a3 = 0 |= a6vy + 2a3 + 10a7 = 0

1 1 −a7vy + a1 + a3 + a6 + a7 = 0 |= 2a1vy + a6vy + 2a3 + 10a7 + a6 = 0

1 2 −a7vy + 4a1 + a3 + 2a6 + 2a7 = 0 |= 4a1vy + a6vy + 2a3 + 10a7 + 2a6 = 0

2 0 −2a7vy + 4a3 = 0 |= 2a6vy + 4a3 + 20a7 = 0

2 1 −2a7vy + a1 + 4a3 + 2a6 + a7 = 0 |= 2a1vy + 2a6vy + 4a3 + 20a7 + a6 = 0

2 2 −2a7vy + 4a1 + 4a3 + 4a6 + 2a7 = 0 |= 4a1vy + 2a6vy + 4a3 + 20a7 + 2a6 = 0

Table 5. Domino effect (2).

δ y Implication

0 0 0 = 0 |= 0 = 0

0 1 a7 = 0 |= 0 = 0

0 2 2a7 = 0 |= 0 = 0

1 0 −a7vy + a3 = 0 |= 2a3 + 10a7 = 0

1 1 −a7vy + a3 + a7 = 0 |= 2a3 + 10a7 = 0

1 2 −a7vy + a3 + 2a7 = 0 |= 2a3 + 10a7 = 0

2 0 −2a7vy + 4a3 = 0 |= 4a3 + 20a7 = 0

2 1 −2a7vy + 4a3 + a7 = 0 |= 4a3 + 20a7 = 0

2 2 −2a7vy + 4a3 + 2a7 = 0 |= 4a3 + 20a7 = 0

At last, the final constraint equations in the template variables are

a{1,2,4,6,8,9,10} = 0,

a5 + a7 = 0,

5a7 + a3 = 0,

and the corresponding invariant is y = vyδ + 5δ2 [3].

Information 2020, 11, 246 19 of 26

Table 6. Domino effect (3).

δ y Implication

0 0 0 = 0 |= 0 = 0

0 1 a7 = 0 |= 0 = 0

0 2 2a7 = 0 |= 0 = 0

1 0 −a7vy − 5a7 = 0 |= 0 = 0

1 1 −2a7vy − 4a7 = 0 |= 0 = 0

1 2 −a7vy − 3a7 = 0 |= 0 = 0

2 0 −2a7vy − 20a7 = 0 |= 0 = 0

2 1 −2a7vy − 19a7 = 0 |= 0 = 0

2 2 −2a7vy − 18a7 = 0 |= 0 = 0

5. A Special Case

In this section, we show that Sankaranarayanan et al.’s approach is a special case of our method.
In Sankaranarayanan et al.’s approach, the antecedent of the discrete consecution implication

{η (`i) = 0 ∧ ρτ ∧ ατ |= η
(
`j
)′

= 0} and continuous consecution implication {I(`) ∧ η(`) =

0 |= ˙η(`) = 0} contain template variables, which requires the construction of a comprehensive
Gröbner basis, a variant of the Gröbner basis [41]. Unfortunately, encoding inductive conditions by
comprehensive Gröbner bases is an exact but impractical approach, as the non-linear constraints
produced make the constraint-solving problem intractable, even for a simple hybrid system.
Sankaranarayanan et al. defined as Alternative Consecution Relations (as shown in Tables 7 and 8)
to eliminate template variables in the antecedent of implication. In doing this, (17), (18), and (5)
are transformed into (20), (21), and (22), respectively. Obviously, (22) is a special case of (5),
the antecedent of which does not contain any more parameters. In particular, if the transition relations
are separable [3]—that is, each variable in V′ is expressed as a polynomial expression over the variables
in V—we can generate constraints more easily by CIM, as the antecedent of implication has been the
ascending set.

ρτ ∧ ατ |= η(l)′ − λη(l) = 0, (20)

I(l) |= ˙η(l)− λη(l) = 0, (21)

k∧
m=1

fm(u1, . . . , un, x1, . . . , xk) = 0 |=

G(a1, . . . , a`, u1, . . . , un, x1, . . . , xk) = 0.

(22)

Table 7. Alternative discrete consecution conditions. LC: local consecution; CV: constant-value
consecution; CS: constant-scale consecution; PS: polynomial-scale consecution.

Name Alternative Discrete Consecution Condition

LC ατ ∧ ρτ |= η(lj)
′ = 0

CV ατ ∧ ρτ |= (η(lj)
′ − η(li)) = 0

CS ατ ∧ ρτ |= (η(lj)
′ − λη(li)) = 0

PS ατ ∧ ρτ |= (η(lj)
′ − pη(li)) = 0

Information 2020, 11, 246 20 of 26

Table 8. Alternative Continuous Consecution Conditions. LC: local consecution; CV: constant-value
consecution; CS: constant-scale consecution; PS: polynomial-scale consecution.

Name Alternative Continue Consecution Condition

LC I(l) |= ˙η(l) = 0
CV I(l) |= (˙η(l)− η(l)) = 0
CS I(l) |= (˙η(l)− λη(l)) = 0
PS I(l) |= (˙η(l)− pη(l)) = 0

We apply Algorithm 1 to (20) and (21).

1. For the initial condition case, it is same as Step 1.
2. For the discrete consecution case (with λd), assume that {y, y′, v′y, δ′} are dependent variables,

{vy, δ} are independent variables, and the size of lattice array is (2+1, 2+1).
3. For the continuous consecution case (with λc), there are no dependent variables as I(l) ≥ 0 is

ignored, {vy, δ, y} are independent variables, and the size of lattice array is (2+1, 2+1,2+1).
4. Solving these 37 implications, the following two groups of constraints are obtained:

a1 = 0, a2 = 0, a3 = 0, a4 = 0, a5 = 0,

a6 = 0, a7 = 0, a8 = 0, a9 = 0, a10 = 0,

λd = λd, λc = λc;

(23)

a1 = 0, a2 = 0, a3 = −5a7, a4 = 0, a5 = −a7,

a6 = 0, a7 = a7, a8 = 0, a9 = 0, a10 = 0,

λd = 0, λc = 0.

(24)

Obviously, (23) is a trivial solution, (24) is the same as in [3], and the corresponding invariant is
y = vyδ + 5δ2.

Remark 2. The main shortcoming of our approach lies in that CIM tends to produce many redundant instances,
which results in more time consumption than Sankaranarayanan et al.’s approach (4.9 s vs. 3.7 s in Maple,
respectively). However, CIM is intrinsic to be parallelized; under parallel circumstances, our method is less
time-consuming (0.9 s vs. 3.7 s in Maple). In addition, the generation procedure for constraint equations in our
approach is simpler (which can even be done by hand), as numerical computation takes the place of symbolic
computation.

6. Experiments

To show the practicality of CIM, we present another two application examples. One is a train
system, the other is a charged particle in a magnetic field.

6.1. Experiment 1

Consider a train system (from [3]). Figure 3 shows a hybrid automaton modeling a train
accelerating (location l0), traversing at constant speed (l1), and decelerating (l2). There exist three
continuous variables in the train system: x, the position of the train; v, the train’s velocity; and t,
a master clock. The system has one discrete variable s, representing the number of stops made so far.
The initial condition is given by {x = s = v = t = 0}. There are three discrete transitions τ1, τ2, and τ3;
the transition relations are as follows:

ρτ1 ∧ ατ1 : v = 5∧ id(s, x, v, t),
ρτ2 ∧ ατ2 : id(s, x, v, t),
ρτ3 ∧ ατ3 : [v = 0∧ s′ = s + 1∧ t′ = t + 2∧ id(x, v)] ,

(25)

Information 2020, 11, 246 21 of 26

where id(x) denotes x′ = x. 31

s, x, v ≥ 0
ẋ = v
v̇ = 2
ṫ = 1

l0

s, x ≥ 0,
v = 5
ẋ = v
v̇ = 0
ṫ = 1

l1 s, x, v ≥ 0
ẋ = v
v̇ = −1
ṫ = 1

l2

τ1

τ2

τ3

Figure 6. Hybrid Automaton for the Train System

Train System:

Figure 6 shows a hybrid automaton modeling a train accelerating (lo-
cation l0), traversing at constant speed (l1), and decelerating (l2). The
system has three continuous variables: x, the position of the train, v,
the train’s velocity, and t, a master clock. The system has one discrete
variable s, representing the number of stops made so far. The initial
condition is given by x = s = t = v = 0. There are three discrete
transitions, τ1, τ2, and τ3, with transition relations

ρτ1 : v = 5 ∧ id(s, x, v, t)
ρτ2 : id(s, x, v, t)
ρτ3 : v = 0 ∧ s′ = s+ 1 ∧ t′ = t+ 2 ∧ id(x, v)

wherein id(X) denotes
∧

x∈X(x′ = x). Application of our technique
resulted in the following assertion map:

η(l0) : v2 − 4x− 10v + 115s − 20t = 0
η(l1) : 5v2 + 4xv + 115vs − 20vt = 0
η(l2) : 2v2 + 4x− 20v + 115s − 20t+ 75 = 0

With v = 5 at l1 the assertion η(l1) can be simplified to 4x + 115s −
20t+ 25 = 0.

An analytic argument for the assertion η(l0) is as follows. Consider
the system at the state 〈l0, 〈s, v, x, t〉〉. Each stop s consists of acceler-
ating from 0 to 5 in l0 and decelerating from 5 to 0 in l2. The distance
covered in these two modes is 25

4 and 25
2 respectively. Furthermore,

accelerating from 0 to v in l0 advances the position another v2

4 . Hence

the total distance traveled is given by x = s(25
4 + 25

2) + v2

4 + 5tl1 ,
where tl1, the time spent in location l1 is given by t − tl0 − tl2 =
t − (v/2 + s(5

2)) − (5
1s + 2s). Substituting, we obtain the inductive

differential.tex; 18/02/2005; 9:15; p.31

Figure 3. Hybrid automaton for the train system.

η (li) , i = 0, 1, 2 is the template map,

η (l0) :

a1x2 + a2xs + a3xt + a4xv
+a5s2 + a6st + a7sv
+a8t2 + a10v2 + a11x
+a12s + a13t + a14v + a15

 ,

η (l1) :

b1x2 + b2xs + b3xt + b4xv
+b5s2 + b6st + b7sv
+b8t2 + b10v2 + b11x
+b12s + b13t + b14v + b15

 ,

η (l2) :

c1x2 + c2xs + c3xt + c4xv
+c5s2 + c6st + c7sv
+c8t2 + c10v2 + c11x
+c12s + c13t + c14v + c15

 ,

Applying Algorithm 1, 2250 instances in total and the following constraints are obtained:

a{1,...,9,15} = 0,
a10 = − 1

4 b11λd12λd20

a11 = b11λd12λd20

a12 = 115
4 b11λd12λd20

b{1,...,9} = 0
b10 = 1

2 b11, b11 = b11

b12 = 115
4 b11, b13 = −5b11

b14 = −5b11, b15 = − 75
4 b11,

c{1,...,9} = 0
c10 = 1

2 b11λd12,
c11 = b11λd12,
c12 = 115

4 b11λd12,
c13 = −5b11λd12

c14 = −5b11λd12,
c15 = − 75

4 b11λd12

λc0 = 0, λc1 = 0, λc2 = 0,
λd01 = 1

λd12λd20
,

λd12 = λd12,
λd20 = λd20,

(26)

where λci denotes continuous consecution λ at location li, and λdij denotes discrete consecution λ for
translation from li to lj.

Information 2020, 11, 246 22 of 26

When b11 = 1, λd12 = λd20 = 1, the invariant is obtained as follows:

η(l0) : v2 − 4x− 10v + 115s + 20t = 0,
η(l1) : 5v2 + 4xv + 115vs− 20vt = 0,
η(l2) : 2v2 + 4x− 20v + 115s− 20t + 75 = 0,

(27)

which the same as that derived in [3].

6.2. Experiment 2

In this experiment, we consider a charged particle in a magnetic field (from [3]).
Figure 4 shows a charged particle in a 2D-plane with a reflecting barrier at x = 0 and a magnetic

field at x ≤ d ≤ 0. There are eight system variables in total: the particle’s position x, y; its velocity
vx, vy; a bounce counter b, which is incremented every time the particle collides against the barrier
at x = 0; along with the parameters a, d, and time t. There also exist three locations: magnetic, right,
and left. 729 instances are generated by Algorithm 1 and the following invariants were obtained at last:

le f t :

vy + 2 = 0
vx − 2 = 0
a(x + y) = 4b− 4ab

magnetic :

vy + 2 = a(x− 2)
v2

x + v2
y = 8

vx − 2 = −a(y + 2) + 4b(1− a)

right :

vy + 2 = 0
vx + 2 = 0
a(x− y) = −4(b + 1)(1− a)

(27)

which are the same as those obtained in [3].
33

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

d

Magnetic Field

vx ≥ 0
ẋ = vx

ẏ = vy

v̇x = v̇y = 0

right

ẋ = vx

ẏ = vy

v̇x = −avy

v̇y = avx

magnetic

vx ≤ 0
ẋ = vx

ẏ = vy

v̇x = v̇y = 0

left

τ1 τ2

τ3

Figure 7. Particle in a magnetic field and its non-linear hybrid model. The dynamics
of a, t, b are not shown.

invariants were obtained:

Location Invariant

left vy + 2 = 0 ∧ v2
x − 4 = 0

magnetic vy = a(x− 2) − 2 ∧ v2
x + v2

y = 8

right vy + 2 = 0 ∧ v2
x − 4 = 0

However, at location right, the invariant vx ≥ 0 and v2
x − 4 = 0 lets us

conclude vx = 2. This is easily mechanized by computing the roots of
the univariate polynomials, and discarding extraneous roots disallowed

differential.tex; 18/02/2005; 9:15; p.33

Figure 4. A charged particle in a magnetic field and its non-linear hybrid model.

7. A Clever Use of CIM

The other method is that, in order to generate constraints without computing R, we can make a
clever use of the left side of (9); that is, we only need to make G vanish over a lattice array SR. Once G
vanishes over SR, R naturally vanishes over SR, which means that R ≡ 0, according to Lemma 2.
More specifically, for each û ∈ SR, first substitute it for u in (11) (this also means that free variables
are eliminated). Then, compute the roots r(a1, · · · , an) of x in a and, finally, substitute r(a1, · · · , an)

for x in (12). Now, we have a polynomial constraint G(a1, · · · , an) = 0 in a. Solving G(a1, · · · , an) = 0
generates a set of solutions to a which satisfy formula (5). However, there is an issue with this approach:

Information 2020, 11, 246 23 of 26

ri is not always easy to compute even though the free variables are replaced by numbers. In that case,
we can experimentally obtain the roots of dependent variables. Here is an example.

We illustrate, in this example, how to experimentally obtain the roots of dependent variables.
Figure 5 shows a graphical representation of an accumulator with varying accumulation every second,
which can be modeled as a hybrid system where t is a continuous-time variable, s is the accumulator,
and i is the varying accumulation; the system will terminate when i increases to 100. Obviously,
Figure 5 has an invariant s = i(i+1)

2 .

1

' 1

' '

' 0

t

i i

s s i

t

0

0

0

t

i

s

 : 100

1

l i

t

Figure 5. The hybrid automaton for accumulator with varying accumulation every second.

The target template invariant is a generic degree-two template polynomial: η = a0s2 + a1si +
a2st + a3s + a4i2 + a5it + a6i + a7t2 + a8t + a9. For the discrete consecution condition, we have

η = 0∧ i′ − i− 1 = 0∧ s′ − s− i′ = 0∧ t = 1∧ t′ = 0 |= η′ = 0,

assuming {s, i′, s′, t, t′} are the dependent variables and {i} is the independent variable. By CIM, we
need compute the roots of {s, i′, s′, t, t′} under the lattice array {i = 0, 1, 2, 3}.

Generally speaking, it is difficult to collect accurate continuous states during the dynamics of a
system. When discrete translations are taken, however, we can easily collect continuous states and
discrete states (as discrete translations are often controlled by computer software), such that we can
collect the roots of {s, s′, i′, t, t′} in the log file by adding two statements to the discrete translation
(Figure 6).

1

log()

' 1

' '

' 0

log(', ', ')

t

write t

i i

s s i

t

write i s t

0

0

0

t

i

s

 : 100

1

l i

t

Figure 6. The hybrid automaton for accumulator.

The starting point is to run the system with i = 0, s = 0, t = 0 and collect the roots of {s, i′, s′, t, t′}
in the log file (Table 9) during every discrete transition.

Table 9. The experimentally collected hybrid states of {i, s, i′, s′, t, t′}.

i s i′ s′ t t′

0 0 1 1 1 0
1 1 2 3 1 0
2 3 3 6 1 0
3 6 4 10 1 0

Finally, we obtain the invariant s = i(i+1)
2 . Without directly computing the roots, CIM can

dramatically reduce the complexity. Similar ideas appeared in [43,44].

Information 2020, 11, 246 24 of 26

8. Conclusions

In this paper, we presented a new approach (called CIM) for invariant generation in hybrid
systems. Some examples are given to illustrate how CIM works. The cornerstones of our technique
are theories based on the solution number of polynomial equations and Wu–Ritt’s Well-Ordering
Theorem.

CIM can take the place of a comprehensive Gröbner basis for invariant generation. Furthermore,
the authors are confident that most of the symbolic algebra used in existing methods can be replaced
using this technique. Comparing to the well-established approaches in this field, CIM exhibits the
following features which make it interesting:

1. Applying instances by essentially instantiating the free variables to real numbers. Hence, the free
variables are removed.

2. Comparing to the existing approaches, CIM can solve the complete inductive conditions directly
and is a complete approach.

3. According to our analysis, Wu–Ritt’s method has exponential complexity while Gröbner basis
method has double exponential complexity. Therefore, our approach is more efficient.

4. The main idea of CIM is “turning the difficulty of quality into the complexity of quantity”.
If Formula (5) is too difficult to deal with, CIM turns (5) into |SR| simpler implications without
free variables, then CIM is meaningful.

5. Parallelization is another advantage of CIM. CIM was created to be a parallel method. To raise
the computer’s calculation capacity, one important method is to develop both parallel machines
and parallel algorithms.

We also wish to extend CIM to the inequality field. In fact, the famous algorithm of cylindrical
algebraic decomposition (CAD) [45] is a typical algorithm of proving by instances.

Many algorithms rely on the computation of (comprehensive) Gröbner basis [19]. If the whole
task is too difficult to be accomplished using a Gröbner basis in one stroke, CIM can solve it by
using many instances. From another perspective, CIM can be regarded as a Divide and Conquer
(DAC)-type method. In Example 3, as it is too difficult to encode continuous consecution using a
comprehensive Gröbner basis, we can first use CIM to obtain nine simpler implications and then
apply (comprehensive) Gröbner basis, one-by-one. The combination of the CIM and (comprehensive)
Gröbner basis is another interesting research goal.

Author Contributions: Conceptualization and Formal analysis, H.H. and J.W.; Investigation, H.H. All authors
have read and agreed to the published version of the manuscript.

Funding: This work was partly supported by the National Natural Science Foundation of China under Grant
No. 61772006, the Science and Technology Program of Guangxi under Grant No. AB17129012, the Science
and Technology Major Project of Guangxi under Grant No. AA17204096,the Special Fund for Scientific and
Technological Bases and Talents of Guangxi under Grant No. AD16380076, and the Special Fund for Bagui
Scholars of Guangxi.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Henzinger, T.A. The theory of hybrid automata. Available online: https://pub.ist.ac.at/~tah/Publications/
the_theory_of_hybrid_automata.pdf (accessed on 10 April 2020).

2. Alur, R. Formal verification of hybrid systems. In Proceedings of the 2011 Ninth ACM International
Conference on Embedded Software (EMSOFT), Taipei, Taiwan, 9–14 October 2011; pp. 273–278.

3. Sankaranarayanan, S.; Sipma, H.B.; Manna, Z. Constructing invariants for hybrid systems. Form. Methods
Syst. Des. 2008, 32, 25–55. [CrossRef]

4. Kong, H.; He, F.; Song, X.; Hung, W.N.; Gu, M. Exponential-condition-based barrier certificate generation
for safety verification of hybrid systems. In Proceedings of the 25th International Conference on Computer
Aided Verification (CAV2013), Saint Petersburg, Russia, 13–19 July 2013; pp. 242–257.

5. Alur, R.; Dill, D.L. A theory of timed automata. Theor. Comput. Sci. 1994, 125, 183–235. [CrossRef]

https://pub.ist.ac.at/~tah/Publications/the_theory_of_hybrid_automata.pdf
https://pub.ist.ac.at/~tah/Publications/the_theory_of_hybrid_automata.pdf
http://dx.doi.org/10.1007/s10703-007-0046-1
http://dx.doi.org/10.1016/0304-3975(94)90010-8

Information 2020, 11, 246 25 of 26

6. Henzinger, T.A.; Kopke, P.W.; Puri, A.; Varaiya, P. What’s decidable about hybrid automata? J. Comput. Syst.
Sci. 1998, 57, 94–124. [CrossRef]

7. Bogomolov, S.; Donzé, A.; Frehse, G. Guided search for hybrid systems based on coarse-grained space
abstractions. Int. J. Softw. Tools Technol. Transf. 2015, 18, 1–19.

8. Bogomolov, S.; Frehse, G.; Grosu, R. A box-based distance between regions for guiding the reachability
analysis of SpaceEx. In Proceedings of the 24th International Conference on Computer Aided Verification
(CAV 2012), Berkeley, CA, USA, 7–13 July 2012; pp. 479–494.

9. Kong, H.; Bartocci, E.; Henzinge, T.A. Reachable Set Over-Approximation for Nonlinear Systems Using
Piecewise Barrier Tubes. In Proceedings of the 30th International Conference on Computer Aided Verification
(CAV2018), Oxford, UK, 14–17 July 2018; pp. 449–467.

10. Tiwari, A. Abstractions for hybrid systems. Form. Methods Syst. Des. 2008, 32, 57–83. [CrossRef]
11. Bogomolov, S.; Herrera, C.; Muniz, M. Quasi-dependent variables in hybrid automata. In Proceedings of

the 17th Int. Workshop on Hybrid Systems: Computation and Control, Berlin, Germany, 15–17 April 2014;
pp. 93–102.

12. Bogomolov, S.; Schilling, C.; Bartocci, E. Abstraction-based parameter synthesis for multiaffine systems.
In Proceedings of the 11th Haifa Verification Conference (HVC 2015), Haifa, Israel, 17–19 November 2015;
pp. 19–35.

13. Bogomolov, S.; Frehse, G.; Greitschus, M. Assume-guarantee abstraction refinement meets hybrid systems.
In Proceedings of the 10th Haifa Verification Conference (HVC 2014), Haifa, Israel, 18–20 November 2014;
pp. 116–131.

14. Boreale, M. Algorithms for exact and approximate linear abstractions of polynomial continuous systems.
In Proceedings of the 21st ACM International Conference on Hybrid Systems: Computation and Control,
Porto, Portugal, 11–13 April 2018; pp. 207–216.

15. Kong, H.; Bogomolov, S. Safety Verification of Nonlinear Hybrid Systems Based on Invariant Clusters. In
Proceedings of the 20th ACM International Conference on Hybrid Systems: Computation and Control,
Pittsburgh, PA, USA, 18–20 April 2017; pp. 163–172.

16. Zhang, J.; Yang, L.; Deng, M. The parallel numerical method of mechanical theorem proving. Theor. Comput.
Sci. 1990, 74, 253–271. [CrossRef]

17. Zhang, J.; Lu, Y. Principles of parallel numerical method and single-instance method of mechanical theorem
proving (in Chinese). J. Math. Pract. Theory 1989, 1, 36–45.

18. Rodríguez-Carbonell, E.; Tiwari, A. Generating Polynomial Invariants for Hybrid Systems In Proceedings of
the 8th International Workshop on Hybrid Systems: Computation and Control, Zurich, Switzerland, 9–11
March 2005; pp. 590–605.

19. Cachera, D.; Jensen, T.; Jobin, A.; Kirchner, F. Inference of polynomial invariants for imperative programs: A
farewell to gröbner bases. Sci. Comput. Program. 2014, 93, 89–109. [CrossRef]

20. Roux, P.; Voronin, Y. L.; Sankaranarayanan, S. Validating numerical semidefinite programming solvers for
polynomial invariants. Form. Methods Syst. Des. 2018, 53, 286–312. [CrossRef]

21. Tiwari, A.; Khanna, G. Nonlinear systems: Approximating reach sets. In Proceedings of the 7th International
Workshop on Hybrid Systems: Computation and Control, Philadelphia, PA, USA, 25–27 March 2004; pp.
171–174.

22. Prajna, S.; Jadbabaie, A. Safety verification of hybrid systems using barrier certificates. In Proceedings of the
International Workshop on Hybrid Systems: Computation and Control, Philadelphia, PA, USA, 25–27 March
2004; pp. 271–274.

23. Johnson, T.T.; Mitra, S. Invariant synthesis for verification of parameterized cyber-physical systems with
applications to aerospace systems. In Proceedings of the AIAA Infotech at Aerospace Conference, Boston,
MA, USA, 19–22 August 2013; p.4811.

24. Gulwani, S.; Tiwari, A. Constraint-based approach for analysis of hybrid systems. In Proceedings of the 20th
International Conference on Computer Aided Verification, Princeton, NJ, USA, 7–14 July 2008; pp. 190–203.

25. Sassi, B.; Amin, M.; Girard, A.; Sankaranarayanan, S. Iterative computation of polyhedral invariants sets for
polynomial dynamical systems. In Proceedings of the 53rd IEEE Conference on Decision and Control (IEEE
CDC2014), Los Angeles, CA, USA, 15–17 December 2014; pp. 6348–6353.

http://dx.doi.org/10.1006/jcss.1998.1581
http://dx.doi.org/10.1007/s10703-007-0044-3
http://dx.doi.org/10.1016/0304-3975(90)90077-U
http://dx.doi.org/10.1016/j.scico.2014.02.028
http://dx.doi.org/10.1007/s10703-017-0302-y

Information 2020, 11, 246 26 of 26

26. Liu, J.; Zhan, N.; Zhao, H. Computing semi-algebraic invariants for polynomial dynamical systems.
In Proceedings of the 11th International Conference on Embedded Software (EMSOFT 2011), Taipei, Taiwan,
9–14 October 2011; pp. 97–106.

27. Boreale, M. Complete Algorithms for Algebraic Strongest Postconditions and Weakest Preconditions in
Polynomial ODE’S. In Proceedings of the 44th International Conference on Current Trends in Theory and
Practice of Informatics, Krems, Austria, 29 January–2 February 2018; pp. 442–455.

28. Gallo, G.; Mishra, B. Wu-Ritt Characteristic Sets and Their Complexity. Discret. Comput. Geom. 1991, 6,
111–136.

29. Ritt, J.F. Differential Algebra; American Mathematical Society: Providence, RI, USA, 1950.
30. Wu, W. On the decision problem and the mechanization of theorem-proving in elementary geometry. Sci. China

1978, 29, 117-138.
31. Wu, W. Basic principles of mechanical theorem proving in elementary geometries. J. Autom. Reason. 1986, 2,

221–252.
32. Gallo, G.; Mishra, B. Efficient algorithms and bounds for Wu-Ritt characteristic sets. Eff. Methods Algebr. Geom.

1991, 94, 119–142.
33. Alur, R.; Courcoubetis, C.; Halbwachs, N.; Henzinger, T.A. The algorithmic analysis of hybrid systems. Theor.

Comput. Sci. 1995, 138, 3–34. [CrossRef]
34. Maler, O.; Manna, Z.; Pnueli, A. From timed to hybrid systems. In Proceedings of the REX workshop 1991,

Mook, The Netherlands, 3–7 June 1991; pp. 447–484.
35. Alur R.; Henzinger, T.A. Modularity for timed and hybrid systems. In Proceedings of the 8th InInternational

Conference on Concurrency Theory (CONCUR 1997), Warsaw, Poland, 1–4 July 1997; pp. 74–88.
36. Lygeros, J.; Tomlin, C.; Sastry, S. Controllers for reachability specifications for hybrid systems. Automatica 1999,

35, 349–370. [CrossRef]
37. Floyd, R.W. Assigning meanings to programs. In Proceedings of the Amer. Math. Soc. Symp. in Applied

Mathematics, Providence, RI, USA, 5–7 April 1967; pp. 19–32.
38. Hoare, C.A.R. An axiomatic basis for computer programming. Commun. ACM 1983, 12, 53–56. [CrossRef]
39. Wu, W.T. Mathematics Mechanization: Mechanical Geometry Theorem-Proving, Mechanical Geometry

Problem-Solving, and Polynomial Equations-Solving; Kluwer Academic Publishers: Norwell, MA, USA, 2001.
40. Cox, D.; Little, J.; O’Shea, D. Ideals, varieties, and algorithms. Am. Math. Mon. 1994, 101, 582–586.
41. Weispfenning, V. Comprehensive gröbner bases. J. Symb. Comput. 1992, 14, 669–683. [CrossRef]
42. Dubé, T.W. The structure of polynomial ideals and gröbner bases. Siam J. Comput. 1990, 19, 750–773. [CrossRef]
43. Sharma, R.; Gupta, S.; Hariharan, B.; Aiken, A.; Liang, P.; Nori, A.V. A data driven approach for algebraic

loop invariants. In Proceedings of the 22nd European Conference on Programming Languages and Systems,
Rome, Italy, 16–24 March 2013; pp. 574–592.

44. Padhi, S.; Sharma, R.; Millstein, T. Data-driven precondition inference with learned features. ACM Sigplan
Not. 2016, 51, 42–56. [CrossRef]

45. Collins, G. Quantifier elimination for real closed fields by cylindrical algebraic decomposition. In Proceedings
of the 2nd GI Conference on Automata Theory and Formal Languages, Kaiserslautern, Germany, 20–23 May
1975; pp. 134–183.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/0304-3975(94)00202-T
http://dx.doi.org/10.1016/S0005-1098(98)00193-9
http://dx.doi.org/10.1145/357980.358001
http://dx.doi.org/10.1016/0747-7171(92)90023-W
http://dx.doi.org/10.1137/0219053
http://dx.doi.org/10.1145/2980983.2908099
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Preliminaries
	Basic Lemmas
	Characteristic Set
	Hybrid System

	Theory of CIM
	Basic Lemma and Theorem
	Generate the Constraint for Implication by CIM

	Illustration of CIM
	A Special Case
	Experiments
	Experiment 1
	Experiment 2

	A Clever Use of CIM
	Conclusions
	References

