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Abstract: Entropy increases in the execution of linear physical processes. At equilibrium, all uncertainty
about the future is removed and information about the past is lost. Complex systems, on the other hand,
can lead to the emergence of order, sustain uncertainty about the future, and generate new information
to replace all old information about the system in finite time. The Kolmogorov–Sinai entropy for events
and the Kolmogorov–Chaitin complexity for strings of numbers both approximate Shannon’s entropy
(an indicator for the removal of uncertainty), indicating that information production is equivalent to the
degree of complexity of an event. Thus, in the execution of non-linear processes, information entropy
is inseparably tied to thermodynamic entropy. Therein, the critical decision points (bifurcations),
which can exert lasting impact on the evolution of the future (the “butterfly effect”), defy the definition
of being either born from randomness or from determination. Nevertheless, their information
evolution and degree of complexity are amenable to measurement and can meaningfully replace the
dichotomy of chance versus necessity. Common anthropomorphic perceptions do not accurately
account for the transient durability of information, the potential for major consequences by small
actions, or the absence of a discernible opposition between coincidence and inevitability.

Keywords: information; entropy; uncertainty; bifurcation; emergence; chance; randomness;
necessity; determinism

The terms “chance” and “necessity” are part of the daily vocabulary. However, they have been
difficult to define rigorously [1]. Simply the delineation of what is lawful and what is random has been
subject to debate. Karl R. Popper wrote about the differentiation of planetary movements as lawful and
of throws of dice as chance events that, thus far, prognoses of planetary orbits have been successful
while prognoses of individual throws of dice have not. Extending a rationale developed earlier by
Kurt Gödel, Popper demonstrated that self-prediction from within a system is impossible, and he was
consecutively led to become an indeterminist [2].

The concept of randomness may be characterized in various ways as an event without a perceivable
design (Appendix A(1)). The lack thereof can be reflected in the “random” mechanism of generation or
in the “random” pattern of output.

- Uncertainty in the mechanism that generates specific outcomes may produce randomness.
The throwing of dice is such a mechanism of uncertainty. Likewise, a string of numbers is random
if it is generated by an unpredictable mechanism [3]. The randomness resides in the disorder of
the generating process.

- The arrangement of a pattern or a string of numbers may reflect randomness. A string is random
because there is no inherent design that allows the prediction of consecutive digits or because
there are no simple rules that enable the description of the string in compressed form [4].
The randomness lies in the arrangement itself.
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Information (the removal of uncertainty, Appendix A(2)) and complexity (non-linearity,
not amenable to closed-form solutions) are intricately linked to our everyday understanding of
chance, but unlike “chance” or “randomness” these physical entities can be subjected to rigorous
definition and analysis. Whereas no information is yielded by equilibrium (stasis), information flow
(more accurately information evolution [5]) is tied to an occurrence (Section 1). The complexity
of that occurrence underlies the amount of new information generated (Sections 2 and 3), and it
produces emergent phenomena (Section 4). At the bifurcations that are inherent in non-linear systems,
infinitesimal influences can yield dramatically divergent results (Section 4), but any analysis of
deterministic versus indeterministic foundations for complex processes is bound to be unsuccessful
(Sections 5 and 6). Substantial implications derive from the transience of information, the potential
for major consequences by small actions at decision points (bifurcations), and the breakdown of the
dichotomy between chance and necessity.

1. Information is the Removal of Uncertainty

The information content of an event is principally quantifiable in the algorithms developed by
Claude Shannon [6]. An event with a certain outcome (a probability of 1) yields no new information.
The information content of a process is interpretable as the removal of the extent of uncertainty that
exists before its execution. This uncertainty constitutes the random or chance component inherent in this
process. With its execution, the random element is removed, and new information is communicated.

In Shannon’s model, communication takes place between a sender and a receiver via a channel,
the capacity of which is a critical determinant that is calculated from its noise characteristics. For all
communication rates below channel capacity, the probability of error can in principle become arbitrarily
small. However, theoretically optimized communication schemes may be computationally impractical.
Random processes have an irreducible complexity, below which the signal cannot be compressed.
The ultimate data compression is dubbed the entropy (Appendixes A(3) and A(4)). Entropy and mutual
information are functions of the probability distributions that underlie the process of communication.

2. Information Has a Finite Lifespan

A swinging pendulum must eventually come to a halt. Once at rest, the history of its swing
cannot be reconstructed by any means. The second law of thermodynamics states that a closed system
progresses toward a state of maximal entropy. Once this state is reached, all information on the
path that led to it is lost, as is any uncertainty about its future. Thermodynamics (Appendix A(5))
has introduced the asymmetry of time irreversibility into physical law, and it has established the
inescapability of losing information about the past (a form of “collective forgetting”).

The energy of physical systems is describable on the macroscale, which in classical mechanics
is completely intelligible and can be captured with deterministic algorithms, versus the micro-scale
of thermal motion, which is randomly distributed and can be expressed only as averages over
large numbers. In the epochs preceding non-linear systems research, the states of the microscales
were assumed to be uniform or stochastic and to constitute a lower limit of feasible explanation [7].
An adjustment of this concept is required in non-linear events that arise far from equilibrium,
where energy is believed to emerge from the microscales and affect the macroscopic outcome [8].

In dynamics, motion can be depicted as a flow along trajectories in a phase space that often maps
momentum versus position variables (sometimes velocity versus position) [9,10]. This phase space has
as many dimensions as the system has degrees of freedom. In laminar flow, motion is governed by
boundary and initial conditions, and no new information is generated, as outlined above. In turbulent
flow, information is continuously generated by the flow itself through an exchange between the micro-
and macro-scales. The average rate of information production (bits of information per unit time, denoted
as λ; the term is identical to the Lyapunov characteristic exponent [11]) is a measure for the rate of
divergence of nearby trajectories (Appendix A(6)). The transition of a system from laminar to turbulent
behavior is reflected in a change of the Lyapunov characteristic exponent from negative to positive,
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corresponding to a change of the system from an information sink to an information source, even if this
turbulent behavior is governed by simple system equations. The Lyapunov characteristic exponent
is a system state function that remains invariant under coordinate transformations. The information
generated anew by turbulent systems precludes prediction past a certain time, when new information
has accumulated to entirely displace the initial data. “New information is continuously being injected
into the macroscopic degrees of freedom of the world by every puff of wind and every swirl of
water” [8]. The loss of information about the initial state of a system is a physical reality, whether the
occurring process strives toward equilibrium or toward emergence.

3. Information and Complexity are Equivalent

An occurrence in phase space, state space, or event space is characterized by its occupancy
of the attributed space. In essence, such an analysis of occurrences in abstract space removes the
definition of dimensions from to the axes of concrete space and relieves its restriction to whole numbers.
The application of the Lyapunov characteristic exponent λ to such a conceptual space yields a measure
for the information flow (or the information evolution) associated with each step in the execution
of the event (Appendix A(7)). It lays the foundation for the calculation of a fractal dimensionality,
the Lyapunov dimension, that characterizes the information evolution of the event in its entirety.
This dimensionality gives an estimate of the Kolmogorov–Sinai entropy [12], which defines the
information change inherent in the execution of the process. The Lyapunov dimension DKY represents
an upper bound for the information dimension of the system (Appendix A(8)).

DKY = k +
k∑

i=1

λi∣∣∣λk+1

∣∣∣
k = maximum integer such that the sum of the k largest exponents is non-negative; λ = Lyapunov
characteristic exponent. The insertion of the Lyapunov characteristic exponent into this formula achieves
the connection between the complexity of a process, the execution of which impacts thermodynamic
entropy development, to its information entropy.

As non-linear systems dynamics studies algorithms that do not have closed-form solutions
(Appendix A(9)), its analyses draw heavily on information theory [13]. Complexity has been measured
in simple strings of 0s and 1s. A string is random if its shortest description is obtained by writing it out
in its entirety—the shortest description of the string is the string itself. The more compressible the
string, the less random it is. Connecting complexity and information content, the Kolmogorov–Chaitin
complexity (K) of a string is approximately equal to the Shannon entropy (H), if the sequence of the string
under study is drawn at random from a distribution that has the entropy H [14]. Specifically, for almost
all infinite sequences produced by a stationary process, the growth rate of the Kolmogorov–Chaitin
complexity is equal to the Shannon entropy rate. More broadly, diverse measures for information
change, entropy and dimensionality in conceptual space are interdependent (Table 1), suggesting that
these modalities of assessment largely equate to each other.
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Table 1. Entropy, information and dimension. Characteristics describing the measures of complexity. The far-right column describes connections among the
diverse measures.

Measure Formalism Area Description Explanation Interpretation Commonalities

Boltzmann entropy S = −kB
∑

pi ln pi thermodynamics entropy = degree of
disorder

dissipation of energy,
arrow of time

thermodynamic
entropy equivalent to

thermodynamic
information

Shannon entropy S = −
∑

i Pi log Pi = −EP[log P] communication entropy = ultimate data
compression

removal of the
uncertainty that exists
before communication

uncertainty constitutes
the random or chance
component inherent in

this process

with Boltzmann:
common origin in
probability theory,

common requirements

Rényi entropy Dα = lim
ε→0

1
α−1 log(

∑
i pαi )

log ε abstract space uncertainty =
dimension

connects uncertainty to
dimensionality of the

space, in which it
is measured

quantifies diversity,
uncertainty or

randomness of a system

generalization of the
Shannon entropy

Kolmogorov-Sinai
entropy

HKS = lim
ε→0

lim
t→0

(H∆t/t)) dynamical systems
information change

inherent in the
execution of a process

metric invariant of
a dynamical system

maximum capacity of
information that can be

generated by
a dynamical system

essentially Shannon
entropy per unit time

Kolmogorov-Chaitin
complexity KT(s) = min

{∣∣∣p∣∣∣, T(p) = s
}

number strings complexity =
non-compressibility

connects complexity
and information

content

reflective of the content
of information

growth rate often equal
to Shannon entropy rate

Lyapunov dimension DKY = k +
k∑

i=1

λi∣∣∣λk+1

∣∣∣ abstract space
upper bound for the

information dimension
of a system

estimates fractal
dimension of attractors

function of the
Lyapunov characteristic

exponents

estimate of the
Kolmogorov-Sinai

entropy

information dimension D1 = lim
ε→0

− log pε
log 1

ε
probability

fractal dimension of
a probability
distribution

information measure
for random vectors in

Euclidean space

measure for the fractal
dimension of
a probability
distribution

characterizes growth
rate of Shannon entropy

with fine-graining
of space

Mandelbrot dimension logε N = −D =
log N
log ε geometry statistical index of

complexity

ratio of the change in
detail to the change

in scale

measure for the
space-filling capacity of

a pattern

similar to box-counting
dimension
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4. Complexity Drives Emergence via Critical Decision Points

Complex systems are characterized by non-periodic flow with sensitive dependence on the starting
conditions, emergence of properties from non-equilibrium states, and generation of new information
to fully replace old information. Hence, there are limits to how precisely we can describe the evolution
of non-linear processes. Uncertainty about the future grows rapidly. Further, in the progression
of complex systems there exist decision points, at which infinitesimal influences can propel events
onto one of several very different future paths. Proceeding in this manner, the emergence of ordered
structures from non-equilibrium conditions has been described in physics [15], chemistry [16,17] and
evolution [18].

States in thermodynamic equilibrium (or states that equate to a minimal entropy production
in the linear thermodynamics of non-equilibrium) are stable states that are principally reversible.
Yet, irreversible processes play a fundamental and constructive role in the physical world. The laws of
irreversible processes [10] have embedded dynamics in a more comprehensive formalism that includes
unstable states. Non-equilibrium can lead to dissipative structures, wherein fluctuations introduce
a stochastic description into the macroscopic level. Instabilities far from equilibrium are essential
elements for emerging systems [19].

Evolution has been investigated as occurring in a conceptual state space, the shape of which is
defined by the distribution of properties across an ensemble (a fitness landscape; Appendix A(10)).
The initiating event for every step in evolution is a change (a mutation). Once a mutation has taken place,
its penetration of the population is subjected to the rule of selection. However, simple and complex
systems can exhibit powerful self-organization, and the effects of mutation and selection are diminished
when operating on systems that have their own robust self-ordered properties. Spontaneous order is
maintained despite selection, not because of it. Selection may only be able to mitigate the tendency for
adaptive processes to become trapped on continuously lower local optima of fitness as complexity
increases. While the selective force is stronger than the mutational force below a critical complexity
of an organism, above this critical complexity, the dispersing mutational pressure increases, and the
population falls from the global optimum to a suboptimal stationary steady state. Hence, the outcome
of selection is context dependent. It drives or maintains complex systems on the boundary between
order and chaos (sometimes dubbed “the edge of chaos” or “the onset of chaos”). At that boundary
(“the poised state”), systems are best able to coordinate complex tasks and evolve in a complex
environment [18].

A lack of periodicity is very common in nature. It is one of the distinguishing features of complex
systems, for which progression and advanced states are unpredictable [20]. Events that are governed
by non-linear differential equations have traditionally been considered deterministic on the basis of
their driving algorithms, even though the slightest immeasurable deviations in their initial states
can lead to dramatically different outcomes. For a finite system of ordinary differential equations
representing forced dissipative flow, frequently, all of its solutions are ultimately confined within the
same bounds. For these equations, non-periodic solutions cannot readily be determined, except by
numerical procedures. The evolution of dissipative systems under these equations is commonly
modeled with trajectories in phase space. Prediction of the sufficiently distant future is not feasible
by any method, unless the initial conditions are known exactly (an impossible feat, as detailed in
Section 5 below). There is an eventual necessity for any bounded system of finite dimensionality to
come arbitrarily close to acquiring a state it has previously assumed. Only if the system is stable will
its future development then remain arbitrarily close to its past history, and it will be quasi-periodic.
Unstable systems display the now-famous “butterfly effect”: one flap of a butterfly’s wings may
change the future course of the weather in a place far away. “The result [ . . . ] implies that two states
differing by imperceptible amounts may eventually evolve into two considerably different states.
If, then, there is any error whatever in observing the present state–and in any real system such errors
seem inevitable—an acceptable prediction of an instantaneous state in the distant future may well be
impossible.” [21].
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5. At the Critical Decision Points, Randomness Versus Determination Is Undecidable

It is principally impossible to assess whether decision points, such as bifurcations, are governed by
deterministic or indeterministic mechanisms. Phase space models have minimally discernible resolution
(Appendix A(11)), description beyond which is infeasible [8]. Thermodynamic considerations striving
to incorporate irreversibility into physical law have developed event space models, wherein internal
time and entropy become operators. The resolution of the description is restrained by the eigenvectors
and eigenvalues of the operators [10].

Non-linear systems research often describes events as trajectories in phase space. Such phase
space is divisible into blocks of minimum size that represent states. Their expansions constitute the
limits to the precision of obtainable knowledge. Progressive attempts to more precisely measure the
system eventually lead to the microscopic scale, wherein the uncertainty principle assures that the
more accurately the position in phase space is determined, the less accurately the velocity can be
assessed [22]. The analogous relationship exists between energy and time. Two trajectories become
indistinguishable after they have approached each other below the distance of a block size. At the
heart of non-linear systems are bifurcation points, where a system can evolve either toward one state
or toward another, yielding very different outcomes. The infinite accuracy of measurement at the
bifurcation point that would be required to predict which state a system will assume is impossible.
Hence, the unpredictability of complex systems is rooted in the physical limit on the precision of
obtainable knowledge [23].

In the vicinity of decision points (bifurcations), predictability under the law of large numbers is not
valid anymore. While the molecular interactions in chemical reactions or mechanical motion far from
equilibrium do not change from those in equilibrium, they do become dependent on global conditions.
The transition from the time-reversible formulas of chemistry or mechanics to the algorithms of
emerging processes is accomplished through a unique form of a non-local transformation, in which the
homogeneity of the space-time structure is eliminated and both entropy and time become operators in
an event space. This transition involves an internal time that is derived from the uncertainty associated
with the trajectories in unstable dynamic systems. The transformation leads to a spatiotemporally
non-local description [19]. Intelligibility is limited to the eigenvectors and eigenvalues of the operators.

6. Complexity and Chance Are Mirror-Images of the Same Events

Any discrete process, which maps the interval onto itself and whose reverse process is double-
or multiple-valued, fulfills the Li and Yorke criterion for chaos. Sequences of numbers obtained by
iteration of such processes (t indicates iteration steps) are mirror images of paths of random walks in
the reverse, branched processes [24]. A deterministic system may be defined as one whose future and
past are both unique functions of the present. On this basis, the difference equation (the logistic map
equation) is

xt+1 = k·xt ·(1− xt),

the inverse being

xt =
1
2
±

1
2

√
1−

4xt+1

k
,

which is not deterministic because there are two different pasts of equal probability, even though the
future is a unique function of the present. Iteration of the latter equation is still possible if rules are
defined to choose one of the two values. Generally, for any one-dimensional map, what is unstable
in the iteration of the forward process is stable in the iteration of the inverse process and vice versa.
If iteration of the inverse equation is performed with random choices at each step, there will be no
convergence toward a point or a cycle. The mirror image of this iteration will be a chaotic sequence
produced by the initial difference equation, as is evidenced if the last number of a sequence produced
by the inverse equation with random decision making at each iteration is used as the first number of
an iteration of the initial difference equation, which will yield the same sequence in reverse. That is,
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the same sequence of numbers can be produced by a stochastic as well as by a deterministic process.
Chaos in a one-dimensional difference equation can be viewed as reversed random walk [25].

7. Conclusions

The present analysis shows that the perception of a dichotomy between determined and
undetermined elements of the world is an artifact, generated by the human mind. A distinction
between a “random” occurrence and a complex “deterministic” occurrence is impossible to make as it
has no correlate in nature. Models in phase space (typically plotting impulse versus time) or event
space (an operator space) inherently have insufficient resolution to enable an assessment in favor of
one or the other (Section 5). Strings of numbers can reflect deterministic chaos (a form of complexity)
or randomness, depending on the order in which they are encountered (Section 6). By contrast, we are
enabled to measure new information produced by an event (through the Lyapunov characteristic
exponent) and the degree of complexity inherent in the event (through the information dimension) in
order to gain relevant, quantitative readouts (Section 3). Rather than a dichotomy between chance
and necessity, quantifiable information evolution and information dimension, as well as entropy,
are suitable scientific measures for the complexity of an occurrence, which can be interpreted as being
reflective of the “ordered” and “chance” components that contribute to this occurrence [5].

The universe is one coherent entity. Nevertheless, the traditional, reductionist description of
nature has typically categorized observations and created opposites that are purportedly mutually
independent, thus generating partial entities of the world that have been treated as detached from one
another. Such categorizations had the benefit of achieving tractability through a quasi-linearization
of descriptions [26]. The construct of a dichotomy between necessary events and chance events
enabled us—especially in the eras preceding computers and complexity research—to make meaningful
observations about parts of the world. However, it has given rise to centuries of discussions about world
views that span the entire spectrum from deterministic fatalism to indeterministic nihilism. The results
from non-linear systems research must lead to the conclusion that the dichotomous perception itself is
untenable. There is no meaningful answer to the question whether a complex event has originated in
chance or necessity. Only readouts for its extent of complexity are meaningful assessments.

Human societal value systems are often rooted in the idea of name recognition as a modality of
acknowledgement for achievement. For fame we compete. Yet, the present analysis has shown that
information generally has a finite lifespan. Eventually, name recognition—like all information—will be
replaced and the name will turn into smoke. Societies are emergent systems wherein new information
will eventually entirely replace old information. By contrast, miniscule actions at decision points
(bifurcations) of complex systems can have an irreversible and durable impact on the future. In keeping
with natural laws, actions—even small representations thereof—may deserve priority over attribution
of credit as the measure for contributions to progress.

Funding: This research received no external funding.

Conflicts of Interest: The author declares no conflict of interest.

Appendix A

(1). For a discussion of chance versus randomness see Eagle [27]. As the present discussion
negates the physical possibility to resolve the dichotomy between chance and necessity, the more
subtle distinction between chance and randomness becomes moot. Information flow (or information
evolution) and complexity (fractal dimensionality) are amenable to measurements and offer well suited
replacements for the difficult-to-define terms “chance”, “randomness”, “necessity” and “determination”
in the description of nature.

(2). Randomness is often explicated as unpredictability [28]. Hence, uncertainty is a reflection of
the random components of an event.
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(3). The formal convergence between the Shannon formula for entropy in information theory
and the Boltzmann formula for thermodynamic entropy has given rise to extensive debates over
meaningful connections between them. They have a common origin in probability theory, and they
need to satisfy common requirements such as additivity. “If one accepts the probabilistic interpretation
of the entropy, and agrees on the meaning of Shannon’s information, then the interpretation of the
thermodynamic entropy as thermodynamic information becomes inevitable” [29].

Other formulations of entropy have been proposed, which measure complexity in
dynamical systems (Kolmogorov–Sinai entropy; see Section 3) or in strings of numbers
(Kolmogorov–Chaitin complexity). They share with the Shannon entropy the dependence on
information. While Kolmogorov–Chaitin complexity is concerned with the content of information,
Shannon entropy is concerned with the missing information.

(4). The Rényi entropy [30] is a generalization of the Shannon entropy. In the limit where the
order approaches 1, the Rényi definition of entropy converges to the Shannon definition. An attractor
for which the Rényi dimensions are not all equal exhibits multifractal structure. Thus, the Rényi
dimension connects uncertainty to the dimensionality of the space (state space, phase space or event
space), in which it is measured.

(5). The concept of entropy was developed in the 1850s by Rudolf Clausius, who described it as
the transformation content (dissipative use of energy) of a thermodynamic system or working body of
chemical species during a change of state. Much of the mathematics for the field of thermodynamics
was then formulated in the 1870s by Ludwig Boltzmann and J. Willard Gibbs.

(6). Stable periodic orbits have a Lyapunov characteristic exponent (λ) that is negative. Only in
the hypothetical case of λ = 0 can transients persist indefinitely and information on the underlying
perturbation of the system be preserved.

(7). To be consistent with the second law of thermodynamics, proper equations of motion must
allow for the existence of an attractor. This is not the case for Newton’s laws or for Lagrangian and
Hamiltonian mechanics, but it is achievable through the redefinition of entropy and an internal time
in the form of operators. This description of dynamics in terms of operators dramatically reshapes
space-time [10,19]. However, due to the reliance on the eigenvectors and eigenvalues of the operators
for time and thermodynamic entropy, an assessment of the information evolution associated with
an event now requires algorithms that are independent of trajectories in phase space. To achieve this,
a reformulation of the Lyapunov characteristic exponent has been applied to the vector-based event
space [5].

(8). Sinai and Kolmogorov built on the Shannon concept of information entropy to determine
a measure for the complexity of the motion taking place in a dynamical system. Pesin later demonstrated
that, when the Kolmogorov–Sinai entropy is greater than 0, the dynamical system will display
non-linearity (chaos). According to Pesin’s theorem [31], the sum of all the positive Lyapunov
exponents gives an estimate of the Kolmogorov–Sinai entropy.

(9). In non-periodic flow, closed-form predictions are impossible because the information they
would represent simply does not exist prior to the operation of the mechanism.

(10). The movement over a fitness landscape is an alternative model to the progression of
a trajectory in phase space.

(11). “As soon as any trajectories approach within some distance ∆h of each other, they will
become indistinguishable. In any physical implementation of the system ∆h may vary depending
on the accuracy of the instrument measuring the system position, the thermal motion of the system,
or many other factors. However, even with “perfect” instruments and at absolute zero, ∆h can never be
reduced to zero. The Uncertainty Principle assures us that there is a minimum block size in phase
space, which is a physical constant of Nature. Should two orbits arrive within such a block, they are no
longer distinguishable, and the information represented in their separate origins is lost.” [8].
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