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Abstract: The projected introduction of conditional automated driving systems to the market has
sparked multifaceted research on human–machine interfaces (HMIs) for such systems. By moderating
the roles of the human driver and the driving automation system, the HMI is indispensable in
avoiding side effects of automation such as mode confusion, misuse, and disuse. In addition to safety
aspects, the usability of HMIs plays a vital role in improving the trust and acceptance of the automated
driving system. This paper aggregates common research methods and findings based on an extensive
literature review. Empirical studies, frameworks, and review articles are included. Findings and
conclusions are presented with a focus on study characteristics such as test cases, dependent variables,
testing environments, or participant samples. These methods and findings are discussed critically,
taking into consideration requirements for usability assessments of HMIs in the context of conditional
automated driving. The paper concludes with a derivation of recommended study characteristics
framing best practice advice for the design of experiments. The advised selection of scenarios and
metrics will be applied in a future validation study series comprising a driving simulator experiment
and three real driving experiments on test tracks in Germany, the USA, and Japan.

Keywords: conditionally automated driving; human–machine interface; usability; validity;
method development

1. Introduction

The introduction of conditionally automated driving (CAD) vehicles drastically alters the role of
the human in the car. Based on the definition of the Society of Automotive Engineers (SAE), CAD
or Level 3 automated driving means that the automated driving system (ADS) is responsible for the
entire driving task, while the human operator is ready to respond as necessary to ADS-issued requests
to intervene and to system failures by resuming the driving task [1]. The transition of the human
driver from the role of operator to the passenger role implies a paradigm change relative to the Level
2 or partially automated systems that are available today [1,2]. This paradigm change, including
transitions back and forth to lower levels of automated driving, affects the human–machine interface.
CAD implies that the human must take back control of the driving task in cases where the system
reaches a system boundary and in doing so, to resume manual driving. The resulting transition of
the driving task from the automation system to the human requires an appropriate communication
strategy as well as a human–machine interface (HMI) that supports the interaction between the two
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parties in general. New challenges in both HMI design for automated driving and CAD in particular
are addressed in this review paper.

This paper gives an overview of the status quo for usability assessments for automated driving
HMIs. Current practice is presented by summarizing the methodological approaches of study articles.
Additionally, theoretical articles such as literature reviews are included. Both are considered in the
derivation of best practice advice for experimental design. This best practice advice will be applied in
an international validation study for assessing the usability of CAD HMIs comprising four experiments
in three countries and two testing environments. In Germany, a driving simulator experiment and
a test track experiment are planned. Two further test track experiments are planned for Japan and
the USA. All four experiments will apply the same study design, ensuring the comparability of the
results. The articles in this paper have been aggregated using a predefined set of six categories. These
categories were identified in the research phase of the validation project and represent differences in
the methodological approaches.

Basing on the existing literature, this paper aims to derive a feasible practical and theoretical
experimental design that will be validated in the study series described above. The developed
experimental design serves as best practice for future studies in which the aim is to assess the usability
of CAD HMIs.

2. Paper Selection and Aggregation

This paper reviews 16 scientific articles that cover the usability assessment of CAD HMIs.
The selection includes study articles and theoretical articles. The selection process and the aggregated
data are presented in the following sections.

2.1. Paper Selection

Literature searches have been conducted in the literature manager Mendeley and Researchgate,
resulting in seven articles.

Additionally, a systematic review has been conducted via the search engine for scientific literature
Google Scholar. The process followed the guideline Preferred Reporting Items for Systematic Reviews
and Meta-Analyses (PRISMA) and is visualized in Figure 1 [3]. This guideline enhances the transparency
of the selection process by describing the stepwise narrowing of the chosen articles for the review.
For the identification of potential articles, different combinations of keywords such as “Usability”,
“Human–Machine Interface”, and “Conditionally Automated Driving” are applied. The first step in
the process resulted in 553 articles. The next step included the articles identified in other libraries or
databases, respectively. In total, 188 duplicates were removed. A first screening of the titles and the
abstracts lead to the exclusion of 346 further articles. After reading all articles, 10 more articles were
excluded due to a lack of relevance for this review. In the resulting selection of 16 articles, the usability
assessment of ADS HMIs for CAD is described.



Information 2020, 11, 240 3 of 15
Information 2020, 11, x FOR PEER REVIEW 3 of 16 

 

 
Figure 1. Process of the literature review based on the PRISMA guideline [3]. 

2.2. Aggregation 

The final selection includes 16 articles. Nine articles present experiments, which are hereafter 
referred to as study articles [4–12]. The seven other articles are of theoretical nature and are therefore 
referred to as theoretical articles [13–19]. There are several characteristics that define a study design. 
By taking into account both common practice and theoretical considerations, this review paper aims 
to derive best practice advice for researchers interested in the usability of CAD HMIs. 

Six experiment characteristics were chosen to meet the challenge of assessing usability in the 
development process. The literature search yielded different approaches for the usability testing of 
ADS HMIs. The differences identified in the first research phase resulted in the selection of six 
categories. These provide the structure of this paper, including the study characteristics’ dependent 
variables, and the testing environment. The definitions of the term usability applied in each of the 
selected articles are used to understand the research focus of each article. Furthermore, the sample 
characteristics, the test cases, and the conditions of use, i.e., initial versus repeat contact (see below), 
are considered. The characteristics listed below provide an insight into the methodological 
approaches of the nine empirical study articles and the discussed and recommended methodologies 
of the seven theoretical articles: 

• Definition of Usability 
• Testing Environment 
• Sample Characteristics 
• Test Cases 
• Dependent Variables 
• Conditions of Use 

The characteristics listed or applied in the 16 articles are summarized in the first paragraph of 
the following subsections and the respective tables. Every subsection closes with a critical discussion 
of the findings resulting in a recommendation of an experimental procedure or method. These 
recommendations form the best practice advice for usability assessments of CAD HMIs. 
  

In
cl

ud
ed

El
ig

ib
ili

ty
Sc

re
en

in
g

Id
en

tif
ic

at
io

n Articles identified from database
Google Scholar (n=553)
Keywords: “Usability“; ”L3“; 

”Conditionally Automated Driving“; 
“Conditional Automated Driving“; 

“Human-Machine-Interface“; “HMI“

Additional articles
identified through

ResearchGate, Mendeley, 
and the library of the
Chair of Ergonomics

(n=7)

Articles after removal of
duplicates (n=372)

Articles excluded title 
(n=316) and 

abstract (n=30) review

Articles included in final 
review (n=26)

Articles excluded after 
full-text review (n=10)

Total number of relevant 
articles (n=16)

Figure 1. Process of the literature review based on the PRISMA guideline [3].

2.2. Aggregation

The final selection includes 16 articles. Nine articles present experiments, which are hereafter
referred to as study articles [4–12]. The seven other articles are of theoretical nature and are therefore
referred to as theoretical articles [13–19]. There are several characteristics that define a study design.
By taking into account both common practice and theoretical considerations, this review paper aims to
derive best practice advice for researchers interested in the usability of CAD HMIs.

Six experiment characteristics were chosen to meet the challenge of assessing usability in the
development process. The literature search yielded different approaches for the usability testing
of ADS HMIs. The differences identified in the first research phase resulted in the selection of six
categories. These provide the structure of this paper, including the study characteristics’ dependent
variables, and the testing environment. The definitions of the term usability applied in each of the
selected articles are used to understand the research focus of each article. Furthermore, the sample
characteristics, the test cases, and the conditions of use, i.e., initial versus repeat contact (see below),
are considered. The characteristics listed below provide an insight into the methodological approaches
of the nine empirical study articles and the discussed and recommended methodologies of the seven
theoretical articles:

• Definition of Usability
• Testing Environment
• Sample Characteristics
• Test Cases
• Dependent Variables
• Conditions of Use
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The characteristics listed or applied in the 16 articles are summarized in the first paragraph of
the following subsections and the respective tables. Every subsection closes with a critical discussion
of the findings resulting in a recommendation of an experimental procedure or method. These
recommendations form the best practice advice for usability assessments of CAD HMIs.

2.2.1. Definition of Usability

The understanding of the term usability has a considerable influence on the experimental design
that researchers choose. Different definitions and operationalizations may result in a different study
design. To reflect these potential differences in design, the information on usability given in the
selected articles is compared in this subsection. Table 1 shows 12 of the 16 articles. Four articles do
not define or operationalize the term usability [4,5,8,15]. Five of the remaining articles [9,11,13,18,19]
give an insight into the authors’ understanding of the construct usability by the chosen dependent
variable(s), e.g., the acceptance, or metrics, e.g., the System Usability Scale (SUS) [20], the Post-Study
System Usability Questionnaire (PSSUQ) [21], or the acceptance scale of Van der Laan (VDL) [22].
Four articles [6,7,12,17] cite ISO Standard 9241 with its definition of usability as the “extent to which a
system, product or service can be used by specified users to achieve specified goals with effectiveness,
efficiency and satisfaction in a specified context of use” [23] (p. 2). However, the complete definition is
used only once [7], whereas three articles focus on the effectiveness and efficiency while leaving out the
construct satisfaction [6,12,17]. Ref. [12] adds the term “usefulness” to the constructs effectiveness and
efficiency. Two other articles cite the minimum requirements of the National Highway Traffic Safety
Administration (NHTSA) [16,17]. These requirements impose that the user of an ADS HMI must be able
to understand if the ADS is “(1) functioning properly; (2) currently engaged in ADS mode; (3) currently
’unavailable’ for use; (4) experiencing a malfunction; and/or (5) requesting control transition from the
ADS to the operator” [24] (p. 10). Ref. [17] applies the NHTSA minimum requirements to the two
constructs effectiveness and efficiency. The remaining two articles [10,14] cite Nielsen [25] who builds
usability from five constructs: learnability, efficiency, memorability, errors, and satisfaction.

Table 1. Aggregation of the definitions of usability.

Article ISO Standard 9241
[23] Nielsen [25] NHTSA Minimum

Requirements [24]

Operationalization
Through Dependent

Variables

Forster et al. (2019c) [6] Effectiveness and
efficiency

Forster et al. (2019d) [7] x

Kettwich et al. (2016) [9]

Satisfaction and
usefulness (VDL [22]),

expectations,
suggestions

Morgan et al. (2018) [10] x

Naujoks et al. (2017) [11] Comprehensibility,
SUS [20]

Richardson et al. (2018) [12]
Efficiency,

effectiveness, and
usefulness

Forster et al. (2018) 1 [13] SUS [20]/PSSUQ [21]
François et al. (2016) 1 [14] x
Naujoks et al. (2018) 1 [16] Usability and safety

Naujoks et al. (2019a) 1 [17]
Effectiveness and

efficiency x

Naujoks et al. (2019b) 1 [18] 20-item guideline

Pauzie and Orfila (2016) 1 [19]

Acceptability,
acceptance, trust,

situation awareness,
workload

1 Theoretical article.
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In addition to the implicit operationalization through dependent variables, only three sources
are cited for the 16 selected articles. These are the ISO Standard 9241 [23], the NHTSA minimum
requirements [24], and the Nielsen model for usability [25]. During examination of the articles, both
theoretical articles and study articles posed difficulties in working out the authors’ understanding of
usability. Considering that usability forms the focus of the research question, the underlying definition
or at least the operationalization should be communicated to the readers. We strongly advice applying
ISO Standard 9241 that comprises the constructs effectiveness, efficiency, and satisfaction [23]. Since
the ISO Standard does not elaborate on the detailed testing procedure, further operationalizations are
recommended, e.g., whether the effectiveness is tested in a setting with novice or experienced users.
When citing the NHTSA requirements for usability tests, researchers choose a different approach to
defining the term usability that considers the context of automated driving. Moreover, the usability is
rated according to the comprehension of the user that the ADS is “(1) functioning properly, (2) currently
engaged in ADS mode, . . . ” [24] (p. 10). This narrows down the practical realization of the usability
assessment. A combination of this approach and the definition of the general term usability based on
ISO Standard 9241 seems to be most applicable.

2.2.2. Testing Environment

Four of the theoretical articles provide no information on the testing environment in which the
usability assessment should be conducted [13–16]. Of the remaining 12 articles (shown in Table 2), the
use of an instrumented car is recommended twice [18,19], while the additional use of a high-fidelity
driving simulator is recommended by [18]. Ten of the 12 articles recommend or use a driving
simulator [4–11,17,18]. The details of the simulator are specified in most of the study articles. A fix-base
simulator is used in four articles [4,7,9,10], a moving-base simulator is used in two cases [5,6], and
in one other case, a low-fidelity simulator is described [11]. Ref. [12] does not use an instrumented
car or driving simulator; rather, desktop methods are applied where paper and video prototypes
are evaluated.

Table 2. Aggregation of the testing environments.

Article Driving Simulator Instrumented Car Desktop Methods

Forster et al. (2019a) [4] Fix-base
Forster et al. (2019b) [5] Moving-base
Forster et al. (2019c) [6] Moving-base
Forster et al. (2019d) [7] Fix-base

Guo et al. (2019) [8] x
Kettwich et al. (2016) [9] Fix-base
Morgan et al. (2018) [10] Fix-base
Naujoks et al. (2017) [11] Low-fidelity

Richardson et al. (2018) [12] Workshop
Naujoks et al. (2019a) 1 [17] x
Naujoks et al. (2019b) 1 [18] High-fidelity x

Pauzie and Orfila (2016) 1 [19] x
1 Theoretical article.

Driving simulators are the prevalent testing environment in the field of usability assessments of
ADS HMIs for CAD. Only two of the theoretical articles stress the need for real driving experiments,
e.g., with instrumented cars. Driving simulators provide efficient and risk-free testing environments
that provide valuable results [26]. For some research questions, they may even be the only realizable
testing environment, e.g., for testing critical situations in automated driving such as near crashes and
system failures in high-speed conditions. As the name implies, driving simulators do not equate with
reality. High-fidelity driving simulators increase the match with reality and are to be preferred over
low-fidelity simulators or desktop methods. The validity of driving simulators is assessed in several
studies [27]. For research results obtained in driving simulators used to assess the usability of CAD
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HMIs, the validity is yet to be verified. For practical reasons, driving simulators constitute the best
testing environment. However, a validation check for the research results is needed.

2.2.3. Sample Characteristics

This subsection aggregates the sample characteristics. Usability tests can be conducted with
experts or potential users [28,29]. Information on the participant group is provided by 14 articles of
this review [4–14,16–18]. Three theoretical articles recommend including both sample groups, i.e.,
experts and participants in the development process of an ADS HMI [13,16,18]. Two other theoretical
articles list users as participants [14,17]. Ref. [17] recommends a diverse age distribution as advised
in [30]. Moreover, the authors emphasize that participants should not be affiliated with the tested
system. Of the nine study articles, two conducted the usability assessment with 6 or 5–9 experts,
respectively [11,12]. In these articles, experts were described as working in the “field of cognitive
ergonomics” or “field of ergonomics, HMI, and function development from university and industry”.
The seven other study articles conducted their usability tests with potential users [4–10]. The reported
sample size varies between 12 and 57. The age distribution ranges between 20 and 62, except for [10],
where older adults between 47 and 88 years old were tested. Attention should be drawn to the fact
that of the seven experiments with potential users, five experiments were conducted with employees
of a car maker [4–8]. Table 3 shows an overview of the sample characteristics.

Table 3. Aggregation of the sample characteristics.

Article Users Experts

Forster et al. (2019a) [4] n = 24; age 20–62; BMW employees
Forster et al. (2019b) [5] n = 52; age 20–62; BMW employees
Forster et al. (2019c) [6] n = 55; age 20–62; BMW employees
Forster et al. (2019d) [7] n = 57; age 25–60; BMW employees

Guo et al. (2019) [8] n = 22; age 24–61; Renault or IRT
System X employees

Kettwich et al. (2016) [9] n = 12; age 23–49
Morgan et al. (2018) [10] n = 31; age 47–88
Naujoks et al. (2017) [11] n = 6; field of cognitive ergonomics

Richardson et al. (2018) [12]
n1 = 5, n2 = 9; field of ergonomics,

HMI, driver assistance systems; from
university and industry

Forster et al. (2018) 1 [13] x x
François et al. (2016) 1 [14] x
Naujoks et al. (2018) 1 [16] x x

Naujoks et al. (2019a) 1 [17]

n > 20; diverse age distribution [30];
potential users, comparable prior

experience, not affiliated with tester’s
company

Naujoks et al. (2019b) 1 [18] x n > 4
1 Theoretical article.

Conducting tests with potential users is the predominant method in the articles of this review.
Using experts as participants represents an efficient approach for identifying major usability issues
early in the development process. At advanced stages, tests with potential users are indispensable.
The participants should be selected with high demands to the representativeness. The population of
potential users of ADS has a high level of variability in its characteristics, e.g., prior experience or
physical and cognitive abilities. User testing is most valid and productive when a sample representing
potential users is being tested. Research using subpopulations could lead to biased results [31].
Therefore, when testing the usability of CAD HMIs, efforts should be made to keep the number of
participants with affiliations to technical or automotive domains to a minimum. Further characteristics
such as age or gender should be selected according to the represented user group. The sample size
varies greatly in the selected articles. The decision on sample size should be defined by the statistical
procedure used to identify potential effects of interest.
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2.2.4. Test Cases

The test cases in an experiment are strongly dependent on the research question. As the research
questions in the selected articles of this review all focus on the usability assessment of ADS HMIs
for CAD, the test cases are comparable. However, no details are considered; Table 4 shows only
test case categories. Ten of the 13 articles that provide information on test cases list transition
scenarios [4–7,11,12,15–18]. Downward transitions are found in each of these 10 articles. A more
detailed view shows that seven of these articles describe transitions to manual driving [6,7,11,12,16–18].
Eight articles [4–7,12,16–18] list test cases with upward transitions, e.g., SAE Level 0 (L0) to SAE Level 3
(L3) [1]. The system mode as well as the availability of automated driving modes are listed as dedicated
test cases in four articles [12,16–18]. Likewise, three experiments include test cases with information on
planned maneuvers, e.g., lane changes [7,11,12]. Two articles include test cases that represent different
traffic scenarios, e.g., traffic density [8,9]. Use of the navigation function is the focus of [10].

Table 4. Aggregation of the test cases.

Article Upward
Transitions 2

Downward
Transitions 2

System
Mode/Availability 2 Others

Forster et al.
(2019a) [4]

L0→ L2
L0→ L3
L2→ L3

L3→ L2

Forster et al.
(2019b) [5]

L0→ L2 (driver)
L0→ L3 (driver)
L2→ L3 (driver)

L3→ L2 (driver)

Forster et al.
(2019c) [6]

L0→ L2
L0→ L3
L2→ L3

L3→ L0 L3→ L2 L2
→ L0

Forster et al.
(2019d) [7]

L0→ Lx (initial)
L0→ Lx

(re-activation)
L0→ Lx

(re-activation)

Lx→ L0 (driver) Lx
→ L0 (system; TOR)

Lx→ L0 (driver;
TOR)

Maneuver (lane change,
speed adaptation)

Guo et al. (2019)
[8]

Highway entry section
with different traffic

conditions
Kettwich et al.

(2016) [9] Environment (traffic light)

Morgan et al.
(2018) [10]

Operating a navigation
system

Naujoks et al.
(2017) [11] Lx→ L0

Maneuver and
environment (splitting
lanes, curvature, speed

limit)
Richardson et al.

(2018) [12] L0→ Lx Lx→ L0 x

Gold et al. (2017)
1 [15] x

Naujoks et al.
(2018) 1 [16] 84 TC 84 TC 14 TC

Naujoks et al.
(2019a) 1 [17] L2→ L3

L3→ L2 (driver)
L3→ L2 (system) L3
→ L1 (system)

L3→ L0 (system)

L2 steady state L3
steady state L3
degraded L3
unavailable

Naujoks et al.
(2019b) 1 [18] L0→ Lx Lx→ L0 x

1 Theoretical article. 2 [1].

In the articles considered in this review, most of the test cases comprise transitions between
or the availability of different automation modes, which are mostly referred to as SAE levels [1].
Successful transitions and the operator’s understanding of the automated driving modes are important
for the safe and efficient handling of the ADS. If the usability is tested and the human operator fails
to understand the information communicated by the HMI, improvement measures for the HMI are
inevitable. Therefore, the interaction of the operator with the ADS should be tested regarding these
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functions. In addition to test cases directly related to automation modes, another type of test case can
be applied when assessing the usability. These are test cases where usability evaluations refer to the
handling of additional systems such as navigation systems or the radio. Non-driving-related activities
(NDRA) are of high importance for usability evaluations where the human operator is involved in the
driving task [2]. With the introduction of CAD, the focus of usability assessments is on transitions
and the automation modes themselves. Additionally, this review concludes with a recommendation
for testing non-critical scenarios. Critical situations are important for assessing safety aspects. These
situations have a low probability of occurring. In particular, situations with high criticality are not
suitable for usability assessments, e.g., tests that determine the range of reaction times with a crash
rate of 100%. For a thorough evaluation of usability, comprising constructs such as satisfaction of the
ISO Standard 9241 [23], recurring non-critical situations are more appropriate.

2.2.5. Dependent Variables

Three of the theoretical articles do not provide information on dependent variables [14–16].
The dependent variables stated in the theoretical articles or applied in the study articles of the
remaining 13 articles are shown in Table 5. The dependent variables are categorized in constructs,
while information on the specific metrics is added in the respective cells. More generally, the variables
can be categorized into observational and subjective data. Six articles recommend or report the use of
observational data [4,5,8,11,13,19]. Ref. [13] recommends collecting both data types; the interaction
performance with a system or secondary task, as well as the visual behavior. Two other articles
name visual behavior (e.g., the number of gaze switches) as a suitable metric [5,19]. The interaction
performance is assessed either directly based on the reaction time or the number of operating steps/errors
or indirectly by expert assessments. In total, four articles list this type of a dependent variable [4,8,11,13].
The SUS [20] is widely used and belongs to the subjective measures. The questionnaire is listed by
six of the 13 articles [6,7,10–13]. Two other dedicated usability questionnaires are utilized in one
article each; the Post-Study System Usability Questionnaire [21] by [13] and the standardized ISO
9241 Questionnaire [32], as cited by [12]. Other constructs that interrelate with usability such as
acceptance, which correlates with the construct satisfaction of ISO 9241 [23], are tested by several
articles in this review. These constructs report further questionnaires. Questionnaires on acceptance are
used three times [7,9,19], e.g., the VDL [22] or the Unified Theory of Acceptance and Use of Technology
(UTAUT) [33]. Questionnaires on trust such as the General Trust Scale (GTS) [34] or the Universal
Trust in Automation scale (UTA) [35] are reported three times [7,10,19]. Constructs such as workload
(cited by [10,19]), measured, for example, using the metric NASA Task Load Index (NASA-TLX) [36],
situation awareness (cited by [10,19]), measured, for example, using the metric Situation Awareness
Global Assessment Technique (SAGAT) [37], or the mental model of drivers (cited by [4,5]), measured,
for example, using the mental model questionnaire by Beggiato [38], are each listed twice. Additional
questionnaires that are reported only once can be found in Table 5. In addition to questionnaires,
methods such as the Thinking Aloud Technique [39], applied by [8,9,11], or heuristic evaluations [40],
applied by [12,17,18], are commonly used, especially for expert studies. Furthermore, interviews,
expert evaluations, and spaces for suggestions and comments are often used to gain insights that
standardized methods cannot provide [8,9,11,19].
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Table 5. Aggregation of the dependent variables. NDRA: non-driving-related activities. UEQ: User
Experience Questionnaire. meCUE: modular evaluation of key Components of User Experience. SART:
Situation Awareness Rating Technique. ATCQ: Attitudes Towards Computers Questionnaire. DALI:
Driving Activity Load Index.

Article

Observational Metrics
(Visual Behavior,

Interaction and NDRA
Performance, etc.)

Usability Questionnaire Other Constructs (Questionnaires)
and Methods

Forster et al.
(2019a) [4] Experimenter rating Mental model [38]

Forster et al.
(2019b) [5]

Visual behavior (no. of gaze
switches) Mental model [38]

Forster et al.
(2019c) [6] SUS [20]

Forster et al.
(2019d) [7] SUS [20]

Acceptance (VDL [22], UTAUT [33]);
trust (Trust in Automated Systems [41],
UTA [35]); user experience (AttrakDiff

[42], UEQ [43], meCUE [44])
Guo et al. (2019)

[8]
Time & frequency of button

use
Interview; Thinking Aloud Method

[39]
Kettwich et al.

(2016) [9]
Acceptance (VDL [22]); interview

thinking aloud method [39]

Morgan et al.
(2018) [10] SUS [20]

Workload (NASA-TLX [36]); Trust
(ATS [41], GTS [34]); Situation

Awareness (SART [45]); Technical
Affiliation (ATCQ [46])

Naujoks et al.
(2017) [11]

Take-Over Performance No.
of unnecessary system

deactivations
SUS [20] Interview; Expert Evaluation

Richardson et al.
(2018) [12]

SUS [20], ISO 9241 [32] as
cited by [12]

Desirable HMI Aspects [47]; Thinking
Aloud Method [39]; Heuristic

Evaluation [40]

Forster et al.
(2018) 1 [13]

Visual Behavior; Reaction
Times; Interaction and

NDRA Performance; Expert
Assessment

SUS [20], PSSUQ [21]

Naujoks et al.
(2019a) 1 [17] Heuristic Evaluation [40]

Naujoks et al.
(2019b) 1 [18] Heuristic Evaluation [40]

Pauzie, & Orfila
(2016) 1 [19] Visual Behavior

Acceptance; Workload (DALI [48]);
Trust; Situation Awareness (SAGAT

[37], SART [45]); Interview
1 Theoretical article.

Summarizing the listed dependent variables, usability appears as a well-defined construct ([23])
that can be assessed via multifaceted metrics. Depending on the research questions, different dependent
variables seem more applicable than others. Nevertheless, patterns can be detected. A combination
of observational and subjective data is used by 6 of the 13 articles that provide information on
dependent variables [4,5,8,11,13,19]. The SUS [20] is widely used by the researchers cited in this
review. Where individual research questions are concerned, further questionnaires can be used to
evaluate constructs such as trust, acceptance, or workload. If information for specific research interests
cannot be extracted via standardized methods, interviews, the Thinking Aloud Technique or heuristic
evaluations can be applied. When combining these dependent variables, mutual impacts should be
considered. For example, applying the Thinking Aloud Technique is not suitable in combination with
interaction performance measurements such as reaction times. For tests with potential users, this
review recommends a combination of observational metrics that measure the behavior and subjective
metrics that gather the operator’s personal impressions. For observational data, analysis of the visual
behavior based on ISO 15007 [49] and the interaction performance using the ADS HMI seem most
applicable. Possible metrics are the number of operating errors, the reaction time for a button press
or the percent time on an area of interest, e.g., the instrument cluster. The SUS is recommended as a
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valid and widely used usability questionnaire. Supplementary questionnaires should be selected with
regard to the specific research question. If usability is not the only construct of interest in an experiment,
the link between the dependent variables and the constructs should be clearly stated. Standardized
metrics should be used to enable comparisons between experiments and create transparency with other
researchers. Short interviews provide valuable insights that can be tailored to the specific research
question. Interviews should be conducted after test trials and questionnaires to avoid distorted results.

2.2.6. Conditions of Use

When the usability of a system is tested, the duration of use and the prior experience need to
be considered. The conditions can range between the first contact between a novice user and the
system and everyday use by an experienced user. The first contact can be tested with prior experience,
e.g., after reading the manual, after conducting an interactive tutorial, or after being instructed by
an advisor. Prolonged use can be interpreted as a series of repeat contacts between the user and the
operator within a few hours or in the scope of a long-term study. The articles analyzed in this review
generally do not provide detailed information on the conditions of use that is of research interest.
Table 6 shows an overview with aggregated information on the nature of the usability testing provided
by 14 of the articles in this review. In all 14 articles, first contact is tested or, in the case of the theoretical
articles, it is recommended to be tested [4–14,16–18]. In four of these cases, the testing circumstances
are specified as testing intuitive use without having first being given detailed instructions [5,6,8,16].
Another article investigates the influence of different tutorials and therefore tests both tutorials and
intuitive use [4]. Of the 14 articles that test first contact, seven also assess repeat contact with the
system [5,6,10,12–14,17].

Table 6. Aggregation of the conditions of use.

Article First Contact Repeat Use

Forster et al. (2019a) [4] Intuitive use, manual, and interactive
tutorial

Forster et al. (2019b) [5] Intuitive use x
Forster et al. (2019c) [6] Intuitive use x
Forster et al. (2019d) [7] x

Guo et al. (2019) [8] Intuitive use
Kettwich et al. (2016) [9] x
Morgan et al. (2018) [10] x x
Naujoks et al. (2017) [11] x

Richardson et al. (2018) [12] x x
Forster et al. (2018) 1 [13] x x

François et al. (2016) 1 [14] x x
Naujoks et al. (2018) 1 [16] Intuitive use

Naujoks et al. (2019a) 1 [17] x x
Naujoks et al. (2019b) 1 [18] x

1 Theoretical article.

Testing the first contact when assessing the usability of an ADS HMI appears to be the predominant
method. Only a few of the selected articles tested repeat contacts when assessing usability. Prolonged
use in the form of a long-term study testing everyday use is not considered in the articles selected for
this review. Both first contact and prolonged use are important aspects to consider when evaluating
usability. A successful first contact is highly important from the point of view of safety. This means
that the handling of a system is intuitively understandable without consulting the manual—similar,
for example, to a human driver using a rental car without first familiarizing themselves with the car’s
handling. For research effects such as disuse, misuse, or even abuse of a system, the consideration of
prolonged use in everyday situations is critical [50]. As it poses a different type of research question, it
requires a different kind of experiment. In alignment with most of the articles, this review concludes
by recommending first contact tests. The NHTSA minimum requirements state that an HMI must be
designed in such a way that a user understands if the ADS is “(1) functioning properly; (2) currently
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engaged in ADS mode; (3) currently “unavailable” for use; (4) experiencing a malfunction; and/or
(5) requesting control transition from the ADS to the operator” [24] (p. 10). The fulfillment of these
requirements can be checked by assessing usability in a first contact situation. This requires that
participants are not given detailed instructions, such as pictures of the HMI requesting a control
transition, prior to the first contact. Instead, participants should only receive instructions with general
information on ADS.

3. Discussions

In this review paper, 16 selected articles focusing on usability assessments for ADS HMIs for
CAD are analyzed. Information on methodological approaches, study characteristics, as well as
the understanding of the term usability has been aggregated. The insights gained are used to draw
conclusions on best practice for researchers investigating the usability of CAD HMIs. In this section,
the recommendations are discussed and incorporated in more general advice on usability testing.

Three different sources are cited for the understanding of the term usability [23–25]. Yet, many
articles do not provide information on the definition used. The definitions of the three sources result
in different study designs than those that would have been derived had a different definition been
selected. In order to assess the usability of CAD HMIs, we advise applying a combination of ISO 9241
and the NHTSA minimum requirements [23,24]. However, other definitions, e.g., [25], might be better
suited for specific research questions. In general, it is important to provide an operationalization of the
term usability when conducting assessments, especially where standards are not applied.

For practical reasons, the review concludes with the recommendation of high-fidelity driving
simulators. Depending on the development stage, other testing environments may prove more
applicable. For early prototypes, desktop methods provide valuable insights with minimal resource
input. Real driving tests can help in the refinement process of preproduction products.

This review recommends that usability tests should be conducted with potential end users.
These tests are indispensable for final usability evaluations. Other participants, such as experts
or users that represent only a segment of the user population, e.g., students or participants with
affiliations to technical or automotive domains, can provide valuable insights at earlier stages of the
development process.

The test cases listed in the best practice advice of this review focus on transitions between,
and the availability of, different automation levels in non-critical situations. These test cases are
recommended for general usability assessments of ADS HMIs for CAD. Other test cases in this review
cover usability assessments of HMIs displaying information on more complex scenarios, such as
maneuvers, navigation systems, or dense traffic. These test cases are relevant for specific research
questions, e.g., the design of integrated functions in the CAD HMI.

A set of metrics for testing the usability of CAD HMIs is listed in this paper. Depending on the
study design and the research question, further metrics might prove suitable in obtaining valuable
research findings. Researchers should clearly indicate the link between dependent variables and the
respective definition or construct of interest.

This review recommends that the usability tests be performed in first contact situations without
in-depth instructions on how to use the system having been provided prior to the testing situation.
Where research questions not focusing on the NHTSA minimum requirements are concerned, the use of
manuals or tutorials might be applicable in order to equalize the knowledge and experience level of the
participants. In addition to testing first contacts, the everyday use of ADS is of great interest, especially
in the context of CAD. The transition of the human driver from operator to passenger could generate
side effects such as disuse, misuse, or abuse of the ADS, which might impair safety. The assessment of
these effects poses an interesting and important topic for future research.
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4. Conclusions

This paper reviews 16 articles, comprising both study and theoretical articles. These articles are
analyzed in respect of six study characteristics. The insights into common practice and theoretical
considerations lead to a derivation of best practice advice. This advice is aimed at helping researchers
who are interested in usability assessments of CAD HMIs in the planning phase of a study. Furthermore,
the comparability of studies in this field increases with the application of similar experimental designs.
Table 7 summarizes the key statements of the derived best practice.

Table 7. Best practice advice for testing the usability of conditionally automated driving (CAD)
human–machine interfaces (HMIs). ADS: automated driving system.

Study Characteristic Best Practice Advice

Definition of Usability

General Definition: “extent to which a system, product or service can be used by specified
users to achieve specified goals with effectiveness, efficiency and satisfaction in a specified
context of use” [23] (p. 2)
Practical Realization: the user understands that the ADS is “(1) functioning properly; (2)
currently engaged in ADS mode; (3) currently “unavailable” for use; (4) experiencing a
malfunction; and/or (5) requesting control transition from the ADS to the operator” [24] (p. 10)

Testing Environment Driving Simulator

Sample Characteristics
Sample Group: represents the potential user population (age, gender, prior experience,
affiliation with technical devices, etc.)
Sample Size: determined by the statistical procedure

Test Cases
Scenarios: (1) transitions between different automation modes and (2) availability of different
automation modes
Criticality: non-critical situations

Dependent Variables

General: Combination of observational and subjective metrics
Observational metrics: (1) visual behavior according to [49] (e.g., percent on Area of Interest)
and (2) the interaction performance with CAD HMI (e.g., operating errors or reaction time for
a button press)
Subjective Metrics: (1) System Usability Scale [20], (2) short interviews after test trials and
questionnaires, and (3) supplementary standardized questionnaires

Conditions of Use First contact between user and ADS
Instructions contain only general information on the ADS

5. Outlook

In this review, driving simulators are identified as the prevalent testing environment in the field
of usability assessments of ADS HMIs for CAD. As an efficient and risk-free alternative to real driving
experiments, simulators offer a convenient and valuable testing environment. Since the validity of
driving simulators has not yet been assessed, the transferability of results to the real world is not assured.
A thorough validation study comparing a simulator and a test track experiment is advisable. This forms
the foundation for a future validation study series comprising a driving simulator experiment and
three real driving experiments on test tracks in Germany, the USA, and Japan.
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