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Abstract: Subject-independent emotion recognition based on physiological signals has become
a research hotspot. Previous research has proved that electrodermal activity (EDA) signals are
an effective data resource for emotion recognition. Benefiting from their great representation
ability, an increasing number of deep neural networks have been applied for emotion recognition,
and they can be classified as a Convolutional Neural Network (CNN), a Recurrent Neural Network
(RNN), or a combination of these (CNN+RNN). However, there has been no systematic research
on the predictive power and configurations of different deep neural networks in this task. In this
work, we systematically explore the configurations and performances of three adapted deep neural
networks: ResNet, LSTM, and hybrid ResNet-LSTM. Our experiments use the subject-independent
method to evaluate the three-class classification on the MAHNOB dataset. The results prove that the
CNN model (ResNet) reaches a better accuracy and F1 score than the RNN model (LSTM) and the
CNN+RNN model (hybrid ResNet-LSTM). Extensive comparisons also reveal that our three deep
neural networks with EDA data outperform previous models with handcraft features on emotion
recognition, which proves the great potential of the end-to-end DNN method.
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1. Introduction

Robust information about the emotional state of a user is key to providing an empathetic
experience during human–machine interaction (HCI) [1]. To make the interaction go well, it is
important to ensure that the computers can understand the feelings of users through the interaction
process [2]. In recent decades, emotion recognition has become a significant field in HCI, and it has
been applied in a wide range of areas such as usability testing, development process improvement,
enhanced website customization, and video games [3].

In the study of emotion recognition, different data resources have been applied, including facial
and body expressions, eye gaze, audio signals, physiological signals (ECG, EEG, and EDA/GSR),
respiration amplitude, and skin temperature [4]. Among these data resources, physiological signals
have been paid more attention in studies recently, as they can reflect the emotional states objectively,
while expressions and body motions can be influenced by subjective behavior and therefore misleading.
In the research on emotion recognition based on physiological signals, studies have come up with a
subject-dependent method [5]. In this field, subject-dependent means that the source of data comes
from the same person. After decades of research, the subject-dependent method has achieved an
accuracy of more than 90% [6]. However, the subject-dependent model is not satisfying on robustness
and universality, as the performance shows instability when moving from experiment participants to
the general population [7]. Hence, some researchers have started to focus on the subject-independent
method, where the data is acquired from multiple persons. Compared to the subject-dependent
method, the great generality determines that the subject-independent approaches perform better on
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different subjects. Until now, researchers still haven’t achieved a satisfying recognition accuracy [8–11].
Circumventing this problem, we make great attempts on subject-independent emotion recognition in
this work.

Many studies in the past years have focused on physiological signals, such as EEG [12,13],
ECG [14,15], and EDA [9,10]. Compared with other physiological signals, EDA can be measured on
the skin surfaces of hands and wrists in a non-invasive way. Benefiting from this easy and efficient
acquisition method, the EDA-based emotion recognition algorithm has a broad application prospect in
the development of sensors, Internet of Things (IoT), and intelligent wearable devices. Moreover, EDA
is controlled by the autonomic nervous system, which corresponds to the arousal state of people [16].
On the other aspect, EDA has fewer channels and data, compared to EEG signals. Therefore, making
full use of the limited EDA data is a great challenge in the field of EDA-based emotion recognition.

The methods of physiological-signal-based emotion recognition can be classified into two types
based on how features are extracted: Hand-crafted feature selection and auto feature extraction.
In the first method, hand-crafted features can be extracted in the time domain, the frequency domain,
the time-frequency domain, etc. [17]. After that, the hand-crafted features are fed into classifiers such
as KNN [18] and SVM [19]. However, the formula of feature extraction is established manually, which
means that it cannot extract other unknown important features. The method based on auto feature
extraction can solve the defect of hand-crafted feature selection. It utilize deep learning networks,
which can extract implicit and complex features automatically. In the field of emotion recognition
based on physiological signals, an increasing amount of advanced research uses the auto feature
extraction method rather than hand-crafted feature selection for its advantages mentioned above.
Hence, we choose the auto feature extraction method utilizing deep learning model.

According to the ability of utilizing sequential messages, deep neural networks can be divided
into Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs). As EDA is a
sequence in the time domain essentially, we intuitively conduct an RNN to mine the sequential
relationships between different periods of EDA signals. Meanwhile, the CNN has achieved
great performance in sequential classification tasks, such as video classification [20,21] and audio
classification [22,23]. Therefore, it is necessary to compare CNN and RNN models as regards
EDA-based emotion recognition. Considering the descriptive powers of CNNs and the ability to
capture sequential features of RNNs, researchers have also combined the advantages of CNNs and
RNNs to propose hybrid CNN+RNN networks, the effectiveness of which has been demonstrated
in language identification [24], video-based emotion recognition [25], etc. To the best of the authors’
knowledge, no previous study has tackled a systematic comparison of the three above-mentioned
networks. Hence, we seek to compare the performance of CNN, RNN, and CNN+RNN on EDA-based
emotion recognition in this paper.

To compare CNN, RNN, and CNN+RNN, we need to choose a typical structure for each of them.
There are many CNN architectures, such as VGG [26], GoogLeNet [27], and ResNet [28]. Benefiting
from the advantage of solving the degradation problem, ResNet has been broadly used in various tasks
such as object detection [29] and image classification [30]. Thus, we choose ResNet as the backbone
of our CNN model. To fit with the EDA signal, we adapt the original ResNet to replace the 2D
convolution operation with 1D convolution operation. For RNN, we choose the most popular LSTM
network and adapt it to fit our task. For consistency of the comparison, the CNN+RNN network is
composed of ResNet and LSTM as well. To make full use of the representation ability of DNN, we
apply CvxEDA [31] to decompose the dynamic and static changes from original EDA inputs (more
details in Section 3.1).

In this work, we systematically compare three typical deep neural networks for EDA-based
emotion recognition. To make full use of limited 1-channel EDA signals, we apply a novel EDA
analysis method—the Convex Optimization-Based EDA method (CvxEDA) [31]—to decompose EDA
into phasic and tonic components. After that, the three-channel EDA signals (the origin signal parallels
with tonic and phasic signals) are, respectively, fed into ResNet, LSTM, and hybrid ResNet-LSTM
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for emotion classification. To fit with our task, the dimension of the convolutional operation in the
original ResNet is changed from 2D to 1D, which can directly process the sequential EDA signal.
We evaluate our models in the commonly used open-source dataset MAHNOB-HCI for three-class
classification. The extensive ablation experiments are used to systematically compare the performance
between the different structures of three types of deep neural networks, the results of which also
demonstrate the superiority of the deep neural network by comparison with previous methods in the
MAHNOB-HCI dataset.

The rest of this article is structured as follows: Section 2 reviews the related works, including the
theories of emotion models and EDA analysis. Section 3 presents our proposed method. Section 4
discusses the results, and Section 5 presents the conclusions.

2. Related Work

2.1. Theories of Emotion Models

Emotion is a complex concept and has many different descriptions when emphasizing different
aspects such as feelings of arousal and/or hedonic value, appraisal and/or labeling processes,
external emotion generating stimuli, and the relationship between emotion and motivation [32].
One definition [32] written by Theodore D. Kemper in 1978 is that “emotion is a relatively short-term
evaluative response essentially positive or negative in nature involving distinct somatic (and often
cognitive) components.”

For further study, researchers built emotion models to evaluate people’s emotions in qualitative
and quantitative ways. The main emotion models can be classified into discrete, dimensional,
dynamical, and appraisal models. Discrete models consider emotions to be discrete and mixable.
The color wheel model proposed by Plutchik [33] is a typical discrete model (see Figure 1). In this
model, emotions are just like colors. There are eight basic emotions (joy, trust, fear, surprise, sadness,
disgust, anger, and anticipation) in a ring order, which is analogous to the primary colors. Other
emotions can be created by mixing two basic emotions. For example, the mixture of “joy” and “trust”
creates a new emotion “love”, just like the color orange can be acquired from mixing red and yellow.

Figure 1. Color wheel model proposed by Plutchik.

Dimensional models are very different from discrete models. In the theory of dimensional models,
emotions such as joy, trust, and surprise all have strong intrinsic connections within each other, rather
than being isolated, and have some common features that can be measured quantitatively. Based
on this theory, dimensional models appear as coordinate systems with two dimensions or multiple
dimensions; each axis (or dimension) represents a feature, and different emotions are at different
positions of the coordinate system. Figure 2 shows the valence and arousal model proposed by
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Russel [34], which is the most representative dimensional model and is most used in the study of
emotion recognition. Russel’s model is quantized by the discrete values in the 2D coordinate of
valence and arousal. In this model, the valence axis represents the level of positive or negative, where
high valence means pleasant and low valence means unpleasant, and the arousal axis represents the
intensity of the emotion, where high arousal means activation and low arousal means deactivation.
For further explanation, emotions such as stressed and nervous show high valence and low arousal,
while excited shows both high valence and high arousal; depressed shows both low valence and low
arousal, while relaxed shows high valence and low arousal.

Figure 2. Valence and arousal model proposed by Russel.

The valence and arousal model established a quantifiable evaluation index for emotions, and our
work is based on this model.

2.2. EDA Analysis

EDA is a general term for the autonomic changes in the electrical properties of the skin [35].
Electrodermal activities are formed and influenced by many complex factors. According to
neurophysiology and psychophysiology research, EDA reflects the sweat gland activities on the skin
surface, which is innervated by the autonomic nervous system (mainly the sudomotor nerves) [35].
The underlying reason for the connection between EDA and sweat gland activities is that sweat on the
skin surface can change the electrical conductivity of the skin. Furthermore, the sweat gland activities
is influenced by people’s emotional states and changes. One simple example in our daily experience
is that people sweat when they are scared and nervous. These findings prove that human emotional
states can indeed be speculated from EDA signals, and the theoretical foundation for the study of
emotion recognition can therefore be conducted based on EDA.

Generally researchers use skin conductance (SC), a representative manifestation of EDA, as the
parameter measured in experiments. SC activity is composed of two parts: Tonic and phasic activity.
The tonic signal is a slowly changing baseline that is caused by the drifting skin conductance level
(SCL) and other unconscious activities. The phasic signal, also known as skin conductance response
(SCR), is a quick response caused by external stimuli emotion (e.g., changes in emotional states).
The EDA data that researchers collect from the experiment equipment are the origin SC signals, which
need to be decomposed into tonic and phasic signals.

For the process of EDA, there are model-based methods, including discrete deconvolution analysis
(DDA), continuous decomposition analysis (CDA), and convex optimization-based electrodermal
activity (CvxEDA). DDA uses nonnegative deconvolution to decompose SC data into discrete compact
responses [36], and CDA outperforms DDA by establishing a continuous measure that reflects the
origin signal more closely [37]. CvxEDA is a more advanced method brought up by A. Greco et al.
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recently in 2016 [31]. As it was shown by Greco et al. that CvxEDA has a stronger correlation and
discriminant ability than CDA [35], we choose cvxEDA to decompose the EDA signal in this work.

3. Materials and Methods

In this work, we attempt to use three typical deep neural networks: CNN (ResNet), RNN (LSTM),
and CNN+RNN (ResNet-LSTM) to promote the recognition baseline on the MAHNOB-HCI dataset
and systematically compare the performance between them. Before being fed into the DNN models,
the origin signal was decomposed into tonic and phasic signals using the CvxEDA method. We then
divided the signals equally into three networks, respectively, for training. The DNN models output
the prediction probability of three classes with a nonlinear function method and choose the class with
the maximum probability as the final result. Compared with the corresponding ground truth labels,
we obtained the performance of models with evaluation metrics.

3.1. CvxEDA

The convex optimization-based electrodermal activity (CvxEDA) [31] is used to decompose the
origin EDA signal into tonic and phasic signals. The model of CvxEDA can be written as

y = r + t + ε, (1)

where y represents the origin EDA signal, r represents the phasic signal, t represents the tonic signal,
and ε represents the noise produced by measurement and modeling errors.

The tonic signal t is composed of B-spline functions as well as the offset and linear trend term

t = Bl + Cd, (2)

where B-spline functions make up the columns of the matrix B, l represents the spline coefficients,
C represents a Nx2 matrix (Ci,1 = 1, Ci,2 = i/N), and d is a vector that represents the offset and
linear trend.

The phasic signal can be modeled by the Bateman function

h(τ) = (e−
τ
τ0 − e−

τ
τ1 )u(τ), (3)

where τ0 and τ1 represent the slow and fast time constants, respectively, and u(τ) represents the step
function. We transform Equation (3) through the Laplace transform and replace s as

s =
2
δ

z− 1
z + 1

, (4)

where δ is the sampling interval. Following the ARMA model, we can finally obtain the phasic
expression of discrete-time approximation as

r = MA−1 p, (5)

where M (Mi,i = Mi,i−2 = 1, Mi,i−1 = 2, 3 ≤ i ≤ N) and A (Ai,i = ψ, Ai,i−1 = θ, Mi,i−2 = ξ, 3 ≤ i ≤ N,
ψ, θ and ξ are constants calculated from τ0, τ1 and δ) represent the tridiagonal matrix, respectively, and
p is the activity of the autonomic nervous system.

According to Equations (2) and (5), Equation (1) can be written as

y = MA−1 p + Bl + Cd + ε. (6)



Information 2020, 11, 212 6 of 16

Using the maximum a posteriori estimation, the parameters p, l, and d can be represented as

[p, l, d] = argmax
p,l,d

P(p, l, d|y). (7)

According to Bayes’ theorem, we have

P(p, l, d|y) ∝ P(y|p, l, d)P(p)P(l)P(d), (8)

where p can be written as a Poisson distribution [38], l as a normal distribution, and P(p, l, d|y) as an
error model, while P(d) is discarded from further computations. Therefore, we have the transformed
equation as

lnP(p, l, d|y) = − 1
2σ2

N

∑
i=1

(MA−1 p + Bl + Cd− y)2
i −

1
λδ

N

∑
i=1

(p)i −
1

2σ2
l

Q

∑
i=1

l2
i + const. (9)

Finally, Equation (9) can be written into an optimization problem:

minimize
1
2
‖MA−1 p + Bl + Cd− y‖2

2 + α‖p‖1 +
γ

2
‖l‖2

2, subj. to p ≥ 0. (10)

The optimization problem of Equation (10) can be easily solved by many existing methods. More
details can be seen in [31].

3.2. ResNet

The ResNet [28] was brought up by K He et al. In 2015. ResNet is an excellent deep convolutional
neural network, broadly used in image recognition and image feature extraction. ResNet mainly
solves the degradation problem in convolutional neural networks with deeper layers (such as VGG) by
presenting a residual learning block. As shown in Figure 3, the residual learning block has an “identity
shortcut connection” to skip some layers and feed the data straight into the next layer.

Figure 3. Residual learning block.

The output of the block can be represented as

y = W2((W1(x))) + W3(x), (11)

where x is the input, W1 and W2 are the convolutional layers, and W3 is the downsampling operation.
Our model is adapted from the backbone of ResNet and we substitute a one-dimensional

convolution for a two-dimensional convolution in ResNet in the area of emotion recognition based on
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EDA. ResNet and many other deep convolutional neural networks are brought up in the image domain
with two-dimensional convolution operation for image feature extraction. If applying the original
2D ResNet, the 1D input signal should be rearranged to a 2D matrix, like in [11]. However, the 2D
convolutional kernel will disturb the sequential distribution to extract features. As the physiological
signals such as EDA and EEG are one-dimensional sequences, we replaced the two-dimensional
convolution into a one-dimensional convolution to process input signal directly and conveniently. We
use the one-dimensional ResNet to extract features and feed the feature vector into a regression layer
to obtain the prediction of three classes. The structure of our ResNet is shown as Table 1.

Table 1. The structure of our one-dimensional ResNet. Each convolution layer in this network is
followed with a batch normalization operation.

Layer Name Input Channel Output Channel Kernel Size Stride Padding ReLU

Conv_original 3 64 7 × 1 2 3 Y

MaxPool1 64 64 3 × 1 2 1 N

ConvGroup1_X
64 64 3 × 1 2 1 Y
64 64 1 × 1 2 0 N
64 64 3 × 1 1 1 Y

ConvGroup2_X
64 128 3 × 1 2 1 Y
64 128 1 × 1 2 0 N

128 128 3 × 1 1 0 Y

ConvGroup3_X
128 256 3 × 1 2 1 Y
128 256 1 × 1 2 0 N
256 256 3 × 1 1 1 Y

ConvGroup4_X
256 512 3 × 1 2 1 Y
256 512 1 × 1 2 0 N
512 512 3 × 1 1 1 Y

ConvDown 512 512 1 × 1 3 0 N

MaxPool2 512 512 14 × 1 1 0 N

Regression
Linear 256 × 1 Y

Linear 3 × 1 Y
SoftMax N

3.3. LSTM Network

One of the special RNN structures is the LSTM. It has a more complex structure to solve the
problem of gradient vanishing in a conditional RNN. It is capable for capturing information that has
connections between long distances and is especially suitable for long-sequence feature extraction.
Figure 4 shows the structure of LSTM. It has a repeating module for recurrence, as do all other RNNs,
but is much more complex.

Figure 4. Structure of the repeating LSTM module.
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Each module contains a forget gate, an input gate, an output gate, and a cell state (ct). The cell
state is the core of LSTM. It runs like a belt through the repeating modules: It receives messages from
the previous cell state, adjust the messages, and then delivers them to the next cell state. The gates
are used to control the delivery process and filter the messages in the network by using a sigmoid
function. The forget gate decides how much information that the cell state receives from the previous
one should be maintained. The maintained information can be written as

ft = σ(Wi f xt + bi f + Wh f h(t−1) + bh f ), (12)

where σ represents the sigmoid function, Wi f and Wh f represent the weight coefficients, bi f and bh f
represent the biases, xt represents the input, and ht−1 is both the state of the hidden layer and the
output of the previous module. The input gate screens the information from the input and the previous
output, and generates new information together with a tanh function. This process can be described as

it = σ(Wiixt + bii + Whih(t−1) + bhi) (13)

gt = tanh(Wigxt + big + Whgh(t−1) + bhg), (14)

where it represents the input, gt represents the result of the tanh function, and W and b, respectively,
represent the weight coefficients and biases. Information from the forget gate and the input gate
constitute a new cell state:

ct = ftc(t−1) + itgt, (15)

where ct represents the cell state. The output gate selects the information from the input and the
previous output as well, and together with a tanh function decides the new output:

ot = σ(Wioxt + bio + Whoh(t−1) + bho) (16)

ht = ot ∗ tanh(ct), (17)

where ot represents the output gate, and ht is the output and is sent to the next module as the
hidden state.

The structure of our LSTM model is shown in Figure 5. The input EDA signal is fed into each
LSTM module point by point, each point containing three channels (phasic, tonic, and origin). Each
LSTM module outputs an eigenvector (also called the state of the hidden layer mentioned above) to
the next. At the end of the final module, there is a regression layer that contains the stacked linear
functions, ReLU functions, and the SoftMax function to predict the classification.

Figure 5. The LSTM model. The signal is fed into each LSTM module point by point, and each point
contains three channels (phasic, tonic, and origin).

3.4. ResNet-LSTM

The ResNet-LSTM network combines both the descriptive power of ResNet and the sequential
features capturing the ability of LSTM. The main structure of ResNet and LSTM in this hybrid network
are essentially the same as the single ResNet and LSTM mentioned above. As illustrated in Figure 6,
in this ResNet-LSTM network, the EDA signal is fed into ResNet as a three-channel input (phasic,
tonic, and origin) first. The ResNet structure outputs a one-dimensional eigenvector and feeds it into
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the LSTM structure. Similar to the single LSTM, there is a regression layer containing a linear function
at the end of the final LSTM module for three-class classification.

Figure 6. ResNet-LSTM model. The signal is first fed into ResNet as a three-channel input (phasic,
tonic, and origin).

4. Implementation Details

In this work, we use a public benchmark dataset, MAHNOB-HCI, of EDA signals. The emotional
states of MAHNOB-HCI are labeled with nine emotion keywords in valence and arousal dimensions.
Following the baseline of the MAHNOB-HCI dataset [4], we relabeled nine emotional states to three
classes, conducted classification with our models, and evaluated the performance with an average
accuracy and F1 score. The details are described as follows.

4.1. Dataset

The MAHNOB-HCI [4] is a popular emotion dataset for affective computing. The 32-channel EEG
and multiple physiological signals including EDA, ECG, RSP, and TMP signals were recorded from
30 participants in response to external stimulus (video and imagery) [4]. MAHNOB-HCI includes
two experiments: An emotion recognition (also called emotion elicitation) experiment and an implicit
tagging experiment. The data we used in this work are from the emotion elicitation experiment,
in which 27 participants were asked to watch 20 emotional videos. To be more specific, in each sample,
a neutral clip was shown first to relax the participant’s emotion, and the emotional video was then
played, after which the participant filled in the form. EDA (GSR) and other physiological signals were
recorded 30 s before and after the emotional video. After watching each video, participants conducted
a self-assessment with nine emotion keywords.

Referring to the previous baseline in [9,10], we utilized the valid samples downloaded from the
dataset server in the "Selection of Emotion Elicitation" item. We followed the annotation strategy
of [4,9,10] to relabel the nine annotations for three-class classification as shown in Table 2.
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Table 2. Three emotional classes of MAHNOB-HCI on valence and arousal.

V/A Label Emotion Keywords

valence
1 fear, anger, anxiety, sadness, disgust
2 neutral, surprise
3 joy, amusement

arousal
1 sadness, disgust, neutral
2 joy, amusement
3 surprise, fear, anger, anxiety

4.2. Evaluation Metrics

Accuracy and F1 score are used as evaluation metrics in this work. In this subsection, we briefly
introduce their definitions as follows.

Accuracy is calculated as

accuracy =
Ncorrect

Ntotal
, (18)

where Ncorrect is the number of samples classified correctly, and Ntotal is the number of total
samples. In this work, accuracies are all finally calculated in averages, which are subject to 10-fold
cross validation.

F1 score is based on precision and recall:

precision =
TP

TP + FP
(19)

recall =
TP

TP + FN
, (20)

where TP, FP, and FN represents true positive (predicted as positive and actually active), false
positive (predicted as positive but actually negative), and false negative (predicted as negative but
actually active).

As this is a three-class problem. there are F1 scores for each class and an average F1 score for the
overall classifier:

F1score =
2× precision× recall

precision + recall
, (21)

and the overall average F1 score can be presented as

F1 =
F11 + F12 + F13

3
, (22)

where F11, F12, and F13, respectively, represent the F1 score of each class.

5. Experiment

5.1. Training Setup

As described in the previous sections, we built three models based on ResNet, LSTM, and hybrid
ResNet-LSTM network, respectively. To figure out the best configuration of each model, three ablation
experiments about the structure settings were conducted. After establishing the best architecture of
each DNN model, we conducted an analysis comparing the three DNN models to discover which
model performs best on EDA-based emotion recognition. Finally, we compared the results of the DNN
models in this work with the existing studies based on the MAHNOB-HCI dataset.

In our experiments, emotions are classified based on the three-class strategy mentioned in Table 2,
and results are evaluated based on the metrics in Section 4.2. It should be emphasized that accuracies
shown in this work were all subject to 10-fold cross validation. For consistency of the comparison, each
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model was trained for 25 epochs with the Stochastic Gradient Descent (SGD) optimizer. The initial
learning rate was set to 0.001, which was decreased by multiplying it by 0.1 at every five epochs.
The detailed experimental results and analyses of our experiments will be described as follows.

5.2. Configuration of ResNet

For ResNet, the configuration is addressed on the number of stacked residual learning blocks
(Res-blocks) in one convolutional group, seen in Table 1. More residual blocks means a deeper network.
The depth of the DNN model is one of the key factors that influence the performance of the network.
Previous research has shown that a deeper network generally has a better performance in image
classification [28]. However, the relationship between the depth of ResNet and its performance has not
been studied in the field of EDA-based emotion recognition in the MAHNOB-HCI dataset. Moreover,
the deeper model is followed with a higher computational expense and a slower processing speed.
We seek to balance recognition performance with computing expense. Therefore, we conducted an
ablation experiment to consider three different values (1, 2, and 3) for the number of stacked Res-blocks
and compared the original 2D ResNet with our adapted 1D ResNet.

Table 3 shows the configuration sets of ResNet in this experiment, and Table 4 shows the
experiment results. From the results, we can see that the adapted 1D ResNet is superior than the
original 2D ResNet. Moreover, with the increase of the stacked Res-block number, the accuracies
do not significantly improve. This reveals that the representation ability of the simplest ResNet is
good enough to distinguish the EDA signals from different emotional states in the MAHNOB-HCI
dataset. Considering that the deeper network will bring a greater cost of GPU memory and time, we
choose the architecture with one Res-block in one convolutional group (Configuration ID 1) as the best
architecture for ResNet.

Table 3. ResNet configuration sets.

Configuration ID 1 2 3 4 5 6

number of stacked Res-blocks 1 2 3 1 2 3
convolutional dimension 1D 1D 1D 2D 2D 2D

Table 4. The performances of different configurations of ResNet for valence and arousal. The average
accuracies (Accu%) and F1 score (%) are subject to 10-fold cross validation.

Configuration ID 1 2 3 4 5 6

valence Accu 86.73± 3.41 86.96± 4.53 87.14± 6.37 84.96± 4.12 84.14± 5.02 85.80± 3.31
F1 score 85.72± 2.93 85.87± 3.75 86.02± 4.93 83.42± 3.01 82.99± 2.87 83.80± 2.15

arousal Accu 86.92± 4.22 86.68± 3.67 87.07± 5.73 86.22± 4.35 86.53± 4.29 86.42± 4.03
F1 score 85.96± 3.61 85.42± 4.13 85.83± 5.18 84.87± 3.05 85.02± 3.73 85.87± 4.25

5.3. Configuration of LSTM

The hidden cell dimension and the layer dimension are two adjustable configurations of LSTM.
For LSTM in physiological signal analysis [39], common settings of the hidden cell dimension are 128
and 256, and layer dimensions can be deepened from 1 to 2 or 3. To determine the best LSTM structure,
we designed the ablation experiment from a combination of the numbers of hidden cell and layer
dimensions. Table 5 shows the configuration sets of LSTM in this experiment, and Table 6 shows the
experiment results.

Table 5. LSTM configuration sets.

Configuration ID 1 2 3 4 5 6

hidden cell dimension 128 128 128 256 256 256
layer dimension 1 2 3 1 2 3
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Table 6. The performances of different configurations of LSTM for valence and arousal. The average
accuracies (Accu%) and F1 score (%) are subject to 10-fold cross validation.

Configuration ID 1 2 3 4 5 6

valence Accu 76.42± 4.61 82.12± 2.36 80.45± 2.51 76.61± 3.93 82.65± 3.35 81.48± 3.74
F1 score 74.59± 4.12 81.46± 2.67 78.71± 4.92 75.03± 4.95 80.84± 2.35 79.39± 4.21

arousal Accu 66.85± 7.81 75.58± 5.68 74.32± 5.90 67.27± 7.36 75.61± 3.82 74.80± 4.55
F1 score 65.83± 6.96 74.71± 3.47 71.86± 4.33 65.94± 5.74 74.44± 5.00 72.05± 6.31

Comparing the performances between the different configurations, we can see that LSTM with
one layer dimension (Configuration ID 1 and 4) performs poorly, which reveals that one layer is too
shallow for mining useful features from complex EDA signals; LSTM with three layer dimensions
(Configuration ID 3 and 6) is not as good as LSTM with two layer dimensions (Configuration ID 2 and
5), which means that deeper LSTM leads to instability and increases training difficulty; LSTM with
two layer dimensions (Configuration ID 2 and 5) balance representation ability and training difficulty
to obtain the best performance. Configuration ID 5 achieves the highest accuracies in terms of both
valence and arousal, but is very similar to Configuration ID 2. As mentioned in Section 5.2, we choose
the simpler LSTM (Configuration ID 2) configured with 128 hidden cells and two layers as the best
architecture for LSTM.

5.4. Configuration of Hybrid ResNet-LSTM

The previous two ablation experiments indicate that ResNet performs well with low stacked
Res-block numbers, and LSTM shows better performances with 128 or 256 hidden cell dimensions
and two layer dimensions. To avoid unnecessary repetition, we combined the better configurations
of the single ResNet and LSTM to obtain four sets of configurations for the Hybrid ResNet-LSTM
(see configuration sets in Table 7 and results in Table 8).

Table 7. Hybrid ResNet-LSTM configuration sets.

Configuration ID 1 2 3 4

number of stacked Res-block 1 1 2 2
hidden cell dimension 128 256 128 256

layer dimension 2 2 2 2

Table 8. The performances of different configurations of Hybrid ResNet-LSTM for valence and arousal.
Accuracies (%) and F1 score (%) are subject to 10-fold cross validation.

Configuration ID 1 2 3 4

valence average accuracy 82.53± 5.61 82.12± 4.21 81.97± 7.63 82.74± 5.37
F1 score 80.82± 1.87 80.53± 1.12 80.19± 2.29 81.03± 2.39

arousal average accuracy 81.34± 4.19 81.47± 7.87 80.66± 6.84 81.52± 4.50
F1 score 80.70± 1.53 81.03± 3.67 80.26± 3.70 80.87± 4.03

Corresponding to the results in Sections 5.2 and 5.3, the testing accuracies and F1 scores of four
configurations are nearly closed. Therefore, the simplest structure (Configuration ID 1) is chosen as
the best architecture for hybrid ResNet-LSTM. The best architecture consists of the ResNet with one
Res-block and the LSTM with two-layer and 128 hidden cells.

5.5. Comparison of ResNet, LSTM, and Hybrid ResNet-LSTM

After establishing the best architectures of the three deep neural networks, we can do some
analysis on their performances. We directly utilize the respective experiment results of the three best
architectures from Sections 5.2–5.4 to produce Table 9.
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Table 9. The comparison of ResNet, LSTM, and Hybrid ResNet-LSTM model for valence and arousal.
Accuracies (%) and F1 score (%) are subject to 10-fold cross validation. The best results are highlighted in bold.

V/A Model Average Accuracy F1 Score

valence
ResNet 86.73 ± 3.41 85.71 ± 2.93
LSTM 82.12± 2.36 81.46± 2.67

ResNet-LSTM 82.53± 5.61 80.82± 1.87

arousal
ResNet 86.92 ± 4.22 85.96 ± 3.61
LSTM 75.58± 5.68 74.71± 3.47

ResNet-LSTM 81.34± 4.19 80.70± 1.53

Obviously, ResNet achieves the best performance among the three DNN models, which means that
the CNN framework has a greater ability to mine dynamic and static features from decomposed EDA
data compared to the RNN and hybrid CNN+RNN. Considering that our task is to predict a global
emotional state with a sequential EDA input, the reason LSTM network achieves the poorest results is
that it pays a great amount of attention to conducting sequential processing over time and ignores some
global information. Moreover, as described in Section 5.3, the training difficulty of LSTM is also a strong
factor. While the hybrid ResNet-LSTM combines the advantages of a CNN and RNN, the complicated
hybrid architecture further promotes the training difficulty, which limits the model performance.

5.6. Comparison with Baselines in MAHNOB-HCI Dataset

We conduct some comparisons between the three DNN models in this work and the existing
approaches for emotion recognition of three-class classification using physiological signals of the
MAHNOB-HCI dataset to validate the effectiveness of the DNN-based methods. Considering that
there are very few methods only using EDA signals in the MAHNOB-HCI database, we also involve
approaches using other signals. Ferdinando et al. [9] utilize a KNN classifier with handcrafted features
to complement baseline accuracies for the MAHNOB-HCI database. They further [10] promote
emotion recognition using fused physiological features. Moreover, Liu et al. [40] apply the LSTM with
the combination of EEG signals and external videos features. We compare the three DNN models
(described in Section 5.5) with them, which can be seen in Table 10. For the three-class prediction task
in MAHNOB-HCI, almost all of the three DNN models in this work outperform the existing methods
in terms of the valence and arousal dimensions. Moreover, the ResNet model in this work improves
the recognition accuracy significantly and performs much better than the previous methods, which
validates the superiority of the deep convolutional neural network in this task.

Table 10. Comparison with the state-of-the-art three-class classification tasks in the MAHNOB-HCI dataset.
Accuracies (%) and F1 score (%) are subject to 10-fold cross validation. The best results are highlighted in bold.

V/A Author Model Signal Average Accuracy F1 Score

valence Ferdinando et al. [41] KNN ECG+HRV 68.60± 4.40 -
liu et al. [40] LSTM EEG+video 72.06 73.00

Ferdinando et al. [9] KNN EDA 74.60± 3.80 -
Ferdinando et al. [10] KNN EDA+HRV 79.60± 3.70 -

Our LSTM EDA 82.12± 2.36 80.82± 2.67
Our ResNet-LSTM EDA 82.53± 5.61 80.82± 1.87
Our ResNet EDA 86.73 ± 3.41 85.71 ± 2.93

arousal Ferdinando et al. [41] KNN ECG+HRV 70.70± 4.30 -
liu et al. [40] LSTM EEG+video 74.12 72.30

Our LSTM EDA 75.58± 5.68 74.71± 3.47
Ferdinando et al. [9] KNN EDA 77.30± 3.60 -
Ferdinando et al. [10] KNN EDA+HRV 77.70± 3.90 -

Our ResNet-LSTM EDA 81.34± 4.19 80.70± 1.53
Our ResNet EDA 86.92 ± 4.22 85.96 ± 3.61
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6. Conclusions

In this work, we investigate three typical deep neural networks—ResNet, LSTM, and hybrid
ResNet-LSTM—with respect to an EDA-based three-class emotion recognition task and systematically
conduct ablation experiments to compare the different structures and their advantages. The comparison
between the three DNN networks and the existing methods shows that the CNN-based ResNet in this
work has the best performance: It has the best average accuracy (86.73%) and F1 score (85.71%) for
valance, and the best average accuracy (86.92%) and F1 score (85.95%) for arousal in the MAHNOB-HCI
dataset, which validates that the CNN framework is superior in EDA-based emotion recognition.
The great performance of ResNet can make the following contributions: (1) The great representation
ability of the end-to-end deep learning network can directly extract useful features from EDA signals;
(2) the novel CvxEDA decomposition augments the one-channel EDA data to obtain phasic and tonic
components, and the phasic and tonic signals can, respectively, reveal dynamic and static emotion
changes. For further research, we will explore more novel CNN architectures to enhance the accuracy
and generalization of models for EDA-based emotion recognition.
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