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Abstract: As students’ behaviors are important factors that can reflect their learning styles and
living habits on campus, extracting useful features of them plays a helpful role in understanding
the students’ learning process, which is an important step towards personalized education.
Recently, the task of predicting students’ performance from their campus behaviors has aroused
the researchers’ attention. However, existing studies mainly focus on extracting statistical features
manually from the pre-stored data, resulting in hysteresis in predicting students’ achievement and
finding out their problems. Furthermore, due to the limited representation capability of these
manually extracted features, they can only understand the students’ behaviors shallowly. To make
the prediction process timely and automatically, we treat the performance prediction task as a
short-term sequence prediction problem, and propose a two-stage classification framework, i.e.,
Sequence-based Performance Classifier (SPC), which consists of a sequence encoder and a classic
data mining classifier. More specifically, to deeply discover the sequential features from students’
campus behaviors, we first introduce an attention-based Hybrid Recurrent Neural Network (HRNN)
to encode their recent behaviors by giving a higher weight to the ones that are related to the students’
last action. Then, to conduct student performance prediction, we further involve these learned
features to the classic Support Vector Machine (SVM) algorithm and finally achieve our SPC model.
We conduct extensive experiments in the real-world student card dataset. The experimental results
demonstrate the superiority of our proposed method in terms of Accuracy and Recall.

Keywords: sequential behaviors; performance prediction; recurrent neural network; attention mechanism

1. Introduction

Owing to the development of information management systems (such as the student card system)
in colleges and universities, it becomes convenient and easy for teachers to collect and analyze students’
behaviors, which is one of the most important approaches to learn students’ learning and living habits
on campus. For example, a student who wants to get a high Grade Point Average (GPA) score may
live a very regular life (such as going to the library at certain times) [1,2], since she needs to work
hard on her selected courses. The students’ behaviors tell us whether they intend to spend more time
on studies [3,4]. Based on this, we have the motivation to develop student performance prediction
methods from their behaviors. The performance prediction task pays more attention to the students
who are possible under-performers. The task aims to let educators obtain early feedback and take
immediate action to improve students’ performance.

The research problem described in this work is about Educational Data Mining (EDM), which is a
technology for mining potential information from massive learners’ behavior data, and it has been
widely applied in scientific research, business, finance, and other fields [5]. There are many applications
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of EDM in the education field, such as building learners’ feature model [6] and recommending courses
or learning paths to students according to their learning behaviors [7]. The purpose of a majority of
methods is to improve students’ academic performance and promote their well-rounded development.
In this work, we focus on students’ behaviors in order to predict their performance, since in this way
we can find out students’ learning difficulties in advance and handle them timely with an intervention
trial. At the same time, personalized guidance can be provided to promote students’ comprehensive
development. In addition, because students’ behaviors are intuitive, we can have easier access to judge
consequences directly and quickly, instead of discovering students’ learning and life problems at the
end of the semester.

To study this problem, many researchers have proposed utilizing different technologies such as
statistical analysis, data mining, and questionnaire surveys to predict students’ performance from
their behavior data. For example, Fei et al. [8] introduced a temporal model to predict the performance
of students who are at risk via formulating an activity sequence from the historical behaviors
of a Massive Open Online Courses (MOOC) platform. Another study [9] adopted the discussion
behaviors in online forums to predict students’ final performance by using different data mining
approaches. Although these existing methods have achieved great success in predicting students’
performance, they still have the following limitations: (1) Their methods are mainly focused on
manually extracting statistical features from the pre-stored data, resulting in the hysteresis in predicting
students’ achievement and finding out their problems. (2) Due to the limited representation capability
of these manually extracted features, they can only understand students’ behaviors shallowly.

On the one hand, predicting students’ performance timely is helpful for education managers
(such as teachers) to find out learners’ problems, and hence adjust their education policy or teaching
method. Suppose a student is a freshman who just graduated from high school. She may work harder
in the first semester since she continues her learning habit in high school. However, from the second
semester, she may be distracted by other college activities, such as club or class activities. In addition,
she is even influenced by her growing laziness. If we can only find out the student’s problem at the
end of this semester, she will miss lots of courses. A timely prediction method is helpful to avoid
these situations. To achieve this goal, we regard the performance prediction problem as a sequence
classification task, in which the students’ behaviors in a short period are taken into account.

On the other hand, traditional manually extracted features have limited representation capability,
while deep neural networks have achieved great success for their ability to extract high-representative
features from various sequences. For example, a recent study [10] adopted Gated Recurrent Units (GRU)
with an attention mechanism to model the user’s sequential behavior and capture their main intention
in the current session, which is combined as a unified session representation. Another study [11]
introduced a neural network architecture that can process input sequences and questions, form episodic
memories, and generate relevant answers. However, these existing works are mainly focused on
the research problem in Natural Language Processing (NLP) and Recommender systems. The study
that leverages the power of the Recurrent Neural Network (RNN) to model students’ performance is
largely unexplored.

Based on the above observations, we first treat the student performance prediction task
as a short-term sequence classification problem. Then, we propose a two-stage classification
algorithm by extracting students’ recent behavior sequence characteristics to predict their performance,
which consists of a hybrid sequence encoder and an SVM classifier. Concretely, for the sake
of discovering useful sequential features from students’ sequential behaviors, we introduce an
attention-based HRNN to model their short-term goals by giving a higher weight to the behaviors that
are relevant to the students’ last behaviors, which is interpreted as a unified sequence representation
later. Then, we further involve the learned features of the classic SVM algorithm to achieve our final
SPC framework.
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As far as we know, we are the first to treat the student performance prediction as a sequence
classification task and leverage the capability of the RNN technique to investigate student behavior
patterns. The main contributions of this work are summarized as follows:

• We target at predicting student achievement with their short-term behavior sequences and
propose an SPC model to explore the potential information of their recent behaviors.

• We apply an attention-based HRNN approach to research student behavior characteristics
by only focusing on their current short-term behaviors, which allows us to make timely
performance prediction.

• We conduct extensive experiments on the real-world student smart card dataset to demonstrate
the superiority of our proposed method.

The remainder of this paper is organized as follows: Section 2 explains the main features of
the methods used in our research and outlines the proposed method; Section 3 describes the set of
experiments completed and their interpretation report the experimental on the real-world dataset; and,
finally, conclusions in Section 4.

2. Materials and Methods

In this section, some theoretical concepts are explained first. Then, we depict the sequence-based
performance prediction task based on our advanced model.

2.1. Student Performance Prediction

Student performance prediction, as one of the most valuable applications in the EDM area,
has attracted much attention in the past decade. Existing works explored this task mainly through
data mining technology, statistical analysis, and other machine learning methods to achieve the
academic performance prediction. For example, Cao et al. [1] proved that there was a significant
correlation between the regularity of campus life and academic achievement by defining quantitatively
two high-level behavior characteristics, orderliness and diligence. A recent study [12] examined
the performance of a broad range of classification techniques to find a qualitative model for the
student performance prediction problem by using students’ behavior data. A previous study [13]
investigated and determined significant behavior indicators from Learning Management System (LMS)
platform data regarding online course achievement. Another previous study [14] further explored both
multi-level and standard regressions to predict student performance from LMS predictor variables.
A previous study [15] utilized statistical methods with variable multi-modal data and semester-wise
information as input to assess students’ performance.

However, the above methods cannot forecast students’ performance opportunely and only
understand the behavior data shallowly. More recent works have focused on novel methods to make
timely predictions. For example, Ma et al. [16] formulated the task of pre-course student performance
prediction as a multi-instance multi-label (MIML) problem. They proved that it was desirable to predict
each student’s performance on a certain course before its commencement rather than after finishing it.
Zhou et al. [17] showed that an education measurement system could obtain large-scale observations
on punctuality, distraction, and the performance of educational behaviors by using longitudinal
WLAN data. A previous study [18] proposed a hybrid FM-RF method to accurately predict grades
from historical transcript data based on the degree program of students, the intervention of instructors,
and personalized advice. Another previous study [19] suggested that it was effective to assess the
performance of early in-class, such as quizzes, which can result in timely scientific guidance for each
student. However, the above works mainly exploit manually extracted statistics features, and the deep
recurrent features of student behavior data are not investigated.
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2.2. Deep Learning-Based Sequence Modeling

Deep learning-based sequence modeling aiming at capturing deep recurrent features from
sequential items (such as words or products) has been widely studied in many related fields such
as NLP [20,21] and recommender system [22,23]. For example, Li et al. [10] proposed a hybrid RNN
model to capture both the user’s sequential preferences and the main purpose of the current session
by an attention mechanism in a session-based recommendation task. Liu et al. [24] proposed an
attention-based RNN for joint intent detection and slot filling considering all available information from
the input and the emitted output sequences. A previous study [25] applied a sequence-to-sequence
training framework to learn the representations of the audio segment with variable length acoustic
feature sequences, and demonstrated that the proposed model could achieve a better retrieval
performance than other related works. Zhu et al. [26] proposed a new Long Short-Term Memory (LSTM)
variant to model users’ sequential actions, where time intervals among users’ behaviors are of
significant importance in capturing the relations of their behaviors.

However, very few prior studies have explored the student performance prediction from a
sequence modeling perspective [27,28]. For instance, a recent study [29] experimented on prediction
models for student performance in the early stages of blended learning courses, which applied deep
neural network architecture and utilized online activity attributes as input patterns extracted from
the activity logs stored by Moodle. A recent study [30] transformed the time series click data of
students’ eBook behaviors into different features to predict whether a student passes the course or not.
A recent study [31] explored the factor for improving the performance of prediction of students’ quiz
scores by using a RNN from learning logs. Yang et al. [32] incorporated the data that was collected
from the watching click-streams of lecture video into the machine learning feature set, and trained
a time series neural network that learns from both prior performance and click-streaming data.
Nevertheless, the above studies haven’t utilized sequential behavioral data from a smart campus card
to address the student performance prediction problem. Thus, we treat this task as sequence modeling
via exploring intrinsic patterns from students’ campus behaviors.

2.3. Performance Prediction Model

Sequence-based performance prediction is the task of predicting the students’ current performance
by classifying their recent sequential behaviors (such as accessing and leaving the library, fetching water
and going to the canteen). Here, we give a formulation of the sequence-based performance
prediction task.

2.3.1. Task Definition

For a specific student, we intend to know if we can judge her learning performance when only
very limited behavior records of her in the campus are provided. Let [x1, x2, . . . , xi, . . . , xt] be a
behavioral sequence, where xi is the index of one behavior out of a whole number of m card devices.
Let R = (ri,j)n,m be the observed interactions among n students and m campus card devices, where each
item ri,j indicates student i has conducted card item j. We establish a performance prediction model
M by classifying the given sequences x = [x1, x2, . . . , xt−1, xt], (1 ≤ t ≤ m) into different grades y
(i.e, good, medium and poor). Compared to traditional performance prediction problem, we focus on
how to conduct timely predictions by automatically extracting deep recurrent features. The formal
definition of our task is defined as follows:

Input: The sequential behaviors [x1, x2, . . . , xt−1, xt] of students per week.
Output: A mapping function that can map a given sequence to a performance grade: M : x → R.

2.3.2. Overview

The proposed methodology, based on deep learning and data mining techniques, aims to explore
students’ potential behavior features and predict their academic performance. To be specific, we utilized
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a two-stage classifier, which consists of a neural attentive encoder-decoder and an SVM classifier,
where the former contains an RNN-based encoder, attention mechanism, behavior feature generator,
and decoder. The main idea of our method is to build a hidden representation of the behavioral
sequence, and afterwards make classification prediction. RNN is a neural network with the ability of
short-term memory. It can handle sequences of different lengths compared with other neural networks
(such as Convolutional Neural Networks (CNN)). In this network structure, a neuron can not only
accept information from other neurons but also its information. The workflow of our method is
described in Figure 1.

Figure 1. The general framework and dataflow of SPC for student performance.

First, we take the behavioral sequence x = [x1, x2, . . . , xt−1, xt] as the input of the
encoder (RNN) and further transform it into a series of high-dimensional hidden representation
h = [h1, h2, . . . , ht−1, ht]. The reason why RNN can learn the representation of students’ behavioral
sequence is that the output of each unit is related to the current input as well as the past output. We aim
to dig out the latent expressions, that is, behavioral features, of hidden layers through deep RNN.
However, traditional statistical analysis techniques and data mining algorithms cannot effectively
capture these potential features. Most of them can merely extract features manually based on indicators,
which can only understand the students’ behaviors shallowly.

Then, along with the set of hidden states h, we feed the attention vector αt into the sequence
feature generator (i.e., the output of hidden state representation) to decode at time t (indicated as ct).
We notice that the main purpose or intention of a student may hide behind a series of her activities.
For instance, a student plans to study in the library, but she also buys some food or takes a shower.
Her main purpose is hidden behind her behaviors. To capture the students’ main attention from their
current behaviors, we introduce an attention-based RNN into our method, which has been successfully
applied in many recommender systems. The role of αt is to decide which hidden state h is important.

Finally, ct is a function of hidden states, which allows the decoder to dynamically select and
linearly combine different parts of the input sequence hidden states, which can generate students’
behavior features F = [ f1, f2, . . . , ft−1, ft]. Each student is an independent individual who has different
behavioral characteristics and motivations. Furthermore, as the SVM approach has achieved great
results in most of machine learning tasks, we simply use SVM to classify student behaviors to predict
their academic level y.
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2.3.3. Learning Sequential Features with Attention-Based HRNN

RNN was proposed by American physicist J.J. Hopfield in the 1980s. It is a neural network
with the ability of short-term memory. Compared with other networks (such as Artificial Neural
Network (ANN), Generative Antagonistic Network (GAN) and CNN), RNN can achieve a certain
“memory function” and explore temporal information and semantic information effectively. In the
task of our sequence-based performance prediction, we utilize an attention-based HRNN model
proposed by Li et al. [10] as the first classifier to learn sequential features and the main purpose from
students’ behaviors.

The structure of the SPC model is shown in Figure 2. The upper and lower input x1, x2, . . . , xt are
the same data about students’ historical behaviors (e.g., x1 means ‘canteen’, xt means ‘shower’) at time
t, while the output is the representation of the students’ sequential behavior features hi. Notice that
the upper and lower hi play different roles, but they have the same values. The upper encoder is to
encode the entire initial sequence information through the last hidden state hg

t , and the lower encoder
is to compute attention weights with the previous hidden states through the last hidden state hl

t. It is
uniformly constituted that inputs and outputs are high-dimensional vectors.

Figure 2. The graphical model of SPC, where the first-stage classifier contains attention-based HRNN
while the second-stage classifier is SVM. Note that the sequence feature ct is represented by the
concatenation of vectors cg

t and cl
t, the output F = [ f1, f2, . . . , ft−1, ft] means the learned student

sequential features.

Figure 2 shows the graphical model of the first classifier [10] in SPC. We can see that it combines
the basic sequence encoder with the attention-based sequence encoder to feed to the behavior
feature generator. Both of the two encoders utilize GRU as the basic unit [33] since, not only can
GRU keep important features in short-term propagation, but it can also deal with the vanishing
gradient problem as well. The specific algorithm steps are as follows: for each behavioral sequence
x = [x1, x2, . . . , xt−1, xt], GRU takes the current campus card activity m in the sequence. The output
is a linear transformation between the previous activation of hidden state ht−1 and the candidate
activation of hidden state h

′
t; this process can be expressed as:

zt = σ(W(z)xt + U(z)ht−1) (1)

rt = σ(W(r)xt + U(r)ht−1) (2)

h
′
t = tanh(Wxt + rt �Uht−1) (3)

ht = zt � ht−1 + (1− zt)� h
′
t (4)

where ht−1 and h
′
t are the previous and the current hidden state, respectively. Equations (1)–(4)

respectively represent update gate, reset gate, new memory, and hidden state. In particular, the update
gate zt controls how much information needs to be forgotten from ht−1 and how much information
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needs to be remembered from h
′
t. The reset gate rt determines how much previous memory needs to

be retained. This procedure takes a linear interpolation between the existing activation and current
activation and the last state of the encoder RNN carries information of the entire initial sequence.
We virtually use the final hidden state ht (later called hg

t ) as the representation of the students’ behavior
features called basic sequence encoder,

cg
t = ht = hg

t (5)

As we notice that not all the students’ behaviors are related to their learning performance,
when making predictions, we would like our SPC model to be able to pay more attention to the
interactions that are related to their performance. Hence, we introduce an attention mechanism to
model this assumption called attention-based sequence encoder,

cl
t =

t

∑
i=1

αtihi (6)

where the context vector cl
t can be calculated based on the weighted factors ati and the hidden states

from h1 to ht, (1 ≤ i ≤ t). It makes the decoder dynamically generate and linearly combine different
parts of the input sequence. The attention function is computed by

αti = σ(Wα[ht; hi]) (7)

where σ is a sigmoid function that transforms ht and hi into a latent space by matrix. This function does
not induce the representation of students’ sequences by directly summing all the hidden states learned
by the RNN network. Instead, it utilizes a weighted factor αti to denote which hidden state/interaction
is important for the encoder. Then, the weighted sum of the above hidden states are calculated to
represent a student’s behaviour sequence. To better understanding cl

t, hi can also be represented as the
last hidden state ht (i.e., hl

t) at time t. Therefore, cl
t is amended to

cl
t =

t

∑
i=1

αtihi =
t

∑
i=1

αtihl
t (8)

As illustrated in Figure 2, we can see that the summarization hg
t is incorporated into cg

t , and hl
t

is incorporated into cl
t and ati. Both of them provide a sequential behavior representation for

student performance prediction. By this hybrid scheme, both the basic sequence encoder and the
attention-based sequence encoder are able to be modeled into a unified representation ct that is
sequence feature generator, which denotes the concatenation of vectors cg

t and cl
t,

ct = [cg
t ; cl

t] = [hg
t ;

t

∑
i=1

αtihl
t] (9)

In order to realize performance prediction better, we apply an alternative bi-linear decoding
scheme between the representation of the current sequence and each campus card device to compute a
similarity score si (later represented F).

Si = embm
i Tct (10)

where T is a |D| ∗ |H| matrix and |D| is the dimension of each device embedding, which, for mapping
each behavior, vectors to a low-dimensional space. |H| is the dimension of the sequence representation.
Then, the similarity score of each device is fed into a softmax layer to acquire the probability to
achieve decoding.
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For the task of sequence-based prediction, the basic sequence encoder has the summarization
of the whole sequential behavior while the attention-based sequence encoder can adaptively select
the important behavior to capture the students’ main intent by focusing on what they have done
recently. Therefore, we use the representations of the sequential behaviors and the previous hidden
states to compute the attention weight for each behavior device. Then, a natural extension combines
the sequential behavior feature with the students’ main intent feature, which forms an extended
representation for each timestamp to learn recurrent sequential features from student behaviors.

2.3.4. Student Performance Classifier

Classification is a popularly explored area in educational data mining for predicting student
performance. SVM as a prevalent classifier has been successfully applied in many related areas such
as text recognition [34], human body recognition [35], medical area [36], and educational field [37,38].
SVM is based on the statistical learning theory of VC dimension theory and structural risk minimization
principle, which can use the limited sample information to find the best compromise between the
complexity of the model and the learning ability by machine learning [39]. This article is a multi-class
problem and owns tens of thousands of data. We choose SVM as the second stage classifier for the
reason that the application of the kernel function is indeed a bright spot for SVM, so we can make
some changes to adapt to the scene with SVM principle to solve the problem of linear indivisibility.

In the case of linear separability, the support vector classifier attempts to find an optimal
classification hyperplane wT · x + b = 0 to maximize the interval. To find this hyperplane, we need to
solve the quadratic programming problem below,

min
1
2
‖w‖2

s.t. yi[(wT · xi + b)− 1] ≥ 0, i = 1, 2, . . . , n
(11)

Among them, w is a normal vector, b is a bias term, and x represents features. The solution of the
above mentioned quadratic programming problem is solved by Lagrangian duality,

minL(w, b, α) =
1
2
‖w‖2 −

l

∑
i=1

αi[yi(wT · xi + b)− 1] (12)

This formula is the original problem, and the dual problem of this formula is simplified by the
differential formula to obtain the relations of w and α, b and α.

max W(α) =
n

∑
i=1

αi −
1
2

n

∑
i,j=1

αiαjyiyjxT
i xj

s.t.
l

∑
i=1

αiyi, αi ≥ 0, i = 1, 2, . . . , n

(13)

This is a quadratic function optimization problem with inequality constraints and has a unique
solution; the final optimal classification hyperplane is

f (x) =
n

∑
i=1

α∗i yixT
i x + b∗ (14)

where α∗i is the support vector point. In the case of nonlinear separability, using kernel functions
K(xi, xj) to map feature space F to higher dimensions. The original training sample is mapped to
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a high-dimensional feature space F by a nonlinear mapping Φ : Rd → F. Therefore, the nonlinear
classification problem in the input space becomes a linear classification problem in the feature space:

minΦ(w, ξ) =
1
2
‖w‖2 + C

l

∑
i=1

ξi, C > 0

s.t.ξi ≥ 0, yi(wT · xi + b) ≥ 1, i = 1, 2, . . . , l

(15)

Solving steps are similar to linearly separable cases, where C ∑l
i=1 ξi is penalty term, and the

classification hyperplane at this point is

f (x) =
n

∑
i=1

α∗i yiK(xi, xj) + b∗ (16)

We take advantage of the properties of the kernel function corresponding to the inner product of
the high-dimensional space to make the linear classifier implicitly establish the classification plane in
the high-dimensional space. Because the classification surface in high-dimensional space can more
easily bypass some indivisible regions in low-dimensional space, this can achieve better classification
results. SVM constructs the optimal segmentation hyperplane in the feature space based on the
structural risk minimization theory, so that the learner is globally optimized, and the expected risk in
the whole sample space satisfies a certain upper bound with a certain probability.

When solving a multi-class pattern classification problem, we select a one-against-one approach
that every two categories make the classification. In our work, as shown in Figure 2, the inputs
are completely sequential behavior features F = [ f1, f2, . . . , ft−1, ft] formed by neural attentive
sequence-based network in the previous section while the outputs are real students’ academic
performance y ∈ {1, 2, 3}. Let ( fi, yj) be the sample set and the category be represented as y.
Student academic grade is divided into three classes: the one is A degree about 20 percent of students,
the second B degree about 60 percent of students, and the last C degree about 20 percent of students.
Therefore, it is a valid approach through which we can view student performance prediction as a
short-term sequence modeling problem. If given another a series of student behaviors data, we can
predict their academic achievement from our two-stage classifier in order to timely discover students
with a learning crisis.

3. Results

In this section, we describe the dataset, evaluation metrics, and the implementation details
employed in our experiments. Then, some comparison and analysis of different methods for feature
extraction are completed.

3.1. Experiment

3.1.1. Dataset

In the era of big data, the traditional management of students’ behaviors has the disadvantages
of untimely intervention and governance hysteresis. Nowadays, school administrators can be able
to capture the grades of students initiatively with putting educational big data into analysis and
monitoring of students’ daily behaviors; therefore, further research and judgments can be made on
the basis of it. As a result, it is meaningful that behavior data generated by college students in daily
campus activities can dig out the factors and patterns related to academic achievement. To demonstrate
the effectiveness of the two-stage classifier method, we use the real-world dataset smart card as our
data source https://www.ctolib.com/datacastle_subsidy.html.

The dataset utilized in our experiments is from the smart card system of one famous university in
our country. The published dataset contains five tables (as shown in Table 1), which are books lending

https://www.ctolib.com/datacastle_subsidy.html
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data, card data, dormitory open/close data, library open/close data, and student achievement data.
The fields of each data table are shown in the third column of Table 1. We also present some samples
of each sub-dataset in Tables 2–6. From the first data table (as shown in Tables 1 and 2), we can see that
the smart card system can record the information of borrowing books, and the fields of this data table
include students’ id, borrowing time, books’ name, and ISBN. From the second data table (as shown in
Tables 1 and 3), we can observe that the smart card system can save students’ consumption information,
such as how much a student spends in the canteen, when did a student go to the library, and when did
a student have dinner, etc. From the third data table (as shown in Tables 1 and 4), we can notice that
the information of the dormitory is recorded, including when did a student leave/enter her dormitory.
From the fourth data table (as shown in Tables 1 and 5), we can see the information of students entering
and leaving the library, such as which door did a student leave from, and when did a student enter the
library, etc. From the last data table (as shown in Tables 1 and 6), we can see that the smart card system
can record the information on students’ grade ranking.

Table 1. Details of the dataset utilized in our experiments.

Table Number Tables Fields

1 books lending data students’ id, books lending time, books’ name, books’ ISBN
2 card data students’ id, category of consumption, position of

consumption, way of consumption, time of consumption,
amount of consumption, balance of consumption

3 dormitory open/close data students’ id, time of entering/leaving dormitory, direction
of entering/leaving dormitory

4 library open/close data students’ id, number of library gate, time of entering/leaving
library

5 students achievement data students’ id, number of faculty, grades ranking

Table 2. Samples of the books lending data.

Samples id Time Name ISBN

1 27604 “2014/10/31 “Visual C++” “TP312C 535”
2 19774 “2014/11/01” “Photoshop CS4” “TP391.41 678.4”
3 2200 “2015/03/10” “HTML+CSS” “H313-42 695”

Table 3. Samples of the card data.

Samples Id Category Position Way Time Amount Balance

1 11488 POS consumption position21 canteen 2014/11/12 15:11:46 5.1 54.22
2 11488 POS consumption position188 shower 2014/11/13 21:30:50 2.3 133.2
3 11488 POS consumption position829 library 2014/11/14 07:40:20 2.0 45.62

Table 4. Samples of the dormitory open/close data.

Samples Id Time Direction 0-in/1-out

1 30901 2014/02/24 08:21:50 1
2 30901 2014/02/24 10:10:39 0
3 30901 2014/02/24 11:14:18 1
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Table 5. Samples of the library open/close data.

Samples Id Gate Time

1 1826 entering gate 5 2014/10/10 10:14
2 14164 entering gate 5 2014/10/10 10:15
3 27218 entering gate 5 2014/10/10 10:16

Table 6. Samples of the students achievement data.

Samples Id Faculty Rank

1 11448 8 2233
2 14164 8 2234
3 27218 8 2237

Since all the records of this dataset are obtained after conducting data masking from the “original
data record”, some duplicate or abnormal records are being. To reduce the impact of inaccurate data,
we further extract the behavior records of 9207 students over 29 weeks, from March to June 2014 and
April to June 2015. The dataset includes students’ fetching water records, going into the library and
other kinds of 13 behaviors. In order to further model the students’ behaviors from their visiting
sequences, we sort students’ behaviors by the time they visit the card reader and then form behavioral
sequence x = [x1, x2, . . . , xt−1, xt] of them. The xi denotes one kind of card reader located at different
buildings, such as at the front door of the library or laboratories. The statistic of the resulted dataset is
shown in Table 7, and the samples of students’ behavioral sequences are shown in Table 8.

Table 7. The statistic of the resulted dataset.

# Students # Devices # Sequences Avg.length

9207 15 126,032 51.6

Table 8. The samples of students’ behavioral sequences.

Id Sequences

11548 1,canteen,library,canteen,0,water,water,1,canteen,library,supermarket,0,shower,water, . . .
2027 canteen,water,canteen,0,shower,1,school hospital,school bus,gate 1,water,supermarket,canteen, . . .
11548 shower,1,library,0,1,canteen,canteen,0,water,water,1,print center,school office,supermarket,0, . . .

The reasons to choose this dataset are fourfold: First, these behavioral data are not directly
related to academic performance. In this way, we can explore the relationship between the two
parts. Second, these behaviors are unobtrusive and thus can objectively reflect students’ lifestyles
without experimental bias. Third, most university students in China live and study on campus.
Therefore, the utilized dataset has sufficient coverage to validate the results. Finally, the results of the
experiment not only facilitate the management of the daily activities of teachers and students, but also
provide important information for teaching, research, and guidance.

3.1.2. Evaluation Protocols

In order to quantitatively evaluate the performance of our method, we randomly select 70% of the
resulted dataset as the training set and the remaining as the test set. We adopt two popular evaluation
protocols’ accuracy and recall to evaluate our experiments. Accuracy is defined as:

Accuracy =
TP + TN

P + N
(17)
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Recall is defined as:
Recall =

TP
TP + FN

(18)

where accuracy returns the fraction of correctly classified samples (float). TP indicates the number of
real positives among the predicted positives, and True Negative (TN) represents the number of real
negatives of the predicted negatives. Similarly, False Negative (FN) denotes the number of real positives
among predicted negatives. Therefore, accuracy denotes the proportion of students’ performance
classified correctly by SVM among all sequential behaviors, and recall denotes the proportion of
students’ performance that are classified as positive among all real performance.

3.1.3. Baseline Methods

These models are commonly used in different machine learning applications; we will only briefly
present them here and focus on the setting of our performance prediction experiments. In order
to validate the performance of the SPC model for students’ academic performance prediction task,
we compare it with the following baseline methods:

• Support Vector Machine [40]: This is arguably one of the most popular classification
methods used in educational data mining such as student performance prediction.
Meanwhile, SVM demonstrates a very efficient algorithm for machine learning.

• Logistic Regression [41]: This is another popular classification technique that predicts a certain
probability task. The logistic regression model aims to describe the relationship between one or
more independent variables that may be continuous, categorical, or binary.

• Bayesian [42]: This is a simple classification method that is based on the theory of probability,
which is more important and widely used in machine learning.

• Decision Tree [43]: This is one of the most popular data mining techniques for prediction and
the model has been used extensively because of its simplicity and comprehensibility to discover
small or large data structure.

• Random Forest [44]: This is an integrated learning method that is specifically designed for
decision tree-based classifiers. It can be utilized for classification and regression, and effectively
prevent overfitting.

To demonstrate the superiority of our sequence-based features, we manually extract 19 types
of features (as shown in Table 9), and further compare our method with the following baselines that
utilize features from different behaviors. At the same time, based on the existing machine learning
algorithms, we study the application of the algorithms in the performance prediction. The most suitable
algorithms and parameters are searched to form the optimal state, and the goal of predicting academic
performance according to the behaviors could be realized in the end. We study the students’ smart data
on the basis of learning and summarizing the experience of the predecessors, and we acknowledge
that the side evaluation of the student achievement ranking is many-sided. Our work makes use of
statistical methods and selects indicators that are relevant to the ranking of achievements. The detailed
explanation of these extracted features about consumption habits, living habits, and learning habits
are described as follows:
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Table 9. Different types of manually extracted features.

Consumption Habits (1–4) Studying Habits (5–8) Living Habits (9–19)

average pos amount borrow book frequency lunch days
average market amount early library frequency dinner days
average canteen amount late library frequency early breakfast frequency
printing center frequency average library duration average water frequency

early dorm frequency
late dorm frequency

average dorm duration
spring shower frequency weekly

summer shower frequency weekly
fall shower frequency weekly

winter shower frequency weekly

Features 1–4 respectively represent the amount of student spending in the
cafeteria/supermarket/Point of Sale (POS) machine per day and the frequency of going to the
print center, which are classified as consumption features. Features 5–8 respectively represent the
frequency of borrowing books, the number of going out of the library earlier than 8:00 a.m. and
the duration of staying at the library per day, which are classified as studying habits. The rest
respectively mean the frequency of fetching water per day, the number of taking showers in
spring/summer/fall/winter per week, the days of eating breakfast/lunch/dinner, the frequency of
going out of the dorm earlier than 8:00 a.m., the frequency of entering the dorm later than 10:00 p.m.
and the duration of staying at the dorm per day, which are classified as living habits. The baseline
methods with different types of behaviors are shown as follows:

• SVM+CH College students with different academic achievements have differences in the amount
of campus card consumption, which is reflecting the different consumption needs and psychology
of college students. We choose daily average canteen consumption, daily average supermarket
spending and other indicators as consumption habits (CH) features.

• SVM+SH College students’ learning habits are developed over a long period of time,
whose tendency and behaviors are not easily changed. We choose the duration of staying at the
library, the number of borrowing books, and other indicators as studying habits (SH)’ features.

• SVM+LH Well-behaved habits may be beneficial for academic performance. We select the
frequency of fetching water, the duration of staying at the dorm, and other indicators as living
habits (LH) features.

3.1.4. Implementation Details

We implement our method using Python and theno library with NVidia Tesla K80 GPU
(Santa Clara, CA, USA). Here are some implementation details: The proposed two-stage classifier
model uses 50-dimensional embeddings for the card devices and the dimension of the one GRU is also
set at 50 hidden units. The optimization is done by using Adam [45] with an initial learning rate of
0.001 and mini-batch size is fixed at 128. To prevent RNN from over-fitting, there are two dropout
layers applied in the attention-based HRNN: One is between the card device embedding layer and the
GRU layer with 25% dropout, the other is between the GRU layer and the bi-linear similarity layer
with 50% dropout. We truncate BPTT at 19-time steps and set the batch size as 512. The number of
epochs is set to 30 as the setting in the state-of-the-art method [46]. By training, we set the c to 0.8 and
gamma to 0.1 with applying SVM.
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3.2. Results on Baseline

We compare our method with multiple classification techniques, which are utilized in the data
mining process for predicting the students’ grades to discover their problems timely. In addition,
we adopt 10-fold cross-validation to verify and validate the outcomes of the considered classifiers.
We divide students into three types (i.e, good, medium, and poor) according to ranking. The results of
all methods are shown in Table 10.

Based on Table 10, it can be concluded as follows: (1) It can be observed that the two-stage
classifier approach proposed in this paper has more consistent and significant performance than
other baselines, which demonstrates that the RNN-based SVM model is good at processing sequence
information in multi-classification tasks. (2) By considering the sequential behaviors and main purpose
of the students, the proposed SPC method can outperform all the baselines. The relative performance
of SPC is around 86.90% and 81.57% respectively in terms of Accuracy and Recall. (3) As we can
see, there is almost no difference in the experimental results of other data mining models, and these
models are barely satisfactory in Accuracy and Recall. We believe that one of the important reasons is
that these models have their own limitations in processing various types of data; hence, they cannot
effectively deal with behavioral sequence characteristics. (4) From the perspective of the traditional
method, the prediction results of the extracted features manually are generally performed in terms of
Accuracy and Recall, which are around 59% and 33%, respectively. These results may be caused by
improper pre-processing of features or failure to extract highly representative features, which affects
the final model effect. The extraction of students’ traditional behavioral characteristics is a relatively
subjective process, which is often influenced by people’s own empiricism of cognitive to campus
behaviors. (5) It is practicable to combine attention-based HRNN and SVM models, since it can learn
the latent relationships between students’ behaviors and determine which sequential behavior features
are important for the multi-classification performance task.

Table 10. Performance comparison of the SPC model with baseline methods on our dataset (4 denotes
the improvements of SPC over other baseline methods.

Methods Accuracy Accuracy 4(%) Recall Recall4(%)

Logistic Regression 59.29 46.57% 33.33 144.73%
Bayesian 59.23 46.72% 33.33 144.73%

Decision Tree 59.62 45.76% 33.34 144.66%
Random Forest 59.22 46.74% 33.33 144.73%

SVM+LH 59.80 45.32% 33.33 144.73%
SVM+CH 60.77 43.00% 33.72 141.90%
SVM+SH 59.35 46.42% 33.40 144.22%

SPC 86.90 -% 81.57 -%

3.3. Impacts of Sequence Lengths

Our experimental impact in this section is based on the hypothesis that, when a student generates
various campus behaviors, her behaviors frequently follow a certain pattern and main intention in order
to achieve better grade prediction. However, we can hardly explore the orderliness of students’ daily
activities and capture their main purpose when they perform only a few behaviors. Therefore, we make
comparisons among sequential behaviors with different lengths to study whether the SPC approach is
good at modeling long activities. As shown in Figure 3, the horizontal axis represents the sequence
length in weeks. We discover that the model performs better when increasing the sequential behavior
lengths from 1 to 20, all of which are higher than 70% accuracy. This indicates that the SPC method
could make a better prediction if it captures more student purpose features on the basis of the existing
sequential behavior features. Another reason could be that students are very likely to develop regular
living and learning habits. However, as shown in Table 11, we can discover that, when sequence length
is divided by month, the evaluation of the model decreases (only 71.40%). It is believed the reason is
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that, when a sequence is too long, managers do not assess the students’ status and intervene in their
learning in a timely manner, which results in a decline accuracy. Therefore, compared with standard
academic assessment or personal static information, short-term sequential behavior modeling can
monitor the students’ daily activities more sensitively, and reflect their living and learning status
more opportunely.

Figure 3. Accuracy and recall of the SPC model with the impact of different sequence lengths.

Table 11. The comparison result of different cycles.

Cycle Accuracy Recall # Sequences Avg. length

week 86.90% 81.57% 126,032 51.6
month 71.40% 56.88% 44,943 170

3.4. Impacts of Feature Dimension

We perform several experiments on whether the feature dimensions have an influence on the
selection of students’ behavior representations in terms of two evaluation methods. As shown
in Figure 4, when hidden state dimensions increase from 5 to 100, SPC performance improves
significantly in terms of Accuracy and Recall, which are up to about 87.5% and 82.5%, respectively.
However, the curve tends to gradually flatten when the feature dimension reaches 50. The reason could
be that the hidden layer with fewer dimensions is not accurate enough to represent students’ behavior
features. When the dimensions of the hidden state are set more, SPC can understand and analyze
students’ campus behaviors more comprehensively. However, due to the limited representation
capabilities of the RNN model, there may be some duplicate features when there are many hidden
states. Therefore, setting a suitable feature dimension is helpful for educators to understand students’
behaviors and explore the information contained in the data.



Information 2020, 11, 201 16 of 20

Figure 4. Accuracy and recall of the SPC model with the impact of different feature dimensions.

3.5. Results on Correlation Analysis

In order to demonstrate the correlation between students’ behavior characteristics and academic
performance, we further utilize the statistical approach for factor analysis and principal component
analysis to explain the correlation between them. Firstly, the common factors are extracted by factor
analysis. Then, these factors influencing academic performance are reasonably explained by rotating
the component matrix. Finally, the proportion of each factor and common factors impacting academic
performance are discussed. The principle of factor analysis is to study the correlation coefficient
matrix between variables, and integrate the complex relationship between these variables into a few
comprehensive factors under the premise of minimal information loss, which belongs to the process
of reduction dimensions. Therefore, we explore the basic structure of observing data and use several
hypothesis variables to represent them by studying the internal dependence of student sequential
behavior features [47].

Before conducting factor analysis, the collected features were examined by KMO and Bartlett’s
test. The KMO test is used to check the correlation and partial correlation between variables. The closer
the KMO statistic is to 1, the stronger the correlation is. In addition, the weaker the partial correlation
is, the better the effect of factor analysis. As shown in Table 12, according to Bartlett’s test of Sphericity,
the accompanying probability value is 0.000 (p < 0.05), which reaches a significant level. This test
is a hypothesis that the correlation matrix is not an identity matrix, which would indicate that
variables are related to structure detection. Therefore, based on the above analysis results, the original
variables (students sequential behavior features) are suitable for factor analysis according to the above
analysis results.

Table 12. KMO and Bartlett’s Test, where Approx. chi-square means the chi-square test; df means the
degree of freedom; Sig. means the probability value of the test.

Kaiser–Meyer–Olkin Measure of Sampling Adequacy. 0.906

Bartlett’s Test of Sphericity Approx. Chi-square 9009817.326
df 1225

Sig. 0.000

The principal component analysis is to find out independent comprehensive indicators that
reflect multiple variables, and to reveal the internal structure among multiple variables through
principal components. By investigating the correlation between multiple variables and prediction
functions in principal component analysis, we analyze 50-dimensional behavior features affecting
students’ performance. As is shown in Table 13, the first ten factors can explain the overall variance
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of 84.764%, which effectively reflects the overall information and has a significant relationship with
academic performance.

Table 13. Total variance explained (extraction method: principal component analysis).

Component Initial Eigenvalues Extraction Sums of Squared Loadings

Total % of Variance Cumulative% Total % of Variance Cumulative%

1 13.128 26.256 26.256 13.128 26.256 26.256
2 6.723 13.446 39.702 6.723 13.446 39.702
3 5.631 11.262 50.964 5.631 11.262 50.964
4 4.296 8.592 59.556 4.296 8.592 59.556
5 3.669 7.339 66.894 3.669 7.339 66.894
6 2.646 5.292 72.187 2.646 5.2929 72.187
7 1.806 3.611 75.798 1.806 3.611 75.798
8 1.690 3.380 79.178 1.690 3.380 79.178
9 1.643 3.286 82.464 1.643 3.286 82.464

10 1.150 2.299 84.764 1.150 2.299 84.764
11 0.950 1.901 86.664
12 0.695 1.390 88.054
13 0.496 0.992 89.046
14 0.462 0.923 89.969
15 0.428 0.856 90.826
16 0.381 0.763 91.859
17 0.357 0.713 92.302
18 0.345 0.690 92.991
19 0.303 0.607 93.598
20 0.270 0.539 94.138
21 0.226 0.452 94.590
22 0.223 0.447 95.037
23 0.198 0.396 95.433
24 0.174 0.347 95.780
25 0.155 0.310 96.091
26 0.150 0.300 96.390
27 0.145 0.290 96.680
28 0.132 0.264 96.944
29 0.121 0.242 97.186
30 0.117 0.235 97.421
31 0.111 0.222 97.643
32 0.105 0.209 97.853
33 0.104 0.208 98.060
34 0.094 0.188 98.248
35 0.089 0.177 98.426
36 0.082 0.164 98.590
37 0.076 0.152 98.742
38 0.074 0.147 98.889
39 0.068 0.137 99.026
40 0.064 0.127 99.153
41 0.060 0.120 99.273
42 0.058 0.116 99.390
43 0.054 0.108 99.498
44 0.053 0.106 99.604
45 0.043 0.085 99.689
46 0.039 0.079 99.768
47 0.036 0.071 99.839
48 0.031 0.061 99.900
49 0.026 0.053 99.953
50 0.023 0.047 100.000

4. Conclusions

In this paper, we viewed the student performance prediction as a short-term sequential behavior
modeling task. A two-stage classifier SPC for learners’ behaviors was proposed, which consisted
of the attention-based HRNN and classic SVM algorithm. Different from other statistical analysis
methods where behavior features were manually extracted, the whole student sequential behavior
information could be adaptively integrated and the main behavior intention could be captured. In the
real-time campus scene, the baseline consequences showed that the proposed method could result
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in a higher prediction accuracy of about 45% improvement. The evaluation indicators of the SPC
method were about 86.9% and 81.57% in terms of accuracy and recall, which was better than other
traditional methods. From an educational perspective, the analysis indicated that the number of
students’ behaviors and the representation of learned features could make teachers grasp the patterns
and regularity of students’ behaviors initiatively, so as to make research and judgment accordingly.
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