
  information

Article

Intensity of Bilateral Contacts in Social
Network Analysis

Panayotis Christidis †

European Commission, Joint Research Centre, 41092 Seville, Spain; Panayotis.Christidis@ec.europa.eu
† Disclaimer: The views expressed are purely those of the author and may not in any circumstances be regarded

as stating an official position of the European Commission.

Received: 11 March 2020; Accepted: 30 March 2020; Published: 1 April 2020
����������
�������

Abstract: The approach presented here introduces the use of directed and weighted graph indicators
in order to incorporate the intensity of bilateral contacts. The indicators are tested on a reference
email network, and their applicability in explaining the role of each individual in the organization is
explored. The results suggest that directional indicators have high explicatory relevance and can add
value to conventional Social Network Analysis (SNA) approaches.
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1. Introduction

With the growing role of social networks in everyday life–the Digital Society combined with the
abundance of data that can be collected and analyzed, the field of Social Network Analysis (SNA)
is burgeoning. Typical SNA applications include the identification of the most important, critical,
influential person or link, the identification of main hubs or communities, the interactions between
individuals in a network, or the visualization of the flows of information. SNA has been used in a large
variety of fields, such as bibliometric analysis [1], regional development [2], emergency management [3],
health policy [4], or airport competition [5].

SNA methods for large complex networks, however, still face several difficulties. Frequent
weaknesses include the ignorance of edge weights, the limited consideration of topology, and the
computational complexity [6]. The validation of the results of SNA methods has often proven to be
problematic [7], while the visualization and physical interpretation of the results can be challenging [8].
As possible solutions, Reference [9] proposed an approach that explores how complex networks are
organized by higher-order connectivity patterns. They confirmed that motifs of connectivity at local
scale can reveal the role of network elements and provide insights regarding the efficiency of the
full network.

The approach presented here aimed to extend the analysis of social networks by combining
topology, traffic data, and behavioral aspects. The approach:

• explores the application of recent advances in SNA methods that allow the consideration of
weights and direction in the calculation of clustering coefficients;

• proposes an approach to extract indicators that describe the behavioral aspects of the social
network members; and

• develops a model that can explain the actors’ behavior through SNA indicators.

The main novelty of the approach proposed here is two-fold. As a first step, the introduction
of weighted and directed indicators in standard SNA adds useful information on the direction of
intensity of social network interactions. As a second step, the application of small world clustering
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coefficients, also using the direction and weights of the connections, can improve the interpretability of
the operation of the whole network. The latter benefits greatly from major improvements in regard
to both the theoretical background and the operationalization of weighted directional clustering
coefficients in the recent work by Clemente and Grassi (2018) [10,11]. The approach is tested on a
well-known reference network of email traffic, a representative example of a social network where
asymmetric connections are evident.

The structure of the article is as follows: Section 2 provides a summary of related work and
identifies how the approach presented here is related to it. Section 3 describes the data used in the
analysis and discusses their main indicators. Section 4 describes the application of standard graph
theory centrality indicators and explores the impact of direction and weights in the information they
provide. Section 5 extends the set of indicators to clustering analysis, incorporating the specific patterns
of information flow. Section 6 models the correlation between indicators of individual email activity
with directed and weighted centrality and clustering indicators. Finally, Section 7 discusses the results,
evaluates the usefulness of the approach, and discusses future directions.

2. Related Work

Adamic and Adar (2001) [12] already used SNA methods to leverage data from the early days of
the Internet in order to gain insights into the social structure of first social webpages in U.S. Universities.
Barrat et al. (2004) [13] defined metrics that combined weighted and topological observations in
aviation networks and characterized the complex statistical properties, as well as the heterogeneity of
the actual strength of edges and vertices. They extended the application of the clustering coefficient
proposed by Watts and Strogatz in 1998 [14] and identified a correlation between weighted quantities
and the underlying topological structure of a network. As a result, they were able to describe the
hierarchies and organizational principles on the basis of the architecture of weighted networks. Fagiolo
(2007) [15] generalized the approach on weighted, undirected networks. He extended the clustering
coefficient to the case of (binary and weighted) directed networks and computed its expected value
for random graphs and, in a follow-up article (Fagiolo et al., 2008) [16], for world trade flows. Using
clustering coefficients, Traud et al. [17] explored Facebook friendship connections, and Chen et al. [18]
identified influential nodes in large-scale directed networks (mobile phone communication patterns,
discussion board, and author collaboration platform), while Myers et al. [19] constructed a Twitter
follow graph. Hangal et al. [20] defined the influence of a node as the sum of the influences the node
has on others. In their application on a Twitter retweet network, influence of a node was expressed
as the node’s share of retweets from other users. The email dataset used here was also analyzed in a
number of works. Portela et al. [21] explore the impacts of statistical disclosure attacks using the email
network’s structural indicators and local unweighted clustering coefficients. Chen et al. [22] used the
email network as ground truth for the development of a community detection algorithm applicable on
any type of social network.

The work presented here is an extension of well-known methodologies applied in literature.
It combines structural, activity, and clustering indicators maintaining the directional and weighted
aspects of the network connections. Such a combination has not been explored in the past, at least
not in regard to email networks. In addition, the methodology presented here is probably the first
application on real-life networks of the directional clustering coefficients proposed by Clemente and
Grassi [10,11]. Table 1 summarizes the approaches used by past work and compares with the approach
presented here. The comparison is made based on:

• type of network analyzed;
• indicator type: Structural (conventional graph theory indicators), Activity (accounting for traffic,

intensity or frequency of connections), or Clustering (local, “small world” indicators);
• use of direction in connections; and
• weights used (in the case of weighted indicators).
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Table 1. Comparison of related literature with present work.

Authors Network Indicators Directed Weights

Adamic and Adar
(2001) [12] Web page network Structural Yes Structural

(number of links)

Watts and Strogatz
(1998) [14]

Biological network;
Collaboration network Clustering No No

Barrat et al.
(2004) [13] Aviation network Structural;

Activity yes Activity (available seats
per year)

Fagiolo (2007) [15] International trade
network Clustering Yes Clustering (unweighted

local coefficients)

Fagiolo et al.
(2008) [16]

International trade
network

Structural;
Activity;

Clustering
Yes Clustering (weighted

local coefficients)

Hangal et al. (2010) Bibliography network;
Twitter retweet network

Structural;
Activity Yes

Activity (directed
influence

between nodes)

Traud et al.
(2012) [17]

Facebook contacts
network

Structural;
Clustering No No

Chen et al.
(2013) [18]

Online community
network; collaboration

network
Clustering Yes Clustering (in- and

out-degree)

Myers et al.
(2014) [19] Twitter follow graph Structural;

Clustering Yes No

Clemente and
Grassi (2018) [11] Theoretical graphs Clustering Yes Clustering (weighted

local coefficients)

Portela et al.
(2016) [21] email network Structural;

Clustering Yes No

Chen et al.
(2019) [22] email network Structural Yes No

This work email network
Structural;
Activity;

Clustering
Yes

Clustering (weighted
local coefficients, based
on References [21,22])

Shifting from the description of the structure of a social network to the identification of the social
roles of the members of the network extends the analysis from one with a mainly topological focus
to one encompassing behavioral aspects. Tang et al. (2012) [23] compared networks from phone
calls, emails, bluetooth scanning, and news sharing and developed a factor graph model to infer
social relationships among the network members. Chen (2013) [24] found a correlation between user
personality traits and social network activity. Saqr et al. (2018) [25] associated success of students in
university examinations with their online interactions during each course.

3. Email Network Data and Main Indicators

The data used here were extracted from the Stanford Network Analysis Project (SNAP)
“email-Eu-core-temporal” network, a well-known reference dataset for Social Network Analysis (SNA)
of email traffic [26,27]. Email activity networks are a representative form of social networks. A number
of individuals can be linked according to their interaction in terms of messages sent and received,
while the number of interactions, their frequency, and the time differences may reveal information
about the strength of bilateral relationships. Seen from a wider perspective, the different patterns of all
bilateral relationships across the network can provide information on the role of each individual in the
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organization. Studying email networks, therefore, can be useful for the analysis of the operation of
an organization.

The network was generated using real email traffic data from a large European research institution.
Anonymized information about all incoming and outgoing email of the research institution was collected
during 18 months. The information retained consists of the (anonymized) sender, the (anonymized)
receiver, and the timestamp of the message dispatch. To convert the set of email messages into a network,
each email address is considered a node. A directed edge between nodes i and j is created if i sent at
least one message to j. SNAP also provides an additional dataset, “email-Eu-core-department-labels”,
which associates each individual email address to one of the 42 departments of the research organization.
The resulting network consists of 986 nodes (unique email addresses). Since 21 email addresses had
only outgoing messages within the institution, and 162 email addresses had only incoming messages
from within the institution, there are only 824 transmitting nodes and 965 receiving nodes. Membership
to a department ranges from 1 to 109, with a mean of 23.93 members and a median of 14.5.

The email activity dataset consists of 332,334 observations, each corresponding to an email send
by an anonymized user id to another anonymized user id, with the corresponding timestamp. A graph
representation of the email network can be easily constructing by assuming that each member of the
network is a node of the graph. These observations can be considered as dynamic edges in the graph
describing the network. The number of bilateral links regardless of the number and direction of the
interaction, i.e., the static edges, is 24,929. The timestamps of each message allow the analysis of the
dynamics over time.

The number of emails sent by each individual is highly correlated with the number of emails
received (Pearson correlation = 0.747). Figure 1 suggests that the linear relation between the two
numbers and the absolute levels of the two values are independent of the department where each
individual belongs to. Email activity appears to be an effect of the individual’s role within the
department and the organization at large, rather than an attribute associated to the role that each
department has inside the organization.
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Figure 1. Number of emails sent and received by each individual; color represents the department the
individual belong to (logarithmic scale).

The correlation between the number of sent and received emails is even higher when summarized
at department level (Pearson correlation = 0.967). The number of emails sent by a department’s
members to members of other departments is proportional to the number of emails received from other
departments. In addition, even though there is significant variance in the number of emails sent or
received by each individual, the aggregate figures at department level are, to a large extent, proportional
to the number of individuals in each department (Figure 2). Even though there is significant variance
among individuals in regard to email activity, the email flows between departments is symmetrical.



Information 2020, 11, 189 5 of 19Information 2020, 11, 189 5 of 19 

 

 
Figure 2. Average number of emails sent and received per person for each department (bubble size is 
proportional to the number of department members). 

Given that the email traffic network has a high number of nodes and connections, it is 
practically impossible to visualize its structure in a meaningful way. Even when summarizing at 
department level, mapping the connections between the 42 nodes in order to identify patterns in the 
flow of information is still a complicated task. Figure 3 summarizes the top 10% of directional 
bilateral email flows between departments. While a few departments appear frequently in these 
bilateral flows, the pattern of connections implies that no department is dominant in terms of 
intra-institutional email traffic.  

 
Figure 3. Email traffic between departments (top 10% of bilateral traffic); each color represents a 
different sender department. 

The basic statistics of email activity during the period comprise of the traffic data for the 
network at individual (Table 2) and department (Table 3) level. There is high variance in regard to 
the number of emails each member of the network sent or received during the period, as well as in 
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necessarily result in receiving many (or vice versa). Several different profiles seem to be present in 

Figure 2. Average number of emails sent and received per person for each department (bubble size is
proportional to the number of department members).

Given that the email traffic network has a high number of nodes and connections, it is practically
impossible to visualize its structure in a meaningful way. Even when summarizing at department level,
mapping the connections between the 42 nodes in order to identify patterns in the flow of information
is still a complicated task. Figure 3 summarizes the top 10% of directional bilateral email flows between
departments. While a few departments appear frequently in these bilateral flows, the pattern of
connections implies that no department is dominant in terms of intra-institutional email traffic.
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different sender department.

The basic statistics of email activity during the period comprise of the traffic data for the network
at individual (Table 2) and department (Table 3) level. There is high variance in regard to the number
of emails each member of the network sent or received during the period, as well as in the ratio
between the two. There are a few members that dominate the institution in terms of the number
of emails sent. Twenty members sent more than 2500 emails during the period, perhaps due to an
information dissemination role that they may have. But sending many emails does not necessarily
result in receiving many (or vice versa). Several different profiles seem to be present in the dataset,
again, probably due to the different roles in the institution and the communication patterns each
individual prefers.
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Table 2. Basic email activity indicators, individual level.

Indicator Median Mean Minimum Maximum Standard
Deviation Skewness

Number of sent emails 77 330.7 0 9782 740.4 5.43

Number of received emails 130 330.7 0 4710 483.9 2.88

Ratio of number of sent to
number of received emails 0.767 1.553 0.002 303.6 11.43 25.11

Table 3. Basic email activity indicators, department level.

Indicator Median Mean Minimum Maximum Standard
Deviation Skewness

Number of sent emails per person 378.75 370.67 43.33 970.47 197.69 0.85

Number of received emails per person 423 392.63 52.67 640 146.89 −0.61

Ratio of number of sent to number of
received emails 0.90 1.02 0.24 2.88 0.552 1.8

4. Graph Theory Indicators

The basic traffic data across the network provides an overview of the activity but is not sufficient
to explain the role of each individual in the organization. Graph theory indicators are commonly used
in social network analysis in order to describe the topology of a network and explain the relationships
among its members. The three most frequently used indicators address centrality, a measure of the
importance of each individual (corresponding to a node in the network) within the social network:
degree centrality, closeness centrality, and betweenness centrality. All three centrality indicators were
introduced by Freeman in 1979 [28] and form the basis of current SNA methods.

Degree centrality is the simplest expression of centrality and corresponds to the total number of
existing connections between an individual node and the other nodes of the network. If ai j = 1 when a
connection between nodes i and j exists, and ai j = 0 in the opposite case, the basic definition of degree
centrality is:

Cdegree∗
i =

∑
j

ai j (1)

Normalizing the indicator adjusts for the network size by expressing a node’s centrality as a share
of its maximum possible level, when connections with all other nodes in the system are present. If N
the number of nodes in the network [29]:

Cdegree
i =

∑
j ai j

N − 1
(2)

For non-directed networks, ai j = a ji is assumed. In most social networks, however, and particularly
in the email network used here, connections are asymmetric, and ai j , a ji is quite frequent in the flow of
information. In such a case, the two variants of degree centrality assuming a directed graph may differ:

Cdegree, in
i =

∑
j a ji

N − 1
(3)

Cdegree,out
i =

∑
j ai j

N − 1
(4)

In practice, the degree centrality in a network of email flows coincides with the share of unique
senders of emails received by each individual (in-degree) and the share of unique recipients of emails
sent by each individual (out-degree).
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Closeness centrality is an indicator of the centrality of each node based on the distance between
each individual node and all other nodes in the network. It is calculated as the as the reciprocal of the
sum of the length of the shortest paths between node i and all other nodes in the network [30]:

C closeness∗
i =

1∑
j di j

(5)

where di j is the distance (number of edges) between nodes i and j.
Normalization, in order to account for the network size, is performed by multiplying closeness by

N − 1, where N is the number of nodes in the network. The two directional forms of closeness after
this transformation correspond to the inverse of the average distance from each node [31]:

C closeness,out
i =

N − 1∑
j di j

(6)

C closeness,in
i =

N − 1∑
j d ji

(7)

Betweenness centrality measures the number of shortest paths between all other nodes of the
network that pass through an individual node. If σ jk is the number of all shortest paths between
all other nodes in the network, and σ jk(i) is the number of those shortest paths that pass through i,
betweenness centrality is calculated as:

C centrality∗
i =

∑
i, j,k

σ jk(i)

σ jk
(8)

As in the case of the other centrality indicators, betweenness centrality can also account for
different weights that express distance and differentiate between the directions of the connection.
The general case, thus, can be transformed into:

C centrality
i =

∑
i, j,k

w jk σ jk(i)

w jk σ jk
(9)

The calculations of these standard centrality indicators for the reference email network used here
were done with the igraph software package in [32]. The results for the main indicators are summarized
in Table 4, with their standard and, where applicable, weighted and/or directional expressions.

Table 4. Main statistics for graph theory indicators.

Median Mean Minimum Maximum Standard
Deviation Skewness

Degree centrality 0.0478 0.0657 0.0020 0.5483 0.0623 2.34

Degree centrality (in) 0.0244 0.0322 0.0010 0.2116 0.0287 1.98

Degree centrality (out) 0.0234 0.0336 0.0010 0.3367 0.0349 2.72

Closeness centrality 0.3759 0.3787 0.3699 0.4692 0.0091 3.18

Closeness centrality (in) 0.3752 0.3779 0.3699 0.4692 0.0073 2.19

Closeness centrality (out) 0.3755 0.3775 0.3699 0.4265 0.0091 3.30

Betweenness centrality 958 2453.9 0 42,250 4449.6 4.40

Betweenness centrality (directional) 956 2446.6 0 42,225 4437.5 4.41
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Degree centrality is a direct reflection of the number of unique individuals within the network
that an email was exchanged with. The basic expression, normalized but non-directional, does not
distinguish between sending or receiving an email. On average, each individual has been in contact
with (in the sense that an email was sent to or received from) 6.8% of the individuals in the network
during the period covered (67 out of a total of 985). The reach of contacts ranges from a minimum of
0.03% (3 individuals) to close to 55% (540 individuals).

If the direction of the email flow is taken into account, the directional version of degree centrality
allows more detail in the characterization of each node. The sum of the two directions of directed
degree centrality equals the undirected degree centrality for each node. Nevertheless, the differences
in the distribution of values reflect the asymmetry in the number of unique senders and respondents in
the network and the varying patterns in email activity of individual members of the network. Degree
centrality is positively skewed, with its distribution having a long tail towards values of high centrality.
This is the result of a low number of nodes being highly central in terms of the number of individuals
they exchanged emails with, either because they sent emails to a higher proportion of the network
than the average (out-degree) or because they received proportionally more (in-degree). The skewness
of out-degree centrality is significantly higher than that of –in-degree due to the dominant role of a few
members as sender of emails.

The closeness centrality indicators reflect a certain degree of symmetry in regard to their distribution
statistics. The average member of the network is equally close to the center, regardless of whether
incoming or outgoing email flow is considered. However, closeness for outgoing emails has a lower
standard deviation and higher skewness than for incoming emails. This probably signifies that the
relatively few members who send emails to a large part of the network act as an efficient channel of
information flow across the network. The mean values for closeness centrality in Table 4 correspond to
an average distance of 2.654 edges for outgoing emails and 2.652 edges for incoming emails, confirming
the observation that the email network analyzed here is dense and highly connected.

Betweenness centrality presents some small differences when the direction of the email flow is
taken into account. While the two values are highly correlated at node level (Pearson correlation = 0.965),
individuals with a large imbalance between the numbers of incoming and outgoing messages do have
a marginal influence on the overall distribution.

5. Extending Clustering Approach

As described in Section 1, recent advances in SNA indicate the importance of identifying clusters
of individuals and communities in social networks. A simplified approach may consider binary
unidirectional connections between individuals. While such simplifications may not influence the
overall analysis in certain types of social networks (e.g., club membership), they may distort the
findings significantly in networks where the direction and intensity of information flow can be of major
importance (e.g., Twitter, email or bibliographic network analysis). The local clustering coefficient
was introduced in the seminal paper of Watts and Strogatz [14] as a measure to determine whether
a graph is a small-world network by quantifying how close a node and its neighbors are to being a
clique. The clustering coefficients are used here in order to explore the hypothesis that email networks
present Small World characteristics. The underlying question is whether using such coefficients—and
in particular their directional form—improves the understanding of the behavior of the members of
the network.

The clustering coefficient of node i is equal to the number of triangles τi connected to this node
divided by the number of triples (i.e., potential triangles) centered on it [14]:

C clustering∗
i =

2 τi

di(di − 1)
(10)

where τi is the number of triangles formed between node i and its possible neighbors, and di is
the degree of the node (the number of individual connections). Opsahl and Panzarasa (2009) [33]
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extended the definition of the clustering coefficient to weighted networks. Similar to the case of adding
weights and direction to the standard centrality indicators in Section 4, assuming directed clustering in
weighted networks can provide additional insight into the structure and dynamics of a social network.
Nevertheless, a node can be part of triangles with arcs pointing in different directions. Four types of
triangles can be distinguished [11,13]:

1. In: a triangle with two arcs incoming to i (j→i, k→i, j→k or k→j) (Figure 4a);
2. Out: a triangle with two arcs coming out of i (i→j, i→k, j→k or k→j) (Figure 4b);
3. Cycle: a triangle where every arc has the same direction (j→i, i→k, k→ j or vice versa)

(Figure 4c); and
4. Middleman: a triangle where the two arcs of i have different directions and there is an arc between

j and k (or vice versa), without forming a cycle. There are two arcs incoming to k or j (j→i, i→k,
j→k or vice versa) (Figure 4d).
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A directed clustering coefficient can be specified for each of the above cases, in order to account
for the different patterns. Each coefficient is defined as the number of triangles of i with a specific
pattern of arc directions, divided by the number of potential specific triangles of i.

If ai j a binary variable to indicate whether there is a connection between i and j or not, and wi j
is the number of emails sent from i to j (and, consequently, wi j , 0 if and only if ai j = 1), the four
clustering coefficients can be defined as:

Cin
i =

∑
j
∑

k, j
w ji+wki

2 a jiaki
(
a jk + akj

)
sin

i

(
din

i − 1
) (11)

Cout
i =

∑
j
∑

k, j
wi j+wik

2 ai jaik
(
a jk + akj

)
sout

i

(
dout

i − 1
) (12)
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Cmiddleman
i =

∑
j
∑

k, j
w ji+wki

2 a jiakia jk +
wi j+wik

2 ai jaikakj

1
2

(
sin

i din
i + sout

i dout
i

)
− s↔i

(13)

Ccycle
i =

∑
j
∑

k, j
w ji+wik

2 a jiakiakj +
wi j+wki

2 ai jakia jk

1
2

(
sin

i din
i + sout

i dout
i

)
− s↔i

(14)

where s↔i is the strength of the connection between node i and its adjacent nodes j, expressed as:

s↔i =
∑
i, j

ai ja ji
wi j + w ji

2
(15)

The clustering coefficients were calculated with the DirectClustering package, are summarized in
Table 5, and are visualized in Figure 5. An in-clustering coefficient with a value of 1 corresponds to the
cases of individuals who were on the receiving side in all triangles formed by their email exchanges.
This was the case for 14 individuals in the sample. The mean of the indicators ranges from 0.4413 to
0.4828. Variation appears to be higher for the In- and Out-coefficient than for the Cycle and Middleman.
In terms of skewness, Out- and Cycle coefficients have a higher value. The four coefficients present a
high level of correlation, which is to a certain degree expected. The majority of the individual members
of the network would participate in various forms of triangles with different directions and intensities
of email flow. The number of emails sent to an individual is also highly correlated with the number of
emails received from the same individual, and, consequently, the indicators weighted on the intensity
of the bilateral connections will inherit the correlation. The high correlation levels can be useful
in pattern analysis, especially in cases of networks where one would expect uniform distributions.
The outliers can provide significant information about their role in the organization or identify a
behavior that is not expected. Especially in regard to the relation between the In- and Out-clustering
coefficients, the explanation of the part of their relation that is not explained by collinearity may be
useful in identifying individual or organizational patterns. For example, a high in-clustering coefficient
may signify the individual’s role as a transmitter of information from the local cluster to the rest of
the system. If the same individual has a low out-clustering coefficient, the flow of information in the
opposite direction (from the rest of the system to the local cluster) is more limited. Depending on
the case, this may be the result of the hierarchical structure of the local cluster (i.e., the individual
is the manager of the team formed by several triangles) or a symptom of imbalances in the flow of
communication. In practical terms, the graphical representation of the correlation between the four
clustering coefficients (Figure 5) facilitates the identification of outliers.

Table 5. Main statistics for clustering coefficients.

Clustering
Coefficient Median Mean Minimum Maximum Standard

Deviation Skewness

In 0.4738 0.4828 0 1 0.2026 0.1466

Out 0.4167 0.4413 0 1 0.2141 0.4148

Middleman 0.4689 0.4845 0 1 0.1988 0.2346

Cycle 0.4282 0.4444 0 1 0.1963 0.4019
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6. Symmetrical and A-Symmetrical Models

Having presented the differences between symmetrical and directed indicators, the question can
be transformed into whether using one or the other type of indicators influences the quality of the
analysis of patterns in a social network. An experiment can be made by using a variable that expresses
an operational characteristic of the network—independent from its topology—and estimate how the
various centrality and clustering coefficients explain its variation. Given the data available in this
dataset, a suitable variable that is independent from the individual network measures is the reaction
time to emails. The dataset provides the timestamp for each email, information that was not used in the
calculations of the indicators in the previous sections. While the reaction time between emails does not
necessarily correspond to the time that has passed for a specific email to be responded, it still provides
a quantifiable indicator of the temporal dimension of the email interaction between two members
of a social network. Shinkuma et al. [34] suggest that the frequency of interaction can be used as an
indicator to characterize interpersonal communication in the network graphs.

In the experiment used here, a new indicator is constructed based on the email timestamps
included in the dataset. If only the email exchanges that were bilateral during the period covered by
the dataset (i.e., ai j = a ji = 1) are taken into account and on the premise that the timestamp difference
in an email exchange between two individuals is a proxy of the response time, the exchange of emails
between i and j would have the form of a series that can be ordered by time.

The series would have n elements, where n is the number of emails between i and j, regardless
of direction. The number of emails from i to j would be equal to k, where k < n. Each email has a
timestamp tn {tn > tn−1}.

The response times of i to the emails sent by j can be calculated as the difference between the
timestamp of each email i→ j and the last unanswered email j→ i :

ti jk = tnk − tlastk , {k > 1} (16)

The timestamp of the last unanswered email would correspond to the timestamp of the latest
email j→ i :

tlastk = max
(
tn j→i

)
,

{
tn j→i< tnk , tn j→i >tlast(k−1), n > 0,

}
(17)

In a similar fashion, the response times by j to emails sent by I can be calculated as the difference
between the timestamps of each sent email i→ j and the next received email j→ i , if any:

t jik = tnextk − tnk (18)
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The timestamp of the next email j→ i would be that of the first email j→ i received after each
i→ jk :

tnextk = min
(
tn j→i

)
,

{
tn j→i > tnk , n < max(n)

}
(19)

An example of the calculation of response times is given in Table 6.

Table 6. Example of calculation of email response time.

n k From To Timestamp tn tij tji

1 1 i j t1 t2–t1

2 j i t2

3 2 i j t3 t3–t2

4 3 i j t4 t5–t4

5 j i t5

6 4 i j t6 t6–t5

The average time of response by an individual i would be:

tout
i =

∑
j ti j∑

j wi j
(20)

while the average speed of responses received would be:

tin
i =

∑
j t ji∑

j w ji
(21)

The average speed of reply is, however, very sensitive to the period of analysis used and to the
specific day or hour that a specific email was sent. A more suitable indicator of the relative importance
of an individual in the network could be the share of outgoing emails that were responded within a
certain time threshold.

sin, T
i =

∑
j w ji(t ji < T)∑

j w ji
(22)

The formulation that calculates the share of responses in the opposite direction within the threshold
can be used as an indicator of an individual’s own average speed of response.

sout, T
i =

∑
j wi j(ti j < T)∑

j wi j
(23)

Two different indicators are tested, with a 7 d and a 24 h threshold, respectively. For each indicator,
three different models that explain the variation were developed:

• Conventional model: independent variables include main statistics on individual email activity
(number of emails sent and share of own replies within the threshold period) and standard
symmetric centrality indicators;

• Clustering model: independent variables include main statistics on individual email activity and
directed clustering indicators; and

• Extended Directional model: independent variables combine main statistics on individual email
activity, directed centrality indicators, and directed clustering indicators.
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6.1. Share of Outgoing Emails Responded Within 7 Days

The comparison of the three models that use a 7 d threshold is summarized in Table 7. The main
statistics indicators that are significant in all three models are the number of emails sent (

∑
j

wi j) and the

individual’s own speed in replying (sout, T
i ). This suggests that there is a high degree of reciprocity in

an individual’s email activity. The individuals in the network examined here who sent more emails,
on average, received faster responses. At the same time, the individuals who reply fast have their
emails also replied to fast. Both variables suggest that the more active the role of the individual is in the
system, the stronger the role is that the individual has in the network (at least as far as the dependent
variable expresses such strength). Of course, it is possible that the causal relationship has the opposite
direction, i.e., the faster that an individual’s emails are responded, the higher the number and faster
the responses of the individual.

Table 7. Seven-day model.

Conventional Clustering Extended Directional

Estimate Pr(>|t|) Estimate Pr(>|t|) Estimate Pr(>|t|)

Number of emails sent 1.294 × 10−4 <2 × 10−16 *** 1.396 × 10−4 <2 × 10−16 *** 1.069 × 10−16 <2 × 10−16 ***

Share of own replies
within period 4.174 × 10−1 <2 × 10−16 *** 5.713 × 10−1 <2 × 10−16 *** 4.676 × 10−1 <2 × 10−16 ***

Closeness 4.201 × 10−1 3.51 × 10−16 ******

Closeness (in) −1.223 × 101 6.44 × 10−10 ***

Closeness (out) 1.259 × 101 1.51 × 10−10 ***

“In” clustering coefficient 3.953 × 10−1 1.55 × 10−7 *** 2.757 × 10−1 0.000130 ***

“Out” clustering coefficient 2.208 × 10−1 0.00121 ** 2.519 × 10−1 0.000102 ***

“Middleman” clustering
coefficient −4.599 × 10−1 2.14 × 10−5 *** −5.004 × 10−1 1.43 × 10−6 ***

Adjusted R-squared 0.8468 0.8428 0.8596

p-value <2.2 × 10−16 <2.2 × 10−16 <2.2 × 10−16

Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1.

The conventional model uses the two variables above and the individual’s closeness centrality
indicator. The relation is positive, meaning that, the closer the individual is to the center of the network,
the higher the share of the individual’s emails that are responded within 7 d. Neither degree nor
betweenness appear as significant variables, suggesting that the speed of replies is not a function of the
number of individual connections nor of the number of shortest paths that an individual node forms
part of.

The clustering model, which uses the directed clustering coefficients, suggests that three directed
coefficients can be useful in interpreting an individual’s role in the network. There is a correlation
with both the In- and Out-clustering coefficient and a negative correlation with the cycle clustering
coefficient. This indicates that the participation in triads which have all three nodes communicating
with each other tend to have a more active role in the overall network. Conversely, if the individual acts
simply as a middleman, i.e., is part of the weaker communication channel in a triad, the individual’s role
in the network tend to be less active, at least measured in terms of the time for emails to be responded.

The Extended Directional model combines centrality and clustering indicators accounting, in both
cases, for direction and weights. This model maintains the main independent variables of the other two
approaches, rebalancing their respective estimates and resulting in a visible improvement in accuracy.
The R2 coefficient of the Extended Directional model is 0.8596 compared to 0.8468 and 0.8428 for the
other two models, respectively. Closeness is considered in its directional version, which results in
its weight in the model to be split in two. The two directions are not symmetrical though, with the
in-closeness centrality having a negative correlation which roughly counter-balances the positive
impact of the out-closeness one. The three clustering coefficients remain significant in the Extended
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Directional model, maintaining the direction of the influence, with small changes in the estimates.
The estimates of In- and Out-clustering coefficients converge to comparable levels, while the estimate
for the Middleman coefficient decreases further.

The difference when direction and weights are taken into account to explain variation is noticeable,
and the accuracy of the model increases. The department that each individual belongs to does not
appear as significant. The three standard graph theory indicators, Degree, Closeness, and Betweenness,
appear to be inter-related, even in their directed version, and, consequently, only Closeness appears
as significant.

6.2. Share of Outgoing Emails Responded Within 24 Hours

A second set of models that use a threshold of 24 h for the delay in responses is summarized in
Table 8. All three models have a lower accuracy than their corresponding version that uses 7 d as a
threshold. This is probably a result of the time scale used, since counting the delay this way would
include weekends and distort the speed in response. Even so, this threshold is useful for confirming
the robustness of the approach. All independent variables for all three model configurations present
the same direction in their impact on the dependent variable, with estimates having the same order of
magnitude and showing a comparable level of statistical significance.

Table 8. One-day model.

Conventional Clustering Extended Directional

Estimate Pr(>|t|) Estimate Pr(>|t|) Estimate Pr(>|t|)

Number of
emails sent 9.420 × 10−5 <2 × 10−16 *** 1.065 × 10−4 <2 × 10−16 *** 7.913 × 10−5 <2 × 10−16 ***

Share of own replies
within period 3.163 × 10−1 <2 × 10−16 *** 4.499 × 10−1 <2 × 10−16 *** 3.492 × 10−1 <2 × 10−16 ***

Closeness 3.001 × 10−1 <2 × 10−16 ***

Closeness (in) −7.363 3.01 × 10−6 ***

Closeness (out) 7.687 9.58 × 10−7 ***

“In” clustering
coefficient 2.782 × 10−1 3.94 × 10−6 *** 1.769 × 10−1 0.002354 **

“Out” clustering
coefficient 1.598 × 10−1 0.003591 ** 1.726 × 10−1 0.000991 ***

“Middleman”
clustering coefficient −3.137 × 10−1 0.000312 *** −3.662 × 10−1 1.28 × 10−5 ***

Adjusted R-squared 0.7675 0.7571 0.7806

p-value <2.2 × 10−16 <2.2 × 10−16 <2.2 × 10−16

Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1.

The reciprocity in the speed of responses remains. Individuals who respond within 24 h have
a higher probability of their emails being responded within 24 h. High activity in terms of the
number of emails sent is again an important indicator. The opposite directions of the estimates for the
two directional closeness centrality indicators confirms the observation made in the 7 d model, i.e.,
that out-closeness is positively correlated with speed of responses received, while in-closeness has the
contrary effect. The In-, Out-, and Middleman clustering coefficients also corroborate the results of the
7 d model.

The results of the two models are robust enough to allow a generalization of the interpretation
of each variable. The individual’s own activity in terms of number, frequency, and destination of
emails appears to reflect the relative importance of the individual in the network expressed as the
share of timely responses to an individual’s email within either a 7 d or 24 h period. In terms of activity,
the frequency and response delay of the individual’s own emails are a determinant of how others
respond. The higher the number of emails sent and the faster emails are replied by an individual,
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the faster the responses of the individual’s correspondents can be expected to be. From a topology
perspective, taking into account the asymmetry of closeness centrality allows a more detailed evaluation
of its impact. A central role as an emitter of information (high Out-closeness) increases the probability
of quick reactions by others. In the opposite case, simply being close to the center as receiver of
information (high Out-closeness) decreases this probability. Small world aspects can also explain part of
the role. The middleman clustering coefficient has a clearly negative correlation with response time,
something that suggests that there is a correspondence with the importance of an individual’s role in
the system. In-clustering and out-clustering both have a positive correlation, possibly indicating that
the individuals with high coefficients are a link between local clusters and the rest of the system.

6.3. Validation of Methodology on Alternative Datasets

The methodology presented here appears to applicable in the case of the reference email network,
providing results that, to a certain extent, allow some insights on the structure and dynamics of
the organization. A question, though, is whether this approach can be generalized to other type
of networks, either of email or other social network activity. In order to test the robustness of the
approach, the models developed using the email-Eu-core-temporal network (Sections 6.1 and 6.2) are
applied on two different validation networks. The first validation network is “CollegeMsg”, a dataset of
private messages sent on an online social network at the University of California, Irvine, originally
used in Reference [35]. Users could search the network for others and then initiate conversation
based on profile information. The dataset consists of 59,835 messages among the 1899 members.
It includes the anonymized identity of the sender and recipient, as well as the timestamp of the message.
The timespan of the dataset is 193 days and permits the calculation of response times. Compared to
the email-Eu-core-temporal dataset (330 thousand emails between 986 members, over 18 months),
CollegeMsg is less dense and has a shorter timespan. In addition, the dynamics of participating in
a message board differ from that of an email network in term of speed, frequency, and intensity of
interaction between members.

The second dataset used for validation is the Enron email network [36]. It consists of 52,587
nodes and 517,399 emails, in a timespan of more than four years. The dataset is not limited to Enron
employees but covers all email exchanges with an Enron employee as a sender or recipient. On the
other hand, there is no information available on the hierarchical structure inside Enron, since only email
addresses are included. As a result, while it is a much larger dataset than both email-Eu-core-temporal
and CollegeMsg, it is less dense and has a longer timespan than both.

Table 9 summarizes the fit for the 7 d and 1 d responses applied on each of the three datasets.
In all three cases, the extended directional model explains variation better than either the conventional
or the clustering model. The fit for the smallest dataset (CollegeMsg) is better for both the timescales
used and in all three model variations. In contrast, the large Enron dataset has a lower (though still
acceptable) R2 but also demonstrates a visible improvement when the Extended Directional model is
applied. It is also notable that the 1 d timescale has a better fit than the 7 d timescale in the case of
Enron. This comparison confirms that the explanatory power of the model increases in all cases when
directional coefficients are used. The overall accuracy, though, depends on the specificities of each
network. Different parameters, especially in regard to the timescale used, would probably improve the
results of the comparison.

Table 9. Comparison of model fit for the three datasets (expressed as R2).

Conventional Clustering Extended Directional

7 D 1 D 7 D 1 D 7 D 1 D

email-Eu-core-temporal 0.8468 0.7675 0.8428 0.7571 0.8596 0.7806
CollegeMsg 0.9823 0.9607 0.9781 0.9404 0.9823 0.9611

Enron 0.6082 0.6791 0.5239 0.678 0.6091 0.6818
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Table 10 compares the estimates for each variable used in the extended directional model for
each dataset. The main observations made in the analysis of the email-Eu-core-temporal network still
hold true. The users own activity in terms of number of emails and own time to respond explains a
large part of variation. The estimates for in- and out-closeness normally have opposite signs, as do
the ones for in- and out-clustering. The results of the validation suggest that the main principles of
the methodology presented here are still valid. Directional indicators, including the Small World
indicators, do add value to the information and improve the predictive models in both alternative
networks tested.

Table 10. Comparison of dependent variable direction of estimates, Extended Directional model.

Email-Eu-Core-Temporal CollegeMsg Enron

7 D 1 D 7 D 1 D 7 D 1 D

Number of emails sent + * + * - + + +
Share of own replies within

period + * + * + * + * + + *

Closeness (in) - * - * + + * - - *
Closeness (out) + * + * - - * + + *
“In” clustering + * + * + + - -

“Out” clustering + * + * - - * + +
“Middleman” clustering - * - * - + + -

note: +/- indicate positive or negative estimate, * indicates whether estimate prediction is significant.

The detailed results for the two validation networks can be found in the Appendix A.

7. Conclusions

The work presented here addressed options to improve current practice in Social Network Analysis
(SNA). The main novelty of the approach proposed is two-fold. The introduction of weighted and
directed indicators in standard SNA adds useful information on the direction of intensity of social
network interactions. In addition, the application of small world directional clustering coefficients
improves interpretability. The experiments using a reference email network demonstrate that taking
into account the direction and weights of the social network connections can improve the understanding
of the network patterns and operational aspects.

The results also suggest that a hitherto perceived complication of social network—the lack of
symmetry—can, in fact, be seen as an advantage. Directed and weighted cluster coefficients may
explain part of the variance in email activity, which is a promising candidate for explaining an
individual’s role within an organization. In addition, the significance of the local clustering coefficients
in all experiments with the three different social networks confirms the hypothesis that email networks
present certain Small World elements.

While the method and indicators were tested only on three networks, it is probably applicable
to other types of social networks, regardless of scale and structure. Most social networks entail
asymmetries in the flow of information and the relation between its members. The results presented
here suggest that there is a correlation between this asymmetry and the role of each member in the
network, an observation that can be probably extended to other social networks.

The approach obviously has several limitations that should be kept in mind when interpreting
the results. The specific data used are a snapshot for a specific period in time. Most probably,
the patterns of social network activity change over time either due to the own network’s dynamics
or as a result of the introduction of alternative social networks. In the case of emails, the gradual
introduction of competitive communication tools, such as intranet or instant messaging, may modify
the importance of this channel of communication. Another major caveat is the lack of objective
evaluations of an individual’s role so that a model that correlates it to SNA indicators can be developed
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and validated. This is, however, a general weakness of SNA-based analysis, since it is seldom possible
to demonstrate a causal relationship between social network activity and a real life assessment of an
individual’s importance.

The improvements proposed here, but also the limitations that were identified, signify the need to
extend research on social network analysis and organizational dynamics. More social network data
will be probably available for research in the future, providing an opportunity for the often purely
theoretical approaches to be further developed and tested.

Funding: This research received no external funding.

Conflicts of Interest: The author declares no conflict of interest.

Appendix A. Results for Validation Networks

Table A1. College dataset, 7-day model.

Conventional Clustering Extended Directional

Estimate Pr(>|t|) Estimate Pr(>|t|) Estimate Pr(>|t|)

Number of emails sent −1.113 × 10−4 0.00601 ** 1.403 × 10−4 0.000995 *** −8.578 × 10−6 0.87386
Share of own replies within period 9.635 × 10−2 0.04899 * 9.553 × 10−1 <2 × 10−16 *** 9.887 × 10−2 0.04459 *
Closeness 2.949 <2 × 10−16 ***
Closeness (in) 4.887 × 10−2 0.21796
Closeness (out) −2.439 0.20323
“In” clustering coefficient 1.245 × 10−1 0.004622 ** 4.887 × 10−2 0.21796
“Out” clustering coefficient 4.702 × 10−3 0.878011 −2.164 × 10−2 0.43262
“Middleman” clustering coefficient −4.740 × 10−2 0.272049 −1.180 × 10−2 0.76112
Adjusted R-squared 0.9823 0.9781 0.9823
p-value <2.2 × 10−16 <2.2 × 10−16 <2.2 × 10−16

Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1.

Table A2. College dataset, 1-day model.

Conventional Clustering Extended Directional

Estimate Pr(>|t|) Estimate Pr(>|t|) Estimate Pr(>|t|)

Number of emails sent −9.079 × 10−5 0.085. 2.369 × 10−4 0.000206 *** 7.396 × 10−5 0.30228
Share of own replies within period 1.813 × 10−1 3.69 × 10−10 *** 9.111 × 10−1 <2 × 10−16 *** 1.866 × 10−1 1.04 × 10−10 ***
Closeness 2.396 <2 × 10−16 ***
Closeness (in) 8.495 0.00103 **
Closeness (out) −6.139 0.01784 *
“In” clustering coefficient 1.529 × 10−1 0.020532 * 4.493 × 10−2 0.40060
“Out” clustering coefficient −1.161 × 10−1 0.011989 * −9.589 × 10−2 0.01030 *
“Middleman” clustering coefficient 8.458 × 10−2 0.192056 4.440 × 10−2 0.39701
Adjusted R-squared 0.9607 0.9404 0.9611
p-value <2.2 × 10−16 <2.2 × 10−16 <2.2 × 10−16

Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1.

Table A3. Enron dataset, 7-day model.

Conventional Clustering Extended Directional
Estimate Pr(>|t|) Estimate Pr(>|t|) Estimate Pr(>|t|)

Number of emails sent 2.161 × 10−5 0.462 1.245 × 10−4 6.72 × 10−5 *** 1.413 × 10−5 0.742
Share of own replies within period 4.322 × 10−2 4.481 × 10−2 5.021 × 10−1 <2 × 10−16 *** 3.915 × 10−2 0.384
Closeness 1.482 1.201 × 10−1

Closeness (in) −1.107 × 101 0.881
Closeness (out) 1.262 × 101 0.865
“In” clustering coefficient 3.834 × 10−2 0.521 −1.115 × 10−1 0.046 *
“Out” clustering coefficient 1.761 × 10−1 0.145 8.092 × 10−2 0.461
“Middleman” clustering coefficient 7.172 × 10−2 0.644 3.361 × 10−2 0.739
Adjusted R-squared 0.6082 0.5239 0.6091
p-value <2.2 × 10−16 <2.2 × 10−16 <2.2 × 10−16

Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1.
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Table A4. Enron dataset, 1-day model.

Conventional Clustering Extended Directional

Estimate Pr(>|t|) Estimate Pr(>|t|) Estimate Pr(>|t|)

Number of emails sent 1.154 × 10−5 8.94 × 10−6 *** 1.208 × 10−5 1.69 × 10−6 *** 3.523 × 10−6 0.35463
Share of own replies within period 6.126 × 10−1 <2 × 10−16 *** 6.149 × 10−1 <2 × 10−16 *** 6.110 × 10−1 <2 × 10−16 ***
Closeness 3.245 × 10−3 0.492
Closeness (in) −1.847 × 101 0.00524 **
Closeness (out) 1.847 × 101 0.00522 **
“In” clustering coefficient −2.139 × 10−4 0.964 −3.092 × 10−3 0.53343
“Out” clustering coefficient 1.449 × 10−3 0.883 1.779 × 10−3 0.85563
“Middleman” clustering coefficient −1.584 × 10−3 0.860 −2.073 × 10−3 0.81785
Adjusted R-squared 0.6791 0.678 0.6814
p-value <2.2 × 10−16 <2.2 × 10−16 <2.2 × 10−16

Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1.
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