
 information

Article

A Syllable-Based Technique for Uyghur
Text Compression

Wayit Abliz 1,2 , Hao Wu 2, Maihemuti Maimaiti 1,2, Jiamila Wushouer 1,2,
Kahaerjiang Abiderexiti 1,2, Tuergen Yibulayin 1,2 and Aishan Wumaier 1,2,*

1 School of Information Science and Engineering, Xinjiang University, Urumqi 830046, China;
wayit@xju.edu.cn (W.A.); mahmutjan@xju.edu.cn (M.M.); jamila@xju.edu.cn (J.W.);
kaharjan@xju.edu.cn (K.A.); turgun@xju.edu.cn (T.Y.)

2 Xinjiang Laboratory of Multi-Language Information Technology, Xinjiang University, Urumqi 830046, China;
wuhao94@aliyun.com

* Correspondence: hasan1479@xju.edu.cn; Tel.: +86-136-599-13514

Received: 23 February 2020; Accepted: 18 March 2020; Published: 23 March 2020
����������
�������

Abstract: To improve utilization of text storage resources and efficiency of data transmission,
we proposed two syllable-based Uyghur text compression coding schemes. First, according to the
statistics of syllable coverage of the corpus text, we constructed a 12-bit and 16-bit syllable code tables
and added commonly used symbols—such as punctuation marks and ASCII characters—to the code
tables. To enable the coding scheme to process Uyghur texts mixed with other language symbols,
we introduced a flag code in the compression process to distinguish the Unicode encodings that
were not in the code table. The experiments showed that the 12-bit coding scheme had an average
compression ratio of 0.3 on Uyghur text less than 4 KB in size and that the 16-bit coding scheme
had an average compression ratio of 0.5 on text less than 2 KB in size. Our compression schemes
outperformed GZip, BZip2, and the LZW algorithm on short text and could be effectively applied to
the compression of Uyghur short text for storage and applications.

Keywords: text compression; Uyghur; syllable; code table

1. Introduction

Network data on the internet continues to increase significantly each year. In 2018, for the
mobile internet only, access traffic reached 71.1 billion GB in China. Text messaging and instant
messaging consume huge amounts of storage and communication resources. Text compression is a
type of lossless compression technology that improves storage space utilization and text transmission
efficiency. Text compression technology mainly employs statistics-based and dictionary-based
methods. These methods have distinct advantages and disadvantages, depending on the specific
application, and they also operate differently. Statistics-based methods use the statistical information
of characters (or other basic units of the language) to generate shorter-length codes, such as
run-length coding, Shannon–Fano coding, and Huffman coding [1–3]. Run-length coding has better
compression performance than the other two when several consecutively repeated elements occur.
Shannon–Fano coding uses a top-down building tree, which has low coding efficiency and long average
coding length. It is rarely used in practical applications. Huffman coding encodes the sequence
according to the probability of character occurrence, so that the average code length is the shortest.
This method has average compression efficiency for those characters with average probability of
occurrence. The dictionary-based methods, such as the LZ77 and LZ78 [4,5] algorithms, perform
compression-decompression by constructing a dictionary mapping table. The LZ77 algorithm uses a
sliding dynamic dictionary to store local historical information and replaces duplicate content with

Information 2020, 11, 172; doi:10.3390/info11030172 www.mdpi.com/journal/information

http://www.mdpi.com/journal/information
http://www.mdpi.com
https://orcid.org/0000-0002-6903-5311
http://www.mdpi.com/2078-2489/11/3/172?type=check_update&version=1
http://dx.doi.org/10.3390/info11030172
http://www.mdpi.com/journal/information

Information 2020, 11, 172 2 of 18

an index of the elements in the dictionary for encoding. The LZ78 algorithm also uses a dynamic
dictionary to store information, extracts character strings from the character stream, and represents
them by numbers and encodes the repeated character strings.

2. Related Research

Most text compression algorithms are character or word based, excluding language texts with
other word forms [6–9]. Previous researchers have proposed a syllable-based text compression
method and a scheme for lossless compression of short data [10–16]. Nguyen et al. [15] proposed
a syllable-based Vietnamese text compression algorithm. This method first constructs syllable and
consonant dictionaries, and then it uses fixed code bits to represent the information, such as syllables,
tones, and capitalization. Akman et al. [16] proposed a syllable-based Turkish text compression
algorithm. On the basis of the analysis of the nature of syllables, this method implements encoding
by counting repeated syllables and setting special symbols, such as spaces and English characters.
Oswald et al. [17] proposed an algorithm that further reduces text redundancy by finding patterns in
the text and using these patterns with the LZ78 algorithm. Bharathi et al. [18] proposed an incremental
compression method. This method implements variable-length encoding to perform data compression
and can perform searches on compressed data. Several other researchers have proposed compression
techniques for different languages [19–24]. At present, little research has been conducted on text
compression in the Uyghur language. Xue et al. [25] tested Uyghur compression using Huffman and
LZW algorithms. In a text containing only Uyghur characters, the Unicode-based Uyghur text is
converted into Latin characters and then is compressed. The drawback of this method is that it is not
capable of compressing text mixed with other language characters.

In this study, we used a large amount of Uyghur corpora for syllable statistical analysis,
performed reverse ordering according to the frequency of occurrence of syllables, and selected
high-frequency syllables to construct syllable code tables. On the basis of two fixed-length coding
schemes, we constructed 12-bit and 16-bit syllable coding dictionaries. We also processed other language
characters and spaces accordingly. We achieved good coding performance with this technique.

3. Syllables of Uyghur

Uyghur is a typical agglutinative language. It has strong derivational ability and rich morphological
variations. Uyghur has 32 letters in total, with 24 consonants and 8 vowels. A word consists of a
combination of syllables with no special signs between the syllables. The inherent syllable structure is
(initial sound) + nucleus sound + (final sound), where the nucleus sound must be a vowel. There can be
no initial sound or final sound in the syllable, but there must be a nucleus sound [26–28]. The present-day
Uyghur is classified into 12 syllabic types. The syllable classification is shown in Table 1, where C
represents a consonant and V a vowel.

Table 1. Uyghur syllable classification.

No. Syllabic Structure Example No. Syllabic Structure Example
1 V A

K/A 7 CCV 	á�ËA

�
J�/Stalin

2 VC �
HA

K/At 8 CCVC A¾

	
K @Q

	
¯/Franka

3 CV BA¿/Kala 9 CCVCC �
HPñJ��

	
� @Q�

�
K/Tiransport

4 CVC 	
àA

	
K/Nan 10 CVV @

�
ñ

	
k/Hua

5 VCC 	PP é

K/Ärz 11 CVVC 	

à è
�

ñ
�
K/Tüän

6 CVCC
�

�Ë é
	

k/Hälq 12 CCCV Q�
�
JJ..

ÓðQ�
��/Strometir

In Table 1, the examples include the present-day Uyghur and the Latinized transition forms.
The syllabic structures of nos. 7–12 are used mainly to record words that have foreign origin.
Each syllable of the syllabic structures for no. 10 and no. 11 have two vowels, which are used mainly

Information 2020, 11, 172 3 of 18

to record words with two vowels from Chinese and other languages, such as Zhonghua and Guangdong.
The inherent feature of Uyghur syllables is that a syllable contains only one vowel and may contain no
consonants, and thus the number of vowels in a word is theoretically equal to the number of syllables
in the word. The following three problems need to be solved to implement this syllable segmentation:

1. Some loanwords from Chinese have two vowels, such as tüän and hua.
2. No more than one consonant should appear in front of the vowel, but some loanwords from

foreign languages have more than one consonant in front of a vowel, such as Stalin and Strategiyä.
3. When syllables are segmented, the syllabic structure of two vowels of certain loanwords from

Chinese and the syllabic structure of multiple consonants of certain words from foreign languages
are prone to making the segmentation algorithm ambiguous, such as syllabic type 11 (CVVC),
which structurally is a combination of syllabic type 3 (CV) and type 2 (VC). When a character
string that has the CVVC structure occurs in a word, identifying whether the string has one
syllable or two is a key issue for the syllable segmentation.

4. Syllable Segmentation and Selection

4.1. Syllable Segmentation and Analysis

The corpus constructed in this paper included a collection of 52,718 articles from a variety of
journals, government documents, scientific and literary works, and short documents such as social
media posts. We performed syllable segmentation on all 713,716 unique words and expressions
appearing in these articles, using the segmentation method described by Wayit et al. [29]. We found a
total of 8621 different syllables belonging to the 12 syllabic structures using this syllable segmentation.
We counted these syllables for each syllabic structure, and the statistics are given in Table 2.

Table 2. Statistics of Uyghur syllable.

Structure
Number of Frequency Structure

Number of Frequency
Theoretical Actual Theoretical Actual

V 8 8 31,653 CCV 4608 425 1358
VC 192 172 34,002 CCVC 110,592 688 2829
CV 192 184 593,850 CCVCC 2,654,208 151 287

CVC 4608 2992 441,376 CVV 1536 260 1358
VCC 4608 294 1319 CVVC 36,864 394 2194

CVCC 110,592 2956 11,667 CCCV 110,592 97 180

In Table 2, a theoretical syllable number reflects all of the syllables that can be composed of 24
consonants and 8 vowels in this structure. For example, the CCV syllabic structure theoretically can
generate 24 * 24 * 8 = 4608 syllables. The actual number is the number that occurs based on the structure
when counting 713,716 words during the syllable segmentation. For example, the CCV structure has
only 425 syllabic structures. Frequency of occurrence is the number of occurrences of all syllables
based on the type of syllabic structure among all of the words. From the statistical results, we found
that the number of occurrences for the six inherent syllabic structures accounted for the majority of
the syllables. According to the statistical results given in Table 2, the average syllable length (ASL)
calculated by Equation (1) was 2.4 characters.

ASL =

∑
(Syllable Length× f requency)∑

f requency
(1)

4.2. Selection of High-Frequency Syllables

Figure 1 shows the Zipf’s law distribution of 8621 syllables in the corpus. All syllables are sorted
in descending order of frequency f. The highest syllable ranks as r = 1. In the figure, the x-axis is
the logarithm of the ranking r, and the y-axis is the logarithm of the frequency f. Figure 2 shows the

Information 2020, 11, 172 4 of 18

syllable coverage. The x-axis is the top n syllables, and the y-axis is the logarithm of the sum of the
frequencies of the top n syllables. The calculation of log fn by Equation (2) follows

log fn = log(
r=n∑
r=1

fr) (2)

For example, log r = 2.0 on the x-axis corresponds to log f = 0.605 on the y-axis. This means that
the first 100 syllables with the highest frequency can cover 60% of the words in the corpus. After the
2000th syllable, the increase in the syllables does not significantly increase the coverage.

Information 2020, 11, x FOR PEER REVIEW 4 of 18

𝑙𝑜𝑔 𝑓௡ = 𝑙𝑜𝑔 (෍ 𝑓௥௥ୀ௡
௥ୀଵ) (2)

For example, log r = 2.0 on the x-axis corresponds to log f = 0.605 on the y-axis. This means that
the first 100 syllables with the highest frequency can cover 60% of the words in the corpus. After t

Figure 1. Zipf’s law distribution of syllables.

Figure 2. Coverage of high-frequency syllables.

5. Data Compression Coding

5.1. Syllable Coding

In this study, we used two coding schemes to encode the syllables: the 12-bit short coding
scheme B12 and the 16-bit long coding scheme B16. The B12 scheme included an 11-bit syllable code
table. The B16 scheme included a 16-bit syllable code table. We used these two coding schemes in
conjunction with Unicode encoding, which we used to encode the characters in the nonsyllable
coding table. In actual application, to identify the characters not included in the code tables, we had
to add some identification flag to these Unicode codes.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

lo
g

f

log r

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

110%

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

C
ov

er
ag

e

Number of highest frequency syllables log N

Figure 1. Zipf’s law distribution of syllables.

Information 2020, 11, x FOR PEER REVIEW 4 of 18

𝑙𝑜𝑔 𝑓௡ = 𝑙𝑜𝑔 (෍ 𝑓௥௥ୀ௡
௥ୀଵ) (2)

For example, log r = 2.0 on the x-axis corresponds to log f = 0.605 on the y-axis. This means that
the first 100 syllables with the highest frequency can cover 60% of the words in the corpus. After t

Figure 1. Zipf’s law distribution of syllables.

Figure 2. Coverage of high-frequency syllables.

5. Data Compression Coding

5.1. Syllable Coding

In this study, we used two coding schemes to encode the syllables: the 12-bit short coding
scheme B12 and the 16-bit long coding scheme B16. The B12 scheme included an 11-bit syllable code
table. The B16 scheme included a 16-bit syllable code table. We used these two coding schemes in
conjunction with Unicode encoding, which we used to encode the characters in the nonsyllable
coding table. In actual application, to identify the characters not included in the code tables, we had
to add some identification flag to these Unicode codes.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

lo
g

f

log r

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

110%

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

C
ov

er
ag

e

Number of highest frequency syllables log N

Figure 2. Coverage of high-frequency syllables.

Information 2020, 11, 172 5 of 18

5. Data Compression Coding

5.1. Syllable Coding

In this study, we used two coding schemes to encode the syllables: the 12-bit short coding scheme
B12 and the 16-bit long coding scheme B16. The B12 scheme included an 11-bit syllable code table.
The B16 scheme included a 16-bit syllable code table. We used these two coding schemes in conjunction
with Unicode encoding, which we used to encode the characters in the nonsyllable coding table.
In actual application, to identify the characters not included in the code tables, we had to add some
identification flag to these Unicode codes.

In this paper, we used dicChar and dicSyllb to represent the encoded characters and syllables in
the dictionary and used xChar and xSyllb to represent the uncoded characters and syllables in the
dictionary. xSyllb was composed of several dicChars, and SP was a space (U0020).

5.1.1. B12 Coding Scheme

The most common word division symbol in Uyghur is a space (U0020). In the B12 scheme, we set
the first bit to the space flag bit. A flag bit of “1” indicated that the current syllable was followed by a
space (i.e., the end syllable of the word). A flag bit of “0” indicated that no space appeared after the
current syllable was encoded (i.e., the first syllable or intermediate syllables of the word).

Excluding the space flag bit, we called the remaining 11 bits of the 12-bit short code bits the syllable
code bits. The 11-bit syllable code bits contained 2048 code positions—that is, the 11-bit syllable code
table contained 2048 syllable codes. We classified the code positions as follows:

1. ASCII characters: The frequency of ASCII characters in Uyghur was higher than that of other
symbols, such as Chinese characters, so we treated each ASCII character as a syllable, and thus
we left the first 128 encoding positions for ASCII characters (0x00–0x7F).

2. Uyghur characters: The code range of Uyghur characters was in the Unicode basic block
(U0600–U06FF). This block occupied 33 code positions in the syllable coding, including 24
consonant characters “[È], [

�
¼], [À], [¼], [�

�], [
	

¬], [
	

¨], [�
�], [�], [�P], [P], [P], [X], [p], [h�], [h.], [�

H],

[H�], [H.], [ø

], [�
ð], [ë], [

à], [Ð] “ and eight vowel characters “[�
ð], [�

ð], [�
ð], [ð], [ø], [ø

..
], [è], [@] “ and

special character HAMZE [
ø] (U0626).

3. Uyghur commonly used punctuation marks: Common punctuation marks included “,” (U060C),

“;” (U061B), “?” (U061F), and “-” (U0640). They occupied four code positions.

4. Other commonly used punctuation marks in Uyghur: “«“ (U00AB), “»“ (U00BB), “ . . . ”
(U2026), four-per-em space (U2005), left-to-right mark (U200E), and right-to-left mark (U200F).
They occupied six code positions.

5. We reserved 15 positions to flags, for describing various situations in the data stream.
6. High-frequency Uyghur syllables: Excluding the previously mentioned syllable codes, 1862 code

positions remained. As shown in Figure 1, the coverage of 1862 syllable codes was around 98%,
which contained the more commonly used high-frequency syllables.

These characters belonged to dicChar, and the remaining characters belonged to xChar. The xChar
also included the non-Uyghur characters in (U0600–U06FF) and the other Uyghur characters in the
Unicode extension areas (UFE70–UFEFF) and (UFB50–UFDFF).

5.1.2. B16 Coding Scheme

In the B16 coding scheme, the code length of a syllable was exactly equal to the length of
the Unicode character code. This facilitated subsequent research on syllable-based text retrieval of
compressed text. We selected the Private Use Area (UE000–UF8FF) with 6400 positions as the 16-bit
long code block. The number of syllables occurring in the previously noted corpus was 8621. This block

Information 2020, 11, 172 6 of 18

was large enough to accommodate most of the syllables that occurred. This scheme did not use the
space flag.

In this scheme, if the text encountered xSyllb, we used the Unicode source code directly. If it was
a character in the Private Use Area, we resolved it by attaching an identifier flag.

5.1.3. Code Block Division

The code blocks of the previous two coding schemes are shown in Table 3.

Table 3. Code ranges of the two coding schemes.

No. Encoding Entity Encoding Range

Unicode B12 B16

1 ASCII characters U0000–U007F 0x000–0x07F Unchanged
2 Uyghur characters U0600–U06FF 0x080–0x0A0 Unchanged
3 Uyghur punctuation marks U0600–U06FF 0x0A1–0x0A4 Unchanged

4 Other punctuation marks U00AB, U00BB, U2005,
U200E, U200F, U2026 0x0A5–0x0AA Unchanged

5 Selected syllables NULL 0x0AB–0x7F0 UE003–UF8FF
6 Flags NULL 0x7F1–0x7FF UE000–UE002

The B12 scheme contained 1862 high-frequency syllables. The B16 scheme using the Private Use
Area contained 6400 code positions.

5.2. Design of Flag Coding

5.2.1. B12 Scheme Flags

The purpose of the identification flag is to identify the xChar and xSyllb that appeared in the data
stream. We first selected some of the corpora shown in Table 4 to make statistics based on the length of
the xChar string. The length probability is shown in Figure 3. From the xChar length, the number of
xChars with string lengths of 1 and 2 were the highest, and the probability that the length was greater
than 8 was very low. A length of 1 was found primarily in Chinese characters and other symbols
(1O(1)

√
VI %�, etc.), and a length of more than 2 was found mainly in Chinese characters. The flag and

their meanings based on the statistical results are shown in Table 5.

Table 4. Corpus information for determining xChar length.

No. Type Content Size
(MB) No. Type Content Size (MB)

1 Hot news
CCTV Focus Interview

Program (2018/7 to
2018/12)

8.36 7 Book Roosevelt Biography 2.33

2 Natural
sciences

CCTV Human and
Nature Program (2015

to 2018)
5.57 8 Novel Farmer’s Son Wang

Leyi 1.43

3 General news CCTV News Hookup
(2018/7 to 2018/12) 19.8 9 Other Glossary of

scientific terms 1.6

4 Agricultural
technology

CCTV Get Rich
Program (51st-94th,

2018)
4.76 10 Other

Name list of various
institutions in

Xinjiang

0.6
9600 in

total

5 Educational
books

Elementary and
Secondary Child

Psychology
1.6 11

Short text
(mobile

terminal)

Web message,
comment, SMS,

WeChat chat data

1
2908 in

total

6 Popular
science books The World’s Most 0.6 Corpus total size 46.8 MB; unique words 136,523;

and unique syllables 7434.

Information 2020, 11, 172 7 of 18

Information 2020, 11, x FOR PEER REVIEW 6 of 18

Table 3. Code ranges of the two coding schemes

No. Encoding Entity
Encoding Range

Unicode B12 B16
1 ASCII characters U0000–U007F 0x000–0x07F Unchanged
2 Uyghur characters U0600–U06FF 0x080–0x0A0 Unchanged

3 Uyghur
punctuation marks

U0600–U06FF 0x0A1–0x0A4 Unchanged

4 Other punctuation
marks

U00AB, U00BB, U2005,
U200E, U200F, U2026

0x0A5–0x0AA Unchanged

5 Selected syllables NULL 0x0AB–0x7F0 UE003–UF8FF
6 Flags NULL 0x7F1–0x7FF UE000–UE002

The B12 scheme contained 1862 high-frequency syllables. The B16 scheme using the Private Use
Area contained 6400 code positions.

5.2. Design of Flag Coding

5.2.1. B12 Scheme Flags

The purpose of the identification flag is to identify the xChar and xSyllb that appeared in the
data stream. We first selected some of the corpora shown in Table 4 to make statistics based on the
length of the xChar string. The length probability is shown in Figure 3. From the xChar length, the
number of xChars with string lengths of 1 and 2 were the highest, and the probability that the length
was greater than 8 was very low. A length of 1 was found primarily in Chinese characters and other
symbols (①⑴√ VI ‰, etc.), and a length of more than 2 was found mainly in Chinese characters. The
flag and their meanings based on the statistical results are shown in Table 5.

Figure 3. Length probabilities of xChar strings.

Table 4. Corpus information for determining xChar length

No. Type Content
Size
(MB) No. Type Content

Size
(MB)

1 Hot news
CCTV Focus

Interview Program
(2018/7 to 2018/12)

8.36 7 Book
Roosevelt
Biography

2.33

2
Natural
sciences

CCTV Human and
Nature Program (2015

to 2018)
5.57 8 Novel

Farmer’s Son Wang
Leyi

1.43

3 General news
CCTV News Hookup

(2018/7 to 2018/12)
19.8 9 Other

Glossary of
scientific terms

1.6

30%

45%

3%
8%

7% 5%
2%

1

2

3

4

5

6~8

>8

Figure 3. Length probabilities of xChar strings.

Table 5. Flag code for B12 coding scheme.

No. Flag Code Meaning Note

1 SDB 0xE000 Syllable Data Begin Start decoding

2 fXC 0x7F1–0x7F9 xChar begin
Will encounter xChar sequences of length 0 < n

< 10, each xChar encoding length is 16 bits,
n = fXC-0x7F0

3 fXBB 0x7FA xChar Block Begin
Will encounter xChar sequences with length n
> 9, start to intercept 16bit data until fXBE is

encountered

5 fXBE 0xE002 xChar Block End The end of the xChar sequence, starting to
intercept 12-bit data

4 ESD 0x7FF End of syllable data Stop decoding

If one string S, including 2 ASCII characters a1, a2 (encoding in the encoding table was A1, A2);
2 Russian characters r1, r2 (Unicode R1, R2); 10 Chinese characters c1–c10 (Unicode C1–C10); 1 dicSyllb
composed of 2 Uyghur characters u1, u2 (encoding in the dictionary was S1); 1 xSyllb composed of
3 Uyghur characters u3, u4, u5 (Unicode U3, U4, and U5); and 3 Private Use Area characters e1, e2,
e3 (Unicode was E1 = 0xE000, E2 = 0xE001, E3 = 0xE002), then the encoding result of string S was

Sstring = a1a2r1r2c1~c10u1u2u3u4u5e1e2e3
Sencoding = SDB + A1A2 + fXC (0x7F2) + R1R2 + fXBB (0x7FA) C1-C10fxBE(0xE002) + S1 +

fXC(0x7F3) U3U4U5 + fxC(0x7F3)E1E2E3.

In the B12 scheme, the length of fXC and fXBB was 12 bits, and the length of fXBE was 16 bits.
The advantage of this design was that it was easy to identify the fXC when it started to read 12 bits
continuously and read n xChars directly, according to the value of fXC-0x7F0. When it encountered
fxBB, it started to read 16 bits. When it read fXBE, it indicated the end of the xChars sequence. Then it
restarted reading 12 bits.

5.2.2. B16 Scheme Flags

The B16 scheme identification flags and meaning are shown in Table 6.

Table 6. Flag code for B16 coding scheme.

No. Flag Code Meaning Note

1 SDB 0xE000 Syllable data begin Start decoding
2 fXC 0xE001 Private use area Identifies that the next character is a private area character
3 ESD 0xE002 End of syllable data Stop decoding

Information 2020, 11, 172 8 of 18

If string S contained 2 ASCII characters a1, a2 (Unicode A1, A2); 2 Russian characters r1, r2
(Unicode R1, R2); 10 Chinese characters c1–c10 (Unicode C1–C10); 2 dicSyllb (encoding in the dictionary
S3(U1,U2) = 0xE003, S5(U3,U4) = 0xE005); 1 xSyllb (three Uyghur characters with Unicode U3, U4, U5);
and 4 private area characters e3, e5, e3, and e5 (Unicode E3 = 0xE003, E5 = 0xE005), then the encoding
result of S was

Sstring = a1a2r1r2c1-c10u1u2u3u4u3u4u5e3e5e3e5
Sencoding = SDB + A1A2 + R1R2 + C1-C10 + S3(0xE003) + S5(0xE005) + U3U4U5 +

fxC(0xE001) E3 + fxC(0xE001)E5 + fxC(0xE001)E3 + fxC(0xE001)E5.

We used the B16 to research syllable-based text retrieval. When we retrieved syllable S3S5 from the
encoded string Sencoding, the S3S5 code 0xE003 and 0xE005 appeared three times in total, and the last
two times had the identifier flag fXC, which could be excluded. When retrieving e3e5, we encoded e3e5
into fXC + E3 + fXC + E5 before retrieval according to the input content. This excluded the encoding
of S3S5 without an identifier. If e3e5e3e5 was encoded with fXBB + E3E5E3E5 + fXBE, then when the
e3e5 was retrieved, the system encoded e3e5 into fXBB + E3E5+ fXBE. There was no matching content
in Sencoding. This was why the B16 scheme did not design the fXBB and fXBB flags of the B12 scheme.

5.2.3. Datagram and File Format

The format design of the compressed datagram and compressed file is shown in Figure 4.
SDB was a 2-byte identifier, which indicated that the compressed data stream started from this scheme.
CodetabID was a code table ID in a dictionary 1-byte long. A dictionary could contain 255 code tables.
A coding table represented a language or a language’s different coding scheme. After receiving the
data stream, the decoder performed decoding according to the encoding table ID. Sdata was the data
stream to be decoded, and ESD was the end of the data stream. The ESD length in the B12 scheme was
12 bits, and the ESD length of the B16 scheme was 16 bits.

Information 2020, 11, x FOR PEER REVIEW 8 of 18

U3, U4, U5); and 4 private area characters e3, e5, e3, and e5 (Unicode E3 = 0xE003, E5 = 0xE005), then
the encoding result of S was

Sstring = a1a2r1r2c1–c10u1u2u3u4u3u4u5e3e5e3e5

Sencoding = SDB + A1A2 + R1R2 + C1–C10 + S3(0xE003) + S5(0xE005) + U3U4U5 +
fxC(0xE001) E3 + fxC(0xE001)E5 + fxC(0xE001)E3 + fxC(0xE001)E5.

We used the B16 to research syllable-based text retrieval. When we retrieved syllable S3S5 from
the encoded string Sencoding, the S3S5 code 0xE003 and 0xE005 appeared three times in total, and the last
two times had the identifier flag fXC, which could be excluded. When retrieving e3e5, we encoded
e3e5 into fXC + E3 + fXC + E5 before retrieval according to the input content. This excluded the
encoding of S3S5 without an identifier. If e3e5e3e5 was encoded with fXBB + E3E5E3E5 + fXBE, then
when the e3e5 was retrieved, the system encoded e3e5 into fXBB + E3E5+ fXBE. There was no
matching content in Sencoding. This was why the B16 scheme did not design the fXBB and fXBB flags of
the B12 scheme.

5.2.3. Datagram and File Format

The format design of the compressed datagram and compressed file is shown in Figure 4. SDB
was a 2-byte identifier, which indicated that the compressed data stream started from this scheme.
CodetabID was a code table ID in a dictionary 1-byte long. A dictionary could contain 255 code tables.
A coding table represented a language or a language’s different coding scheme. After receiving the
data stream, the decoder performed decoding according to the encoding table ID. Sdata was the data
stream to be decoded, and ESD was the end of the data stream. The ESD length in the B12 scheme
was 12 bits, and the ESD length of the B16 scheme was 16 bits.

Figure 4. Datagram and compressed file format design.

In the adaptive dictionary method, the encoder generated a dictionary based on the text content
and compressed it. Finally, the compressed data stream and file came with dictionary information.
We read the data stream during decoding to determine whether the current item was identified or
uncompressed data, and we looked up the final output for the decompressed data in the dictionary
based on the identification. Because a string S had different frequencies and positions in the text T,
the encoding in the compressed text Z was also different. In this study, we proposed a method to use
the syllable characteristics of natural language to generate a general static dictionary for compression
and decompression. The actual compressed data did not have a dictionary. Regardless of the
frequency and position of a string S in the text T, its encoding in the compressed text Z was the same.

5.3. Data Compression Process

Taking the B12 scheme as an example, the implementation process of the compression method
proposed in this paper is shown in Figure 5. The process functions in the flowchart are as follows:

CheckXBlockEnd: Check the previous code first. If the previous encoding was xChar and the number
of this xChar and the previous consecutive xChars exceeded 9, we added an fXBE identifier to the
current data stream.

SDB CodetabID Sdata ESD Dictionary

C
odetab 1

C
odetab 2

C
odetab …

C
odetab n

Figure 4. Datagram and compressed file format design.

In the adaptive dictionary method, the encoder generated a dictionary based on the text content
and compressed it. Finally, the compressed data stream and file came with dictionary information.
We read the data stream during decoding to determine whether the current item was identified or
uncompressed data, and we looked up the final output for the decompressed data in the dictionary
based on the identification. Because a string S had different frequencies and positions in the text T,
the encoding in the compressed text Z was also different. In this study, we proposed a method to use
the syllable characteristics of natural language to generate a general static dictionary for compression
and decompression. The actual compressed data did not have a dictionary. Regardless of the frequency
and position of a string S in the text T, its encoding in the compressed text Z was the same.

5.3. Data Compression Process

Taking the B12 scheme as an example, the implementation process of the compression method
proposed in this paper is shown in Figure 5. The process functions in the flowchart are as follows:

Information 2020, 11, 172 9 of 18

CheckXBlockEnd: Check the previous code first. If the previous encoding was xChar and the
number of this xChar and the previous consecutive xChars exceeded 9, we added an fXBE identifier to
the current data stream.

SetXCharFlag: Append the fXC or fXBB flag to the data stream according to the current
xChar/xSyllb length.

AddSPCode: Check the previous code first. If it was dicSyllb/dicChar and no space flag bit had
been added, we added a space flag bit to the previous code. If it was not, we added a space 12-bit code
(0x020) to the data stream.

Finally, we generated a bit sequence of text. If the total length of the text bit was not divisible by 8,
then we added several “0” bits, so that the sequence length was divisible by 8. Then, we converted the
bit sequence into a byte sequence for storage.

Information 2020, 11, x FOR PEER REVIEW 9 of 18

SetXCharFlag: Append the fXC or fXBB flag to the data stream according to the current xChar / xSyllb
length.
AddSPCode: Check the previous code first. If it was dicSyllb / dicChar and no space flag bit had been
added, we added a space flag bit to the previous code. If it was not, we added a space 12-bit code
(0x020) to the data stream.

Finally, we generated a bit sequence of text. If the total length of the text bit was not divisible by
8, then we added several “0” bits, so that the sequence length was divisible by 8. Then, we converted
the bit sequence into a byte sequence for storage.

Figure 5. B12 scheme flowchart.

Figure 6 shows an example of B12 coding. The reading direction of Uyghur text in the text was
from right to left, and the original reading direction of other characters in the text remained
unchanged. The reading order of the text in Figure 6 was A, B…→K→M→L→O, P…→W. The
original text to be compressed had two xChar (two Chinese characters L2, M2) and one xSyllb (three
characters T2, U2, V2). Line 1 was the result of the original word segmentation; Line 2 was the syllable
segmentation of words, Line 3 to Line 6 were the Unicode encoding of the inner characters of these
syllables, and Line 9 and Line 10 were the final encoding results. Line 8 was a space flag bit.

Start

Word seg

Syllb[n]

is
SPACE

Data12bit (syllb [n])

Text

Syllable seg

Syllable Array in Code
table

SetXCharFlag

CheckXBlockEnd

Add2DataStream

CheckXBlockEnd

AddSPCode

Add2DataStream

N Y

Y

N

Binary data stream

Data16bit (syllb [n])

Figure 5. B12 scheme flowchart.

Figure 6 shows an example of B12 coding. The reading direction of Uyghur text in the text was
from right to left, and the original reading direction of other characters in the text remained unchanged.
The reading order of the text in Figure 6 was A, B . . . →K→M→L→O, P . . . →W. The original text to
be compressed had two xChar (two Chinese characters L2, M2) and one xSyllb (three characters T2, U2,
V2). Line 1 was the result of the original word segmentation; Line 2 was the syllable segmentation of
words, Line 3 to Line 6 were the Unicode encoding of the inner characters of these syllables, and Line 9
and Line 10 were the final encoding results. Line 8 was a space flag bit.

Information 2020, 11, 172 10 of 18
Information 2020, 11, x FOR PEER REVIEW 10 of 18

Figure 6. Example of B12 coding scheme. (Reading order A, B…→K→M→L→O, P…→W)

5.4. Data Compression Process

5.4.1. Compression Ratio

The compression ratio was an indicator used to evaluate the performance of a compression
method. The compression ratio (CR) is calculated by Equation (3) 𝐶𝑅 = 𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑓𝑖𝑙𝑒 𝑠𝑖𝑧𝑒𝑜𝑟𝑔𝑖𝑛𝑎𝑙 𝑓𝑖𝑙𝑒 𝑠𝑖𝑧𝑒 = 𝑆௖𝑆௢ (3)

where SO is the size of the original text, SC is the size of compressed data, and its value consists of a
Unicode encoding portion PU and a binary encoding portion PB.

1. Compression Ratio of the B12

Any element in the PB was a binary code obtained by matching a 12-bit short code table. The
length of PB is calculated by Equation (4) 𝑃஻ = 𝑆𝑦𝑙𝑙𝐶𝑜𝑢𝑛𝑡 × 𝐿௘௡௖ (4)

where PU consists of xChar and xSyllb. When one element of the PU was Pi = char1char2... charn, there
were two types of coding sequences. When the number of characters in Pi was CharCount (Pi) <10, Pi

(n <10) = fCXchar1char2... charn, and when CharCount (Pi)> 9, Pi (n> 9) = fXBBchar1char2... charnfXBE. The
calculation formula of the PU length is shown in Equations (5) and (6), and its unit is a bit 𝑃௎(௖௛௔௥ ௖௢௨௡௧ழଵ଴) = ∑ (12𝑏𝑖𝑡 + 𝐶ℎ𝑎𝑟𝐶𝑜𝑢𝑛𝑡(𝑃௜) × 16𝑏𝑖𝑡) ௜ୀ௡௜ୀଵ , and (5)

𝑃௎(௖௛௔௥ ௖௢௨௡௧வଽ) = ෍ (12𝑏𝑖𝑡 + 𝐶ℎ𝑎𝑟𝐶𝑜𝑢𝑛𝑡(𝑃௜) × 16𝑏𝑖𝑡 + 16𝑏𝑖𝑡)௜ୀ௠
௜ୀଵ . (6)

According to Figure 6, the original text size was So = 592bit. The original text had 19 syllables, of
which dicSyllb = 10 and a space (N2 unit) that could not be marked with space flag, PB = 10 × 12bit +
12bit = 132bit, two Chinese characters (L2, M2 unit), xChar = 2, Pi1 = 2 × 16 + 12 = 44bit, and one xSyllb
(T2, U2, V2 unit) with three characters Pi2 = 3 × 16 + 12 = 60bit, total Sc = PB + Pi1 + Pi2 = 132 + 44 + 60 =
236bit. The CR calculation result was CR = 0.399.

2. Compression Ratio of the B16

The calculation formula of PB part was the same as in equation (4), Lenc = 16 bit. When xSyllb
appeared in PU, its structure was Pis = uchar1uchar2... ucharn, as follows

Figure 6. Example of B12 coding scheme. (Reading order A, B . . . →K→M→L→O, P . . . →W).

5.4. Data Compression Process

5.4.1. Compression Ratio

The compression ratio was an indicator used to evaluate the performance of a compression
method. The compression ratio (CR) is calculated by Equation (3)

CR =
Compressed f ile size

orginal f ile size
=

Sc

So
(3)

where SO is the size of the original text, SC is the size of compressed data, and its value consists of a
Unicode encoding portion PU and a binary encoding portion PB.

1. Compression Ratio of the B12

Any element in the PB was a binary code obtained by matching a 12-bit short code table. The length
of PB is calculated by Equation (4)

PB = SyllCount× Lenc (4)

where PU consists of xChar and xSyllb. When one element of the PU was Pi = char1char2... charn,
there were two types of coding sequences. When the number of characters in Pi was CharCount (Pi) < 10,
Pi (n<10) = fCXchar1char2... charn, and when CharCount (Pi) > 9, Pi (n>9) = fXBBchar1char2... charnfXBE.
The calculation formula of the PU length is shown in Equations (5) and (6), and its unit is a bit

PU(char count<10) =
i=n∑
i=1

(12bit + CharCount(Pi) × 16bit) , and (5)

PU(char count>9) =
i=m∑
i=1

(12bit + CharCount(Pi) × 16bit + 16bit). (6)

According to Figure 6, the original text size was So = 592bit. The original text had 19 syllables,
of which dicSyllb = 10 and a space (N2 unit) that could not be marked with space flag, PB = 10 × 12bit +
12bit = 132bit, two Chinese characters (L2, M2 unit), xChar = 2, Pi1 = 2 × 16 + 12 = 44bit, and one xSyllb
(T2, U2, V2 unit) with three characters Pi2 = 3 × 16 + 12 = 60bit, total Sc = PB + Pi1 + Pi2 = 132 + 44 + 60
= 236bit. The CR calculation result was CR = 0.399.

Information 2020, 11, 172 11 of 18

2. Compression Ratio of the B16

The calculation formula of PB part was the same as in equation (4), Lenc = 16 bit. When xSyllb
appeared in PU, its structure was Pis = uchar1uchar2... ucharn, as follows

PU =
∑i=n

i=1
(CharCount(Pis) × 16bit). (7)

When the character string Pix = char1char2... charn encoded in the Private Use Area (UE000-UF8FF)
appeared, the encoding sequence was Pix= fXCchar1fXCchar2... fXCcharn, so the formula for calculating
the PU length was

PU =
∑i=n

i=1
(CharCount(Pix) × 2× 16bit). (8)

According to Figure 6, compressed data size Sc = (8 dicSyllb + 6 space + 2 ASCII character) × 16 + (3
xSyllb character + 2 Chinese character) × 16 = 256 + 80 = 336 bit. The CR calculation result was CR = 0.57.

5.4.2. Average Coding Length

Average coding length was another indicator used to evaluate text compression performance.
The shorter the average coding length, the more efficient the compression method. SC was the size of
the compressed text in bits. The average encoding length BPC (bits pec character) was calculated by
Equation (9)

BPC =
Sc

CharCount
. (9)

According to Figure 6, the compressed text size was Sc = 236 bit and had 37 characters, and the
BPC calculation result was BPC = 6.378 bits, which was 9.622 bits fewer than when Unicode code
was used.

5.5. Data Decompression

In the data decompression process, a compressed text file is decompressed. The decompression
process is the reverse of the compression process. We used the following specific decompression process.

5.5.1. Decompression of B12 Scheme

We read the original text in bytes, converted each byte into an 8-bit binary, and generated a
continuous bit stream.

1. Intercept 12 bit; if it was dicSyllb, read the next 12 bits.
2. If the decoding result was fXC, n Unicode characters would be intercepted continuously, where n

= fXC-0x7F0, and each character was 16 bits in length.
3. If the decoding result was fXBB, then the Unicode characters would be intercepted continuously

until fXBE was read.
4. If there was no remaining bit data stream, the decompression was completed; otherwise, repeat

Step 1. The decoding algorithm is shown in Algorithm 1:

Information 2020, 11, 172 12 of 18

Algorithm 1 B12 scheme decoding algorithm

Input: Binary data stream
Output: Decoded text stream

while start_position < Binary_data_length do
data12bit = get12bitData (start_position);
if data12bit is a syllable in the dictionary then //one syllable

text = text + Decode_with_dictionary (data12bit);
start_position = start_position + 12 bit;
continue;

end if
if xChar_Flag < data12bit < xChar_Block_Begin_Flag then //xChars count < 10
xChars_number = code12bit - xChar_Flag;
text = text + Get_Unicode_characters (xChars_number);
start_position = start_position + xChars_number *16 bit;
continue;

end if
if data12bit == xChar_Block_Begin_Flag then //xChars count > 9
xChars_block_length = Find_next_xChar_block_end_flag (start_position);
text= text + Get_Unicode_characters (xChars_block_length/16bit);
start_position = start_position + xChars_block_length;

end if
end while

5.5.2. Decompression of B16 Scheme

1. Read the original text in Unicode characters.
2. Intercept 1 character (2 bytes); if the encoding range is in the range 0xE003-0xF8FF, then use the

dictionary encoding table to decode.
3. Intercept 1 character (2 bytes); if the encoding is equal to fXC (0xE001), then read the next

Unicode character directly. Repeat Step 2. If no character data stream remains, the decompression
is complete.

6. Experiment and Analysis

6.1. Experimental Corpus and Comparison Methods

1. In this study, we randomly selected 15 texts according to size as the experimental corpus. We based
the corpus on Unicode encoding.

2. We used the short text in Table 4 as the experimental corpus. The corpus shared 2908 short texts
with a total size of 907,108 bytes. We stored each short text twice in UTF8 and UTF16 encoding
formats. The corpus-related information is shown in Table 7.

Table 7. Short-text corpus information.

Size (Bytes) File Count
dicChar

unique dicChar 129
<50 138 average frequency 3480

50–100 315 dicSyllb unique dicSyllb 1608
101–200 633 average frequency 94
201–300 588

xchar
unique xChar 631

301–400 421 average frequency 3
401–500 312 xSyllb unique xSyllb 658
501–1000 466 average frequency 2

>1000 35
words

unique word 13,631
Total 2908 average frequency 4

Information 2020, 11, 172 13 of 18

The comparison method used GZip, LZW, and BZip2 compression. The LZW algorithm
used Mark Nelson [30], GZip used the Microsoft. NET GZipStream class [31], and BZip2 used
ICSharpCode.SharpZipLib.BZip2 (©Mike Kruger Version: 0.86.0.518).

6.2. Experimental Results

6.2.1. Compression of Text of Different Sizes

Table 8 gives the comparison experiments of the five compression methods for text compression.
Among them, SO indicated the size of the compressed corpus, and the data unit was a byte. We compared
the compression method used in this study with other compression ratios, as given in Table 8 and
shown in Figure 7.

Table 8. Comparison of Uyghur text compression methods.

So CR BPC
(Bytes) B12 B16 GZip LZW BZip2 B12 B16 GZip LZW BZip2

32 0.34 0.56 1.50 1.31 2.09 5.50 9.00 24.00 21.00 33.50
58 0.30 0.50 1.20 1.18 1.50 4.80 8.00 19.20 18.93 24.00
102 0.32 0.54 0.93 0.98 1.01 5.08 8.62 14.92 15.69 16.15
160 0.28 0.51 0.71 0.84 0.74 4.50 8.20 11.40 13.50 11.80
176 0.28 0.49 0.77 0.87 0.75 4.49 7.91 12.31 13.93 12.04
284 0.26 0.48 0.59 0.79 0.57 4.20 7.61 9.40 12.59 9.17
876 0.30 0.52 0.44 0.67 0.40 4.79 8.27 7.00 10.75 6.47

1586 0.29 0.51 0.40 0.58 0.36 4.63 8.18 6.46 9.24 5.78
2538 0.29 0.50 0.34 0.51 0.30 4.64 7.92 5.47 8.16 4.77
5022 0.30 0.51 0.26 0.43 0.23 4.81 8.19 4.22 6.88 3.66
7630 0.29 0.51 0.27 0.40 0.23 4.71 8.17 4.36 6.45 3.65

13,694 0.30 0.50 0.20 0.36 0.18 4.73 7.98 3.21 5.72 2.83
39,372 0.29 0.50 0.16 0.35 0.14 4.59 7.97 2.64 5.66 2.24
61,980 0.30 0.51 0.21 0.36 0.16 4.73 8.14 3.30 5.79 2.61
93,584 0.30 0.51 0.19 0.35 0.14 4.79 8.12 3.01 5.61 2.25

Information 2020, 11, x FOR PEER REVIEW 13 of 18

Table 8. Comparison of Uyghur text compression methods

So CR BPC
(Bytes) B12 B16 GZip LZW BZip2 B12 B16 GZip LZW BZip2

32 0.34 0.56 1.50 1.31 2.09 5.50 9.00 24.00 21.00 33.50
58 0.30 0.50 1.20 1.18 1.50 4.80 8.00 19.20 18.93 24.00
102 0.32 0.54 0.93 0.98 1.01 5.08 8.62 14.92 15.69 16.15
160 0.28 0.51 0.71 0.84 0.74 4.50 8.20 11.40 13.50 11.80
176 0.28 0.49 0.77 0.87 0.75 4.49 7.91 12.31 13.93 12.04
284 0.26 0.48 0.59 0.79 0.57 4.20 7.61 9.40 12.59 9.17
876 0.30 0.52 0.44 0.67 0.40 4.79 8.27 7.00 10.75 6.47

1586 0.29 0.51 0.40 0.58 0.36 4.63 8.18 6.46 9.24 5.78
2538 0.29 0.50 0.34 0.51 0.30 4.64 7.92 5.47 8.16 4.77
5022 0.30 0.51 0.26 0.43 0.23 4.81 8.19 4.22 6.88 3.66
7630 0.29 0.51 0.27 0.40 0.23 4.71 8.17 4.36 6.45 3.65

13,694 0.30 0.50 0.20 0.36 0.18 4.73 7.98 3.21 5.72 2.83
39,372 0.29 0.50 0.16 0.35 0.14 4.59 7.97 2.64 5.66 2.24
61,980 0.30 0.51 0.21 0.36 0.16 4.73 8.14 3.30 5.79 2.61
93,584 0.30 0.51 0.19 0.35 0.14 4.79 8.12 3.01 5.61 2.25

Figure 7. Compression ratio of the five methods.

6.2.2. Short-Text Compression

We selected 2908 pieces of short text and stored each piece of text once with UTF8 and UTF16
encoding. We compressed each piece of text using the five methods. So represented the sum of 2908
files of the same encoding type, and Sc was the sum of the 2908 compressed files. The compression
time and decompression time were the sums of the compression and decompression time of the 2908
files, respectively. The specific results are given in Table 9 and shown in Figure 8.

Table 9. Short-text compression ratio of five methods

Method Text
Code

Time (ms) So
(byte)

Sc
(byte)

CR BPC
Compression Decompression

B12
UTF8 3595 14,511 845,127 280,261 0.33 4.94
UTF16 3306 15,016 907,108 280,261 0.31 4.94

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

32 58 102

160

176

284

876

1586

2538

5022

7630

13694

39372

61980

93584

C
om

pr
es

si
on

 ra
tio

Original text size(byte)

B12 B16 GZip LZW BZip2

Figure 7. Compression ratio of the five methods.

Information 2020, 11, 172 14 of 18

6.2.2. Short-Text Compression

We selected 2908 pieces of short text and stored each piece of text once with UTF8 and UTF16
encoding. We compressed each piece of text using the five methods. So represented the sum of 2908
files of the same encoding type, and Sc was the sum of the 2908 compressed files. The compression
time and decompression time were the sums of the compression and decompression time of the 2908
files, respectively. The specific results are given in Table 9 and shown in Figure 8.

Table 9. Short-text compression ratio of five methods

Method Text Code
Time (ms) So (byte) Sc (byte) CR BPCCompression Decompression

B12
UTF8 3595 14,511 845,127 280,261 0.33 4.94
UTF16 3306 15,016 907,108 280,261 0.31 4.94

B16
UTF8 2846 2909 845,127 475,984 0.56 8.40
UTF16 2775 3096 907,108 475,984 0.52 8.40

BZip2 UTF8 5646 2975 845,127 524,630 0.62 9.25
UTF16 6364 2619 907,108 529,350 0.58 9.34

GZip UTF 2788 1889 845,127 553,315 0.65 9.76
UTF16 4326 2185 907,108 534,337 0.59 9.42

LZW
UTF8 18,104 1580 845,127 705,984 0.84 12.45
UTF16 16,737 1505 907,108 693,398 0.76 12.23

Information 2020, 11, x FOR PEER REVIEW 14 of 18

B16 UTF8 2846 2909 845,127 475,984 0.56 8.40
UTF16 2775 3096 907,108 475,984 0.52 8.40

BZip2 UTF8 5646 2975 845,127 524,630 0.62 9.25
UTF16 6364 2619 907,108 529,350 0.58 9.34

GZip UTF 2788 1889 845,127 553,315 0.65 9.76
UTF16 4326 2185 907,108 534,337 0.59 9.42

LZW UTF8 18,104 1580 845,127 705,984 0.84 12.45
UTF16 16,737 1505 907,108 693,398 0.76 12.23

Figure 8. Comparison of short-text compression effects of the five methods.

The distribution of Zipf’s law for dicSyllb and xSyllb in the corpus is shown in Figure 9. The x-
axis shows the ranking of syllables in descending order according to the syllable frequency, r = 1
indicates the syllable with the highest frequency, and the y-axis shows the frequency of the syllable
corresponding to r. To facilitate comparison and observation, the frequency of xSyllb was represented
by (−1) logf.

Figure 9. Zipf’s Law distribution of syllables in short-text corpus.

0
100000
200000
300000
400000
500000
600000
700000
800000
900000

1000000

B12 B16 BZip2 GZip LZW

So (UTF16) So (UTF8) Sc (UTF16) Sc (UTF8)

-2.5
-2.0
-1.5
-1.0
-0.5
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6

lo
g

f

log r

xSyllb : (-1)*log f

dicSyllb :log f

Figure 8. Comparison of short-text compression effects of the five methods.

The distribution of Zipf’s law for dicSyllb and xSyllb in the corpus is shown in Figure 9. The x-axis
shows the ranking of syllables in descending order according to the syllable frequency, r = 1 indicates
the syllable with the highest frequency, and the y-axis shows the frequency of the syllable corresponding
to r. To facilitate comparison and observation, the frequency of xSyllb was represented by (−1) logf.

Information 2020, 11, 172 15 of 18

Information 2020, 11, x FOR PEER REVIEW 14 of 18

B16 UTF8 2846 2909 845,127 475,984 0.56 8.40
UTF16 2775 3096 907,108 475,984 0.52 8.40

BZip2 UTF8 5646 2975 845,127 524,630 0.62 9.25
UTF16 6364 2619 907,108 529,350 0.58 9.34

GZip UTF 2788 1889 845,127 553,315 0.65 9.76
UTF16 4326 2185 907,108 534,337 0.59 9.42

LZW UTF8 18,104 1580 845,127 705,984 0.84 12.45
UTF16 16,737 1505 907,108 693,398 0.76 12.23

Figure 8. Comparison of short-text compression effects of the five methods.

The distribution of Zipf’s law for dicSyllb and xSyllb in the corpus is shown in Figure 9. The x-
axis shows the ranking of syllables in descending order according to the syllable frequency, r = 1
indicates the syllable with the highest frequency, and the y-axis shows the frequency of the syllable
corresponding to r. To facilitate comparison and observation, the frequency of xSyllb was represented
by (−1) logf.

Figure 9. Zipf’s Law distribution of syllables in short-text corpus.

0
100000
200000
300000
400000
500000
600000
700000
800000
900000

1000000

B12 B16 BZip2 GZip LZW

So (UTF16) So (UTF8) Sc (UTF16) Sc (UTF8)

-2.5
-2.0
-1.5
-1.0
-0.5
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6

lo
g

f

log r

xSyllb : (-1)*log f

dicSyllb :log f

Figure 9. Zipf’s Law distribution of syllables in short-text corpus.

6.3. Experimental Analysis

The two coding schemes discussed in this paper offered certain advantages in short text. The B12
coding scheme performed best on text with a size of less than 4 KB. The effect was obvious when the text
was less than 1 KB. The compression ratio was always stable at about 0.3 and 0.5. For compression of
short texts smaller than 200 bytes, GZip, LZW, and BZip2 algorithms had compression ratios exceeding
1. As the text grew, the compression efficiency of GZip, BZip2, and LZW gradually improved and
exceeded B12 and B16.

The LZW, GZip, and BZip2 compressed files appended the dictionary data needed for
decompression. When the text was large, the dictionary data had little effect on the compression ratio.
This is why the compression efficiency of short texts smaller than 200 bytes was greater than 1. The B12
and B16 schemes were based on syllable encoding. According to Equation (1), the average length of
a Uyghur syllable was 2.4 characters; therefore, theoretically, no matter how large the text size was,
the compression ratio was stable at CRB12 = 12/(2.4 × 16) = 0.31 and CRB16 = 16/(2.4 × 16) = 0.42 or so.
The occurrence of xChar, XSyllb in the text, and units of one-character characters in the encoding table
affected CR. The purpose of selecting high-frequency syllables and using the space flag bit in the B12
coding scheme was to reduce this effect and to further increase the compression ratio.

In the general compression method, to obtain the best compression efficiency, the additional
dictionary data was related to the current text. The same character string may have been represented by
different encodings in different compressed data because of different frequencies. Further processing of
compressed content required decompression. In this syllable-based compression scheme, the encoding
value and length were fixed. The basic unit of the compressed data stream changed from characters to
syllables. The research and application of speech synthesis and speech recognition based on syllables
has offered certain advantages. When processing content based on short data obtained from big data
(e.g., WeChat and SMS), a theoretically faster and more convenient retrieval speed could be obtained
with a compression ratio of 0.3 to 0.5. The advantages of the B16 solution in this regard were obvious.
Third-party retrieval tools would not need to decompress to perform syllable-based retrieval of content.

6.4. CRbest and CRworst of the B12 Scheme

The formula for calculating the compressed file size from the B12 scheme was Sc = PB + PU. In the
formula, PB was the compressed content, and PU was the original code reserved part with the flag.

Information 2020, 11, 172 16 of 18

So, when PU = 0, SC was directly related to PB. Because PB = SyllCnt × Lenc, and Lenc = 12, so PB =

SyllCnt × 12. Currently, the formula for calculating the compression ratio was as follows (assuming the
original text is in Unicode format)

CR =
Sc
So

=
SyllCnt× 12bit

CharCount× 16bit
. (10)

As shown in Tables 1 and 2, the longest syllable structure was CCVCC, and the syllable length
had five characters. Then the content structure of a text file was continuous CCVCC + SP (5-character
syllable + 1 space), SP was exactly marked with a space flag bit, and the number of Sc characters was
exactly divided by 6. Thus, the best CRbest calculation result is

CRbest =
Sc
So

=
SyllCnt× 12bit

CharCount× 16bit
=

SyllCnt× 12bit
SyllCnt× (5 + 1) × 16bit

=
12bit

6× 16bit
=

1
8
= 0.125. (11)

Similarly, according to the design of the B12 data structure, the CR effect was the worst when
the text appeared with one dicChar and one xChar consecutively. Currently, the size of this encoding
structure was as follows: dicChar + fXC + xChar→ 12 bit + 12 bit + 16 bit = 40 bit, and an average
character was 20 bits. If the number of characters in the file was exactly a multiple of 2, CRworst was
calculated as

CRworst =
Sc
So

=
PU

CharCount× 16bit
=

CharCount× 20bit
CharCount× 16bit

=
5
4
= 1.25 (12)

CRbest and CRworst of the B12 scheme currently had no relationship with the original file size So.
The B12 solution was a special compression method used in specific environments. It used the

syllable characteristics of natural language for encoding and decoding. The current compression ratio
of Uyghur natural text was about 0.3, and the compression ratio was not directly related to the file size.
The client must have the same syllable encoding dictionary when compressing and decompressing (the
current dictionary size is <20 KB). It was suitable for the compression of natural language short texts.
For example, when using the B12 solution of the product (e.g., pharmaceutical) instructions using a
two-dimensional code, it theoretically could accommodate two times more information. WeChat MSG
and SMS transmission saved two-thirds of available communication resources. If it was not a text based
on natural language (such as a random meaningless string, i.e., “aaaaaabbbbbb”), the compression
ratio was significantly reduced (CRworst = 1.25), which was a disadvantage of this scheme and one of
the subjects of our next research.

7. Conclusions

Compression is a fundamental area of research in the field of computer communications,
with important theoretical significance and application value. Few studies have examined Uyghur text
compression methods and current compression techniques have some shortcomings. We proposed a
Uyghur text compression method based on syllable features, using B12 and B16 encoding schemes for
experiments. Compared with other algorithms, such as LZW, GZip, and BZip2, the B12 scheme had
higher compression efficiency when the text size was less than 4 KB. It could be applied effectively
to compressed transmission of short texts and QR codes. The advantage of B16 scheme was that it
could quickly retrieve syllable-based information in a compressed state. The compression method
proposed in this paper could be applied to other agglutinative languages in the same language
family with high similarity, such as Uzbek, Kazakh, and Kirgiz [32]. Future work will include
studies of the general syllable-based text compression methods for agglutinative languages and their
applications. Future research will examine full-text retrieval technology of short text based on syllables
without decompression.

Information 2020, 11, 172 17 of 18

Author Contributions: Conceptualization, W.A.; Formal analysis, W.A. and H.W.; Funding acquisition, A.W.;
Investigation, J.W.; Methodology, W.A. and M.M.; Project administration, A.W.; Resources, J.W.; Software, W.A.,
H.W., and K.A.; Writing—original draft, W.A.; Writing—review and editing, M.M., T.Y., and A.W. All authors
have read and approved the final manuscript.

Funding: This work was supported by the Opening Foundation of the Key Laboratory of Xinjiang Uyghur
Autonomous Region of China (grant number 2018D04019), the National Natural Science Foundation of China
(grant numbers 61762084, 61662077, 61462083), the Scientific Research Program of the State Language Commission
of China (grant number ZDI135-54), and the National Key Research and Development Project of China (grant
number 2017YFB1002103).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. David, S.; Le-Nan, W. Data Compression, 2nd ed.; Publishing House of Electronics Industry: Beijing, China,
2003; pp. 9–163.

2. Shannon, C.E. A mathematical theory of communication. Bell Labs Tech. J. 1948, 27, 379–423. [CrossRef]
3. Huffman, D.A. A method for the construction of minimum-redundancy codes. Resonance 2006, 11, 91–99.

[CrossRef]
4. Ziv, J.; Abraham, L. A universal algorithm for sequential data compression. IEEE Trans. Inf. Theory 1977, 23,

337–343. [CrossRef]
5. Ziv, J.; Abraham, L. Compression of individual sequences via variable-rate coding. IEEE Trans. Inf. Theory

1978, 24, 530–536. [CrossRef]
6. Akman, K.I. A new text compression technique based on language structure. J. Inf. Sci. 1995, 21, 87–94.

[CrossRef]
7. Moffat, A. Word-based text compression. Softw. Pract. Exp. 1989, 19, 185–198. [CrossRef]
8. Moffat, A.; Isal, R.Y. Word-based text compression using the Burrows-Wheeler transform. Inf. Process. Manag.

2005, 41, 1175–1192. [CrossRef]
9. Crochemore, M.; Langiu, A.; Mignosi, F. Note on the greedy parsing optimality for dictionary-based text

compression. Theor. Comput. Sci. 2014, 525, 55–59. [CrossRef]
10. Gardner-Stephen, P.; Bettison, A.; Challans, R.; Hampton, J.; Lakeman, J.; Wallis, C. Improving Compression

of Short Messages. Int. J. Commun. Netw. Syst. Sci. 2013, 6, 497–504. [CrossRef]
11. Platos, J.; Snasel, V.; Elqawasmeh, E. Compression of small text files. Adv. Eng. Inform. 2008, 22, 410–417.

[CrossRef]
12. Rein, S.; Guhmann, C.; Fitzek, F.H. Compression of Short Text on Embedded Systems. J. Comput. 2006, 1,

1–10. [CrossRef]
13. Kalajdzic, K.; Ali, S.H.; Patel, A. Rapid lossless compression of short text messages. Comput. Stand. Interfaces

2015, 37, 53–59. [CrossRef]
14. Adubi, S.A.; Misra, S. Syllable-Based Text Compression: A Language Case Study. Arab. J. Sci. Eng. 2016, 41,

3089–3097. [CrossRef]
15. Nguyen, V.H.; Nguyen, H.T.; Duong, H.N.; Snasel, V. A Syllable-Based Method for Vietnamese Text

Compression. International Conference on Ubiquitous Information Management and Communication; ACM:
Danang, Vietnam, 2016.

16. Akman, I.; Bayindir, H.; Ozleme, S. A lossless text compression technique using syllable based morphology.
Int. Arab J. Inf. Technol. 2011, 8, 66–74.

17. Oswald, C.; Ajith, K.J.; Avinash, J. A Graph-Based Frequent Sequence Mining Approach to Text Compression.
In Mining Intelligence and Knowledge Exploration, Proceedings of the International Conference on Mining Intelligence
and Knowledge Exploration, Hyderabad, India, 13–15 December 2017; Springer: Hyderabad, India, 2017.

18. Bharathi, K.; Kumar, H.; Fairouz, A. A Plain-Text Incremental Compression (PIC) Technique with Fast
Lookup Ability. In Proceedings of the 2018 IEEE 36th International Conference on Computer Design (ICCD),
Orlando, FL, USA, 7–10 October 2018; IEEE: Orlando, FL, USA, 2018.

19. Vijayalakshmi, B. Lossless Text Compression Technique Based on Static Dictionary for Unicode Tamil
Document. Int. J. Pure Appl. Math. 2018, 118, 85–91.

http://dx.doi.org/10.1002/j.1538-7305.1948.tb01338.x
http://dx.doi.org/10.1007/BF02837279
http://dx.doi.org/10.1109/TIT.1977.1055714
http://dx.doi.org/10.1109/TIT.1978.1055934
http://dx.doi.org/10.1177/016555159502100203
http://dx.doi.org/10.1002/spe.4380190207
http://dx.doi.org/10.1016/j.ipm.2004.08.009
http://dx.doi.org/10.1016/j.tcs.2014.01.013
http://dx.doi.org/10.4236/ijcns.2013.612053
http://dx.doi.org/10.1016/j.aei.2008.05.001
http://dx.doi.org/10.4304/jcp.1.6.1-10
http://dx.doi.org/10.1016/j.csi.2014.05.005
http://dx.doi.org/10.1007/s13369-016-2070-1

Information 2020, 11, 172 18 of 18

20. Sinaga, A.; Adiwijaya Nugroho, H. Development of word-based text compression algorithm for Indonesian
language document. In Proceedings of the 2015 3rd International Conference on Information and
Communication Technology, ICoICT, Nusa Dua, Indonesia, 27–29 May 2015; IEEE: Bali, Indonesia, 2015.

21. Farhad Mokter, M.; Akter, S.; Palash Uddin, M.; Ibn Afjal, M.; Al Mamun, M.; Abu Marjan, M. An Efficient
Technique for Representation and Compression of Bengali Text. In Proceedings of the 2018 International
Conference on Bangla Speech and Language Processing, ICBSLP, Sylhet, Bangladesh, 21–22 September 2018;
IEEE: Sylhet, Bangladesh, 2018.

22. Hilal, T.A.; Hilal, H.A. Arabic text lossless compression by characters encoding. Procedia Comput. Sci. 2019,
155, 618–623. [CrossRef]

23. Chen, Q.; Chen, X.; Han, D. Compression algorithm LZW on Chinese text. Comput. Eng. Appl. 2014,
50, 112–116.

24. Satoh, N.; Morihara, T.; Okada, Y.; Yoshida, S. Study of Japanese text compression. In Proceedings of the Data
Compression Conference, DCC ’97, Snowbird, UT, USA, 25–27 March 1997; IEEE: Snowbird, UT, USA, 1997.

25. Zhong-Qi, X.; Winira, M. Uyghur text compression technique research. J. Xinjiang Univ. 2012, 29, 9–12.
26. Maimaiti, M.; Wumaier, A.; Abiderexiti, K.; Yibulayin, T. Bidirectional long short-term memory network

with a conditional random field layer for Uyghur part-of-speech tagging. Information 2017, 8, 157. [CrossRef]
27. Osman, T.; Yang, Y.; Tursun, E.; Cheng, L. Collaborative Analysis of Uyghur Morphology Based on Character

Level. Acta Sci. Nat. Univ. Pekin. 2019, 55, 47–54.
28. Nurmemet, Y.; Wushour, S.; Reyiman, T. Syllable based language model for large vocabulary continuous

speech recognition of Uyghur. J. Tsinghua Univ. 2013, 53, 741–744.
29. Wayit, A.; Jamila, W.; Turgun, I. Modern Uyghur automatic syllable segmentation method and its

implementation. China Sci. 2015, 10, 957–961.
30. LZW Data Compression. Available online: http://dogma.net/markn/articles/lzw/lzw.htm/ (accessed on 10

January 2020).
31. GZipStream Class (System.IO.Compression). Available online: https://docs.microsoft.com/zh-cn/dotnet/api/

system.io.compression.gzipstream?view=netframework-4.8/ (accessed on 10 January 2020).
32. Tuergen, I.; Kahaerjiang, A.; Aishan, W.; Maihemuti, M. A Survey of Central Asian Language Processing.

Chin. Inf. Process 2018, 32, 1–13, 21.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.procs.2019.08.087
http://dx.doi.org/10.3390/info8040157
http://dogma.net/markn/articles/lzw/lzw.htm/
https://docs.microsoft.com/zh-cn/dotnet/api/system.io.compression.gzipstream?view=netframework-4.8/
https://docs.microsoft.com/zh-cn/dotnet/api/system.io.compression.gzipstream?view=netframework-4.8/
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Research
	Syllables of Uyghur
	Syllable Segmentation and Selection
	Syllable Segmentation and Analysis
	Selection of High-Frequency Syllables

	Data Compression Coding
	Syllable Coding
	B12 Coding Scheme
	B16 Coding Scheme
	Code Block Division

	Design of Flag Coding
	B12 Scheme Flags
	B16 Scheme Flags
	Datagram and File Format

	Data Compression Process
	Data Compression Process
	Compression Ratio
	Average Coding Length

	Data Decompression
	Decompression of B12 Scheme
	Decompression of B16 Scheme

	Experiment and Analysis
	Experimental Corpus and Comparison Methods
	Experimental Results
	Compression of Text of Different Sizes
	Short-Text Compression

	Experimental Analysis
	CRbest and CRworst of the B12 Scheme

	Conclusions
	References

