
  information

Article

Tree-Like Distributed Computation Environment
with Shapp Library

Tomasz Gałecki and Wiktor Bohdan Daszczuk *

Institute of Computer Science, Warsaw University of Technology, 00-665 Warsaw, Poland;
tomasz.galecki.stud@pw.edu.pl
* Correspondence: wbd@ii.pw.edu.pl; Tel.: +48-22-234-78-12

Received: 30 January 2020; Accepted: 1 March 2020; Published: 3 March 2020
����������
�������

Abstract: Despite the rapidly growing computing power of computers, it is often insufficient to
perform mass calculations in a short time, for example, simulation of systems for various sets
of parameters, the searching of huge state spaces, optimization using ant or genetic algorithms,
machine learning, etc. One can solve the problem of a lack of computing power through workload
management systems used in local networks in order to use the free computing power of servers and
workstations. This article proposes raising such a system to a higher level of abstraction: The use in the
.NET environment of a new Shapp library that allows remote task execution using fork-like operations
from Portable Operating System Interface for UNIX (POSIX) systems. The library distributes the
task code, sending static data on which task force is working, and individualizing tasks. In addition,
a convenient way of communicating distributed tasks running hierarchically in the Shapp library was
proposed to better manage the execution of these tasks. Many different task group architectures are
possible; we focus on tree-like calculations that are suitable for many problems where the range of
possible parallelism increases as the calculations progress.
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1. Introduction

Calculations performed in modern information systems are so time-consuming that their
performance on a single processor, even a very fast one, does not allow one to achieve results in
a reasonable time. Examples include mass simulations that find the best possible set of parameter
values for a certain system, genetic algorithms, or searching for the tree of possible transformations.

Such calculations can be carried out in supercomputer environments [1], in which they are
performed in ways that are extremely quick, but also extremely expensive. Instead, the computing
resources of personal computers and servers in the local network or student laboratory environment
can be used. If fragments of calculations are independent of each other, they can simply be sent to
remote computers, and then their results can be collected. For example, in the simulation analysis of a
space of solutions in which individual simulations are completely independent of each other, model
parameters are sent to the computers and the results are collected. This is the characteristics of research
on the efficiency of autonomous urban transport carried out with the help of the Feniks simulator [2]
by the authors. This has been a primary motivation to begin the work on Shapp library.

Otherwise, in the dynamic programming approach to problem solving, e.g., as in chess play,
the next move (or possible sequence) depends entirely on the current situation on the chessboard.
However, the same situation on the chessboard may occur in different branches of the move tree,
which may lead to unnecessary parallel analysis of the same subtree of moves (the tree becomes a more
general graph, perhaps even cyclical). Therefore, it would also be useful to be able to communicate
between tasks to eliminate such situations.
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Even closer communication between tasks is required in the case of ant colony algorithms, where
the probability of the ant choosing specific moves depends on the behavior of other ants [3]. In
turn, the non-exhaustive model checking algorithm in the DedAn environment consists of making
hypotheses by one task and verification of these hypotheses by another one, which requires their
cooperation in sending the parameters of the hypothesis, which is different each time (it starts from a
different configuration of the verified system, but the configuration history is also needed for cutting
the loops in the search graph) [4].

Ideally, in a distributed computation system a process can perform an operation similar to the
fork operation known from POSIX systems (in which a faithful copy of the process is created), and
branched processes can communicate [5]. The fork operation transfers to the child process an exact
copy of the parent’s calculation state, and sending messages and exit codes between processes allows
for controlling further progress of the calculations.

Such a situation requires significant data transfers in a distributed environment where there is
no shared memory in which it is easy to duplicate the process memory area, in which both the state
of global variables and the dynamic state of the execution stack are stored. Communication between
processes in a task group is also possible in various ways, such as pipes, remotely shared data blocks,
or exit codes. In this article, we propose a solution in the form of a Shapp library using the HTCondor
workload management system [6–11]. Our solution can be called a distributed fork (or remote fork),
in which the process can perform cloning, transferring the state of calculations in the form of files
containing global variables and dynamic state of calculations (in the DedAn program—the model of the
verified system and the search path). An important difference compared to the local fork operation is
that the child process starts from the beginning of the program (main function) and not from the branch
point, because the execution stack is not copied. For this price, we get the ability to start child processes
in a heterogeneous environment, for example, Windows and Linux. In addition, the ability to send
messages between distributed program copies and to capture the exit code has been implemented.

The Shapp library was created to meet computational needs in our research projects. The first was
the mentioned Feniks simulator, in which it was necessary to carry out a large number of hours-lasting
simulations, which run concurrently and independently of each other, and to collect the results of
all these simulations. The second challenge was the non-exhaustible state space search algorithm
in the DedAn temporal verifier. Here, the structure of processes is more complicated because some
processes start others, being clones of their parents or performing other functions, and there is a need
for communication between processes and control of the execution of child processes by their parents.
This complicated relationship structure is described later in the article.

In Section 2 we present various approaches to distributed workload management. Section 3
recalls the development of the Shapp library. Section 4 covers its application to non-exhaustive model
checking in the DedAn system. The details of the Shapp library are described in Section 5. Section 6
presents communication aspects within a distributed task group. Section 7 shows an example of Shapp
application to ACO (ant colony optimization) computation. Section 8 concerns future work.

2. Related Work

An overview on the situation in the market of distributed computing share was discussed in
more detail in the article about Shapp library basics [12]. Only the essentials will be described here, to
provide general context. Especially, the context behind the decision made towards a base system for
the Shapp library.

2.1. Distributed Workload Management Systems

The distributed workload management systems are the implementations of the idea of mass
distributed computing. Computational units are individual programs that are repeatedly executed for
different sets of input data [13]. Examples of the use of distributed mass processing systems include:
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• BOINC [14]—a system based on the use of computing power provided by Internet users.
Example subprojects are: ATLAS@Home [15]—simulation of the ATLAS project (in LHC),
Asteroids@home [16]—broadening the knowledge of asteroids, Big and Ugly Rendering Project
(BURP) [17]—a non-commercial and open project focusing on the rendering of three-dimensional
scenes in the cloud.

• Comcute [18]—the system dealing, among other things, with the genetic testing of a radical
settlement, techniques and processing of images.

The majority of systems use already existing stable middleware. This middleware is a basis for
creation of distributed computation solutions. Typical middleware is responsible for [19]:

• Administration of resources (computers in the network).
• Management of a task queue.
• Support for task prioritization.
• Matchmaking of tasks to be carried out, which fulfill specific requirements.
• Providing an application programming interface (API) that simplifies the management of the

entire system.

These types of tasks appear in every distributed computing system. For example, the BOINC
project [20], which is a framework program for computations on machines made available by
Internet users, is based on the HTCondor system [6]. Individual systems are distinguished by their
configuration (in case they are based on the same software).

2.2. Types of Distributed Processing Systems

Distributed processing systems can be divided into groups considering different features. In the
literature, two ways of classification were observed by the authors:

• Structural classification [21].
• Functional classification [22].

2.2.1. Structural Classification

The first approach to distributed workload management systems is structural classification [21].
Its main concern is the architecture behind hardware implementation of the computing pool.

Computer cluster. A computer cluster is a group of computers connected to each other so as to
allow each system to be transparent. In contrast to network computing, each network node performs
the same task. Computer clusters typically carry out high-performance tasks. The middleware used in
clusters depends on the purpose of the given system:

• Distcc [23]—automatized to run distributed compilation.
• Linux Virtual Server [24]—software for building general purpose clusters. It is based on several

systems with greater specialization, e.g., UltraMonkey [25]—a process-based process system
for supporting a computing pool over the internet/intranet, Keepalived [26]—a distributed
process-based system simplifying the use of Linux Virtual Server to ensure greater reliability and
high availability of the calculation pool.

Network processing (grid computing). Network processing uses highly distributed,
heterogeneous computer units. From the point of view of the user, this idea uses open protocols
and general purpose interfaces in order to build a virtual and powerful computing environment from
a network of connected different nodes. The BOINC project [20] mentioned above is an example
of this. Network processing most often accomplishes tasks from the high-throughput processing
class (described in Section 2.2.2). Middleware implementations are similar, they differ in additional
functionalities that facilitate the use of given systems for specific types of tasks. Common examples are:
Eucalyptus [27]—a paid tool for the integration and use of Amazon Web Services, HTCondor [6]—a
free tool with support for heterogeneous network systems.
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2.2.2. Functional Classification

Second approach is functional classification [22]. There are three types of distributed computing
systems due to the type of processing: High-throughput computing [28], high-performance
computing [29] and multi-task computing [30]. However, the difference between high-performance
and multi-task computing is not strict [22]. Nonetheless, each category has its own basic characteristics.

• High-throughput computing. High-speed processing focuses on supporting computing units
that require chaining. This class operates on a macro scale—the processing time of individual
computing units is calculated in hours or even days. Examples of the use of this type of system
are: Transparent conducting materials discovery [31] or minimizing cascading blackout risk [32].

• High-performance computing. In high-performance processing computing units can be
completely paralleled (pool computing). This class operates on a micro scale—the processing
time of individual computing units (tasks) is counted in milliseconds. It applies to the computing
clusters. Examples of the use of this type of system are: Development of results of collisions in
Large Hadron Collider [33] or materials development [34].

• Multi-task computing. Multi-tasking is an intermediate solution between high-throughput
and high-performance processing. Tasks can be both sequential and parallel. The process
concentrates on cooperation with the file system. Examples of the use of this type of system are:
High-performance, distributed databases [22] or search engines [30].

3. Development of the Shapp Library

3.1. The Choice of the Basic Environment

The Shapp library was initially designed for cooperation with Feniks personal rapid transit (PRT)
network simulator [35]). The core characteristics then was time spent on single computational unit
processing. In case of Feniks, a single simulation takes 2–3 h for a medium size model. The Shapp
library was used for better research scaling, when multiple similar simulations have to be performed
fast.

Experiments involve carrying out a significant number of simulations on the same model, with
specific parameters changing step-wise within certain limits, or selecting parameter values from a
specific set. This process, carried out manually, is monotonous, and worse, prone to errors when
determining the values of parameters for a specific simulation and when collecting results. The Feniks
simulator uses three methods to automate experiments:

• Input file generator with variable parameter values, with the same model and other parameter
values not subject to change in the experiment.

• The result collector in an SQL database, allowing access to individual results and extracting trends
resulting from simulation, finding extreme and optimal values.

• Automating parallel simulations using threads. This mechanism allows for running many
simulations at the same time, but when the number of cores in the computer is exceeded,
the simulations disturb each other because time is wasted for switching between processes.
As a result of research on the parallelism of simulations, the Shapp library was developed, which
allows for running a simulation pack in a distributed environment using a workload management
tool.

To achieve this, the examined task was analyzed in terms of its properties:

• Type of processing. The first aspect that strongly limited the choice of available solutions is the
type of processing required. Simulations of long-time tasks that cannot be paralleled meet class of
high-performance processing systems.
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• Execution environment. An important requirement is the ability to use currently available
computing resources. The available computers are diverse, controlled by various operating
systems (Linux, Windows). Only network processing supports such heterogeneous environment.

• Correct handling of .NET environment on Linux and Windows systems. The Feniks simulator is
developed under the .NET environment, which is not fully supported on Linux systems, but it is
possible to use the support of the Mono environment [23]. However, taking into consideration
that most of the projects in our institute are developed in this technology, a library in the native
language greatly improves its usability.

• License and cost. It was assumed that the used environment should be free, at least for academic
use for an unlimited number of hosts.

Considering enumerated properties, five distributed workload management systems were
selected. The comparison was described in Table 1.

Table 1. List of considered distributed workload management systems to use as a base for the
Shapp library.

Open Source Cost License Operating Systems

Oracle Grid Engine No Paid SISSL Linux
TORQUE No Free Private Linux

Globus Toolkit No Free Apache Linux, MacOS
SLURM Yes Free GNU Linux

HTCondor Yes Free Apache Linux, MacOS, Windows

Given the requirements for a distributed computing system, HTCondor has proved to be the most
accurate choice. Moreover, multiple publications have proven its usability and flexibility with real
scenarios, for example:

• Integration with OneDrive cloud [36].
• Integration with OpenStack cloud aggregator [37].
• Integration with reproducible research data analysis platform (REANA) [38].
• On-demand provisioning of HEP compute resources [39].

CPU scavenging: HTCondor support for scavenging (in addition to simply using all available
computer resources) helps in the utilization of free computing resources that may still have their
functions as personal computers. Scavenging [40,41] is one of the functionalities offered by the
HTCondor distributed computing system. It is based on the utilization of the computing power
of the processor at times when the user does not use the computer. When the system detects that
user input devices are inactive by the predefined time, the service proceeds to perform calculations.
This functionality is optional. It can be replaced by, for example, reserving a number of cores for a
user. HTCondor is not a new system, however, it is still successfully used in workload management.
Numerous computation structures can be built upon HTCondor p2p architecture, which is extremely
flexible compared to other solutions, and more fault tolerant. In the last few years, HTCondor has
been integrated with Slurm clusters [8].

3.2. HTCondor Weak Points

After selecting the most suitable distributed processing system (HTCondor), we tried to apply
it for Feniks simulations without additional support. The method of executing calculation units is
difficult to apply when conducting multiple simulations of the same model with different sets of
parameter values. This is due to the specificity of problems associated with research using the Feniks
simulator. A good example is the experiment generator, with which the program performs a set of
simulations, each with different parameter values but all on the same model. Sets of parameter values
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are generated using a neural network. After each epoch, results are collected, which are then used to
modify the neural network coefficients. As a result, a new set of parameter values is generated and the
cycle repeats. This would require an additional script to create batch-defining files that would only
differ in input data.

There is also a different way to request the execution of the calculation units—application interface
in Python 2. However, HTCondor does not provide support for any other programming language than
Python, in particular, there is no solution supporting the C# language.

The last feature is a complete lack of hierarchy between the executed tasks. It is natural, as the
HTCondor is a distributed workload management system, and it is designed to work with batch
programs. However, it is a blocking point for any tree-like computations.

3.3. Fulfilling the Requirements

The biggest problem with the use of a distributed processing system is the impossibility of creation
of the descendant batches in the simulator itself. It should be organized similarly to the fork() procedure
known from POSIX class systems.

Such a solution allow creating simple batches (in this problem, the simulator application is put
together with the simulation model and a set of simulation parameters) in the body of the calculation
unit.

Additionally, the fork-like solution will add ability for tree-like processing structure applications.

4. Application of Shapp to Non-Exhaustive Model Checking

One of the most desirable attributes of distributed systems is their deadlock immunity. It is
especially crucial in environments such as medical care equipment, aeronautics or space exploration,
where reliability must be very strong [42]. Many of those real systems can be represented using
structured and simplified models, like Petri nets [43], CSP [44] or SDL [45].

Such models can be then verified against total and partial deadlocks using known algorithms and
tools. One of them is DedAn [46]—a deadlock analyzer developed in Institute of Computer Science,
Warsaw University of Technology. An example problem is the analysis of potential deadlock in a
fragment of Rome metro, shown in Figure 1 taken from Mazzanti et al. paper [47]. The result of the
verification is a counter-example of a trace leading to total deadlock, shown in Figure 2 (a final part of
the trail leading to deadlock).

Figure 1. The graph of Rome metro.
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Figure 2. The fragment of the counter-example with a trace leading to a total deadlock of Rome metro.
It is the illustration how the counterexample is presented: Vertical lines are timelines of the trains, on
which node states and passed messages are shown. Below the thick gray line are the final states of the
trains participating in the deadlock and deadlock indicators are presented. The full counter-example is
about 30x larger and cannot be fully presented here.

The DedAn program constructs the reachability space of the analyzed system, after which it finds
possible deadlocks, total or partial, exhaustively searching this space, which is called model checking
technique. A combinatorial explosion occurs when determining the reachability space, which limits
the possibility of verification to small and medium cases. Many methods of limiting state space have
been developed, for example, symbolic model checking, bounded model checking, compositional
model checking, local model checking, partial order reduction, abstraction, and slicing [48].

However, very large state spaces cannot be constructed, even using the above methods because
of operating memory constraints and computational complexity, explained further in this Section.
Non-exhaustive search methods have been developed for such cases, such as genetic algorithms
(GA [49]), A* [3] m and ant colony optimization (ACO [3]). Sometimes the methods are supported
by machine learning [50]. They allow for detecting total deadlocks, in which all processes are stuck,
as a state from which there is no way out. However, they are helpless against partial deadlocks that
can occur especially in distributed systems. For the testing of partial deadlocks, in which a subset
of processes participates, the algorithm 2-vagabonds was developed which uses two types of search
processes. First type vagabond looks for configurations in which a given set of processes is inactive (it
possibly falls into a partial or total deadlock, thus we call it a faller). Then it puts the hypothesis that
the system is partially deadlocked, and spawns the second type of vagabond. The latter tries to find a
configuration in which at least one process from the set escapes out of the inactive state, which falsifies
the partial deadlock hypothesis (it tries to "crawl out" from potential partial deadlock, so we call it
a crawler). If none of the processes from the set can become active, then the decision is made on the
occurrence of a partial deadlock. This decision may, of course, be wrong if the condition falsifying the
hypothesis potentially exists (it would be found through an exhaustive search), but it could not be
found by a crawler.

So finding a total deadlock (also in other non-exhaustive methods) can be a false negative, and our
partial deadlock algorithm can give both false positive and false negative results. However, in practical
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cases, the procedure is sufficient to find partial deadlocks, and even finding a false deadlock (which
has not happened to us) would not disqualify the method, because we have not found in literature
a better way to find partial deadlocks in systems for which a reachability space cannot be built for
verification.

The presented heuristics can be successfully applied in the distributed computing environment,
because fallers and crawlers are almost completely independent of each other, except for the starting
point of the latter, and regarding passing the search result. The above example of the Rome metro
verification shows a total deadlock when applied to travelling processes view of the system. However,
the deadlock is partial if it is observed from the point of view of distributed nodes which represent
stations. In such a situation, stations in which the trains are stuck participate in a partial deadlock,
while other stations are safe from the deadlock and are ready to accept potential trains.

The use of distributed processing allows for more effective management of spawning vagabonds:
Instead of one crawler, which is to verify the partial deadlock hypothesis, a gang of them can be started
immediately, which allows faster verification of the hypothesis. In addition, if a faller often finds
potential deadlock conditions, it can trigger a gang of its siblings who will help putting hypotheses
more effectively.

On the other hand, starting a crawler for every hypothesis may cause a large overhead for running
many short distributed processes. The better solution is to start a crawler and to send consecutive
deadlock hypotheses to it, served by the crawler one by one. This requires communication between
the faller and the crawler not only in the starting and completion of the crawler. Moreover, if the input
buffer of the crawler becomes large, it can start its siblings to serve a large number of hypotheses.
If any one of the crawlers confirms a partial deadlock, or if the faller finds a total deadlock, which
contains partial deadlock of every subset of processes, then all the working crawlers should be killed.
Those dependencies give complicated starting, communication and completion structure which is
served by our Shapp library.

The distributed DedAn program now works, and it is still under development. The complicated
process structure is a good example of challenges for the Shapp library, but it is not a good benchmark
for showing the library at work. Moreover, the spread of efficiency of 2-vagabonds algorithm for
multiple runs is large because the pseudo-random starting of crawlers, even with repeated seed, gives
random results due to the unpredictable relative execution times of crawlers resulting from really
random delays, in turn resulting from work in a distributed environment. We discuss the DedAn case
to show the origins of the mechanisms used in Shapp. However, for the illustration we chose a more
regular and well-known example of the ant colony optimization algorithm.

In the basic, non-distributed approach, spawning is done via a mechanism similar to fork() function
known from POSIX class systems. It is way better than exhaustive search in explicit reachability space
approach in terms of model size possible to analyze. For the non-exhaustive algorithm, the problem of
12 dining philosophers can be analyzed in 3 h compared to the exhaustive search algorithm, where the
experiment didn’t even started due to memory overrun. A maximum case of five philosophers was
verified exhaustively.

Soon, it was discovered that the non-exhaustive algorithm allows for promising parallelism,
applicable even for a distributed environment. However, plain distributed workload management
systems are not designed to solve such problems. Fortunately, the already available Shapp library has
been providing almost all required functionalities to use DedAn in a distributed environment.

5. The Tool-Shapp Library

The functional requirements for the Shapp library were formulated before its creation. Note, that
the intention was initially to solve challenges related to Feniks simulator. Those are like the following:

1. A program with an attached Shapp library should be able to differentiate if the current execution
context is related to base (root) or descendant (child) computational unit.
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2. The result (as newly created files) of a descendant computational unit should be sent back to its
parent unit.

• The library should support the creation of many descendant units using different approaches
to unit creation: Via chaining consecutive programs (different than starting application with
Shapp library), pool calculations or recursive invocations (in tree-like approach). The nested
calls of submitted descendant units might be aware of the expected operating system,
required operational memory, needs for processor cores and other software and hardware
requirements.

• The library should inform the user about changes of the descendant unit status
asynchronously. This mechanism should cover start, end, suspension and deletion
broadcasting to the user of the library.

3. The library should provide an interface for communication between parent and descendant unit.
The use case for such mechanism is e.g., telemetry or neural network weights synchronization.

4. The library should return a handle to the newly created descendant unit, e.g., as a descriptor,
which will be treated as a differentiator of the computational units among the library. Besides
any additional functionalities for computation control and communication, it should contain the
numerical ID of the unit.

5. When the application with Shapp library is about to close, it should not require the removal
of its descendant units. The intention is to allow further processing in a detached state,
without a supervisor. However, if the removal of descendant units during application closing
is desired, it must be implemented by the user, calling the kill operation on the descriptors of
descendant units.

6. The library should provide an ability to perform a submission of a simple batch application (or a
script) without the Shapp library in it.

7. The library should correctly handle shared file systems. In the case of its usage, no unnecessary
file transfers should be performed to and from a descendant unit (executables, input, and output
files, shared libraries files). Additionally, it case of detected issues with availability in the shared
file system, a fallback mechanism to standard file transfer should be used.

8. The library should correctly handle breakdowns of the executors in such a way that a task is
restarted as soon as the computational resources are available again. The restarted task instance
can be performed on a different executor than during the previous attempt.

9. The library should be able to handle exceptional situations caused by the code written by the user
of the library. If an error caused by the software outside the library leads to program termination,
the reason of the fail should be recorded as exception stack trace and all the logs and intermediate
files should be transferred back to the parent.

5.1. The Operation of HTCondor

Figure 3 shows the state diagram of the HTCondor system for any computational unit processing.
The diagram has been prepared by the authors based on the observations of the HTCondor in operation,
as well as extracts of information from the documentation [51] and research publications [9].

When execution of the submitted task is finished, the HTCondor system compares the directory
tree after the program completion with the starting state. All the recently created files are considered
as result files and are considered to be sent back to the node with the parent unit. This behavior can be
modified using Shapp library, so that only a files specified by the user would be considered to transfer
back to the submitter; remaining files will be lost. All the configuration altogether provides a base for
the operation of the Shapp library—the executable file, input datamx and configuration files are simply
transferred to the target node as a set of files in specified locations.
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Figure 3. State diagram of tasks in the HTCondor system. The naming convention of the states is
exactly the same as the one in HTCondor system documentation.

5.2. Library Adaptation to a New Use Case

As stated in Section 3.1, Shapp library was initially designed to work with Feniks simulator, where
the problem was How to manage the pool of simulations in a comfortable, effective way. However, for
DedAn program the needs are different: How to perform tree-like processing of a single model in a
distributed environment.

Fortunately, the Shapp library was designed in a very general way that allows tree-like processing
from scratch. For Feniks simulator this functionality was not fully utilized. In the simulator,
the experiment generator is established which is parameterized with appointing Boolean variables,
ranges of integral variables or ranges and steps of real-valued variables. The experiment generator
prepares the data structure of the global model and the Cartesian product of values of appointed
variables as individual files for simulations. In the original version, Feniksrun experiments using .NET
threads. The present, distributed version runs the experiments and controls their completion and
results using the Shapp library.

In the DedAn verifier, the threads run other threads, thus the application of tree-like computing
structure is mandatory to be able to use distributed workload management system for this type of
problems.

The requirements described in Section 5 were met and sufficient for a massive simulation scenario
of Feniks. However, for DedAn it is not enough. The list has to be extended with the following
properties:

1. The library has to allow two types of termination of the computational unit:
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(a) Soft—when the computational unit has some time (described in the message) to end the
computations and clean up the environment.

(b) Hard—when the computational unit has to terminate without any delay, when the results
are out interest or when the environment cleanup has to be done as quickly as possible.

2. A computational unit has to be able to control the execution of its descendant computational units
in a hierarchical way. The library should support the following operations without any additional
user activities:

(a) Cut-off branch—terminate execution of all the descendant units and indirectly descendant
units of those up to the leaves; notably, with this ability and the one described under Section
4 , a root computational unit can terminate the whole computing tree.

(b) Detach yourself—after the procedure described in Section 2, terminate the execution of the
computational unit which received the order.

3. Descendant computational units have to be able to establish communication with their parent.
4. Every computational unit has to be able to establish communication with the root computational

unit.
5. The library has to allow transmissions with arbitrary data structures on the allowed channels

between computational units.

With those additional functionalities available, the Shapp library can be also used for far more
complicated computation flows.

6. Tree-Like Distributed Computations

The main functionality provided by Shapp library is tree-like distributed computations. An
example of such can be found in Figure 4.

TOMASZ GAŁECKI

Level 1

Level 2

Parent

Child 1

Child 1.1 Child 1.2

Child 2

Child 2.1 Child 2.2

Figure 4. Example of tree-like computation flow. A parent computational unit submits two copies of
itself. Then, each child of the parent submits two copies of themselves. When the tasks of level 2 finish
their execution, the task of level 1 can also finish.

This solution is similar to the fork() function known in POSIX class operating systems. However,
there are a few differences:

• The descendant copy starts from the beginning of main function, rather than from the branching
point.

• The whole program context (stack, static data, code segment, heap) is recreated from scratch,
directly from executable file as a new program, instead of reusing it as it happens for fork()
function, where:
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– Stack (function calls) is copied almost completely [52].
– Static data (global variables) and heap are copied completely.
– Code segment (processor instructions which the program consists of) is shared—as it is

read-only, no copy is necessary.

• Opened file descriptors are not shared with the descendant copy.

Those limitations are obvious when the implementation is concerned. Underneath the
selfSubmitter.Submit(), covered in Listing 1, the Shapp library performs a submission into the
HTCondor system with a copy of the executable with all the dependencies. It will result in a new,
completely independent instance of the program—possibly on a different physical machine. A few
example actions possible to do around POSIX fork() function with its equivalents using the Shapp
library were presented in Table 2.

Table 2. Examples of POSIX function calls related to fork() function with their equivalents using the
Shapp library. Note that the descriptor in Shapp is the way the library represents unique tasks.

POSIX Shapp

int pid = fork(); var selfSubmitter = new SelfSubmitter(inputFiles, arguments);
var descriptor = selfSubmitter.Submit();

if (pid == 0) { act as child }
else { act as parent }

int Main() {
if (SelfSubmitter.AmIChildProcess()) { act as child }
else { act as parent }
}

int pid = wait(NULL); var descriptor = Shapp.Helper.WaitForAnyJobToEnd(jobDescriptors);

kill(pid, SIGKILL); descriptor.HardRemove();

exit(0); Environment.Exit(0);

Thanks to the level of abstraction provided by the library, a copy of the program can be made in
just two lines of code. Minimal working example is provided in Listing 1.

Listing 1: Example usage of the Shapp library. The root computational unit (root process) submits
twice the execution of its copy. Then, all the previously created copies create their own ones again,
twice. This results in a hierarchy presented in Figure 4.

publ ic s t a t i c void Main ( ) {
i f ( AmIRootProcess ( ) ) {
SubmitNewCopyOfMyself ( ) ;
SubmitNewCopyOfMyself ( ) ;
} e lse i f ( GetMyNestLevel ( ) == 1) {
Log ( " 1 s t nes t l e v e l " ) ;
SubmitNewCopyOfMyself ( ) ;
SubmitNewCopyOfMyself ( ) ;
} e lse i f ( GetMyNestLevel ( ) == 2) {
Log ( " 2nd nest l e v e l " ) ;
}
}
s t a t i c void SubmitNewCopyOfMyself ( ) {
var s e l f S u b m i t t e r =
new Shapp . S e l f S u b m i t t e r ( ) ;
var d e s c r i p t o r =
s e l f S u b m i t t e r . Submit ( ) ;
}
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Thanks to this functionality, it is possible to perform the computations in a tree-like structure
despite the fact that in the HTCondor system each of the computational units has equal priority and
does not have any hierarchy provided by the system. The order of processing is not strictly determined
in HTCondor.

6.1. Communication

HTCondor is a distributed workload management system of high-throughput class. It has been
designed to run as many power-consuming tasks as possible, also called batches. The main assumption
here is that those tasks are completely independent from each other. However, thanks to the Shapp
library this limitation can be overpassed.

6.1.1. Static Interface

Basic level of communication is provided via mechanism available already in HTCondor. When
the computational unit is being submitted, additional files (created and pointed by the user of the Shapp
library) can be also provided in a package with the executable. In the case of a DedAn non-exhaustive
search, when a crawler process (described in Section 4) is submitted, the input files are:

• A model the verified system expressed in DedAn input language.
• A path leading from the initial configuration to the starting configuration of crawler activity.

In addition to the mentioned files, the Shapp library is also able to provide additional program
call arguments (known as argv). Those are used to pass the file names provided with the executable.

The files are also used for communication in the opposite direction. When any computational unit
executed via HTCondor ends its execution, the system transfers automatically all the newly created
files back to the submitter—in the case of Shapp, it is the parent computational unit.

This simple method is used currently to pass the results of processing of a crawler vagabond
(described in Section 4) back to the faller vagabond. The results are:

• A file with the return code of the agent which determines the result of verification of the deadlock
hypothesis (true or false).

• A file containing a counter-example, if the return code informs that that the deadlock is found.

Based on the result of the completed crawler vagabond, the faller can decide about killing all the
remaining computational units currently being processed.

6.1.2. Dynamic Interface-Intranet Communication

In the future there will be also more advanced interface available. This communication structure
will be based on intranet configuration and will provide dynamic communication. It will be used for
more advanced mechanisms, closer described in Section 8. Available channels are shown in Figure 5.

Intranet communication will be realized using regular TCP sockets with client-server architecture.

• A server is hosted always by a computational unit. It is started at the beginning of the main
function, before submission of any descendant unit. There is only one instance of a server started
and its responsibility is to handle all the descendant and sibling units at the same time.

• A client is hosted always by descendant computational unit. It always connects to a server in its
parent unit and in the root unit. After establishing the connection to the parent, if the descendant
computational unit has any siblings, it also establishes connection to all its siblings. The addresses
of the siblings are obtained from the parent unit.
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Figure 5. The diagram of possible channels between the computational units. Figure (a) example
computation tree structure; (b) the basic way of communication, between parent and its children; (c)
any-to-root channels. (d) channels established between siblings of the same parent. The channels are
realized using TCP sockets. The IP address and port ID are passed as environmental variables for each
created child.

The described communication channels have to be established during the child computational
unit startup. However, TCP sockets allow for sending arbitrary, binary data. To ensure easy protocol
scaling and ease of the library usage, the following wrappers were considered for protocol specification
base:

1. Google Protobuf [53].
2. C# built-in XmlSerializer [54].
3. C# built-in BinarySerializer [55].

Just three of the most popular representatives of major serialization solutions were considered.
The properties of each serialization mechanism are described in Table 3.

Table 3. List of considered protocol wrappers with its main properties.

Google Protobuf XmlFormatter BinaryFormatter

Description language Dedicated language C# C#
Message representation Binary Text Binary

Size efficiency Very high Low High
Backward compability Yes No No

Polymorphism No Yes Yes
Supported languages i.a. C#, C++, Java C# only C# only
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In terms of universality, effectiveness, and popularity, Google Protobuf is definitely a winner.
On the other hand, XmlFormatter is quite easy to use natively in C#, and produced messages are
human-readable, which is considerably helpful in debugging and observation. However, resulting
message sizes are significantly higher, and may result in throughput issues in a high-scale distributed
system. BinaryFormatter is a mid-step between effectiveness of Protobuf and ease of use of
XmlFormatter. It is also easy to use natively in Shapp—the C# library and relatively efficient compared
to Protobuf [56]. Nonetheless, BinaryFormatter is not a perfect solution and has some drawbacks:

• Lack of support for other programming languages prevents the integration of Shapp library into
other programming languages, preserving its compatibility with the C# version.

• Lack of backward compatibility disallow communication between different versions of the library;
however, given that the main application of Shapp is cloning the entire program, always with the
latest libraries—this is not a real problem.

• Lack of human-readable messages can make debugging of the distributed application harder; still,
this can be done using the C# debugger—as all the messages are just language class instances.
Debugging communication between instances of the distributed program remains a problem, we
do this by tracing the protocol steps to log files.

Regardless of the minor drawbacks which can be overwhelmed, BinaryFormatter offers an
important facility—support for polymorphism. This will help with the Shapp library protocol extension
and design process.

In the traditional approach of protocol handling, the messages are processed in a switch, which
behaves as a matcher of the action for a particular type of protocol message [57]. In this approach when
a protocol is modified by introducing a new message, the change has to be done in two fragments:

• In the file with structures definition (an example in Listing 2).
• In the main place with reaction definitions on the newly created message type (an example in

Listing 3).

Listing 2: An example of first necessary modification in the switch approach to protocol definition.
Here, in some separate file with structures definition, a new structure has to be added with a new
message in a protocol.

s t r u c t HelloFromChild {
JobId MyJobId ;
}

Listing 3: An example of necessary modifications in the switch approach to protocol definition can be
seen here. In the file with reaction definitions it is necessary to modify 3 code fragments: Enumeration
with message differentiators, main union with all the possible message types to be received and the
main dispatch function, where a new case statement has to be added for a newly created structure.
Note that this is not a valid C# code, unions have to be defined in a different way. To avoid obfuscation,
the example was simplified to a C-style union.

enum MsgNo {
. . . ,
HelloFromChildNo
}
union Message {
MsgNo no ;
. . .
HelloFromChild helloFromChild ;
}
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void dispatch ( Message msg) {
switch (msg . no ) {
. . .
case HelloFromChildNo :
dispatch (msg . helloFromChild ) ;
break ;
}
}
void dispatch ( HelloFromChild helloFromChild ) {
// the r e a c t i o n on newly added message
}

Additionally, such dispersion of logic and data may lead to inconsistencies. As for a single logical
change (e.g., new message type addition), it is necessary to modify at least two files in four locations (as
shown in Listings 2 and 3). Opposition to this approach is a polymorphic solution, when the message
data and reaction of the system on this message reside in the same code fragment. This mechanism,
called polymorphic dispatch, was used in Shapp library for the whole internal protocol specification.

6.1.3. Polymorphic Dispatch

The Shapp library treats parts of the protocol message types as independent entities, realized as
classes implementing a common ISystemMessage interface. This interface is presented in Listing 4.

Listing 4: The main interface used as a base for all the protocol messages used by Shapp library for
dynamic mechanisms like cut-off branch and soft termination described in Section 5.2. The only
method, Dispatch with sender as the argument, is required to be defined in the protocol classes. This
method describes the behavior on the reception of the instance of the class. It will be called right after
message reception.

i n t e r f a c e ISystemMessage {
void Dispatch ( Socket sender ) ;
}

On top the main interface, all the remaining parts of the interface are created. Example protocol
message definition is presented in Listing 5.

Listing 5: Example Shapp protocol message implementation. In this example, there is a simple ping
response. The behavior on HelloFromChild message reception is described in its Dispatch method.
Additionally, the message can have an arbitrary number of additional fields that will carry the data
(here, MyJobId field) and common for all instances, static fields. Here, the static field OnReceive is used
for an asynchronous notification of a new message of this class being received.

[ S e r i a l i z a b l e ]
c l a s s HelloFromChild : ISystemMessage {
s t a t i c event Cal lback OnReceive ;
JobId MyJobId ;
void Dispatch ( Socket sender ) {
OnReceive ? . Invoke ( sender , t h i s ) ;
}
}

After such preparation of the interface, the polymorphic dispatch can be applied. It is done in a
standard way as for any other example of polymorphism, as presented in Listing 6.
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Listing 6: The polymorphic dispatch in a real application. Opposition to the switch approach
to protocol behaviour description, here no changes are needed in the dispatcher code. The only
requirement is that newly added message types have to implement the interface ISystemMessage,
presented in Listing 4.

i f ( AmIRootProcess ( ) ) {
var server = new AsynchronousServer ( ) ;
var d ispatcher = ( rece ivedObject , socket ) => {
i f ( rece ivedObjec t i s ISystemMessage sysMsg )
sysMsg . Dispatch ( socket ) ;
} ;
se rver . NewMessageReceivedEvent += dispatcher ;
server . S t a r t ( ) ;
}

Thanks to such an approach to protocol definition, important goals are achieved:

• The protocol behavior is encapsulated to particular message definitions.
• The protocol can be easily extended, without affecting already present message types.
• Definitions of the behavior and the data are close to each other in terms of location in the source

code (single class space).
• Complex data types built-in into the C# language can be used without additional effort in the

protocol messages, e.g., Dictionaries, HashTables, Sets, Matrices, etc.
• Already existing classes can easily gain the ability to become a part of the protocol; an example

is a class defining a huge set of parameters for the computational program, such as a simulator.
To be able to transfer this class over Shapp library protocol, the class has to simply extend the
ISystemMessage interface.

All the described properties have gained Shapp library great opportunities for further development
and abilities extension when new needs and expectations arrive.

7. Experiment

For the experiment with tree-like computing and communication via polymorphic dispatch
(described in Section 6.1.3), the traveling salesman problem [58] was used (finding the cheapest full
cycle in an undirected graph with costs assigned to the edges). The problem was solved using the ant
colony algorithm [3]. The algorithm is used to find the optimal path in a graph. Paths in the graph are
called ant routes. The segments of these paths are marked with certain weights called pheromones.
Pheromones evaporate after some time. Other ants prefer segments with the pheromone laid down.
The decision to use ACO was taken based on the following conclusions:

• To be able to make a comparison, the problem should be easy to realize in three environments:

– Single machine, using:

∗ Threads.
∗ The Shapp library.

– Multiple computers, using the Shapp library.

• Tasks realized on all the workers should be similar to avoid unnecessary noise in the results.
• Tasks should produce repeatable results.
• tasks should require some way of communication and synchronization between workers about

their state and current parameters; however, the synchronization process should be periodic, with
a frequency lower than 1 Hz to avoid overhead on workers during messages serialization (as the
messages can be arbitrarily large, even for a small graph of 500 cities each message was over 2 MB).
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The main aim of this experiment was to verify whether distributed computing using Shapp library
in a tree-like manner had the ability or potential to speed up model solving process for DedAn program
in the future. Additionally, the influence of the overhead of HTCondor [11] system (the base of the
Shapp library) was taken under analysis.

7.1. Environment

The experiment was done in three hardware configurations:

• For threading—single server and for Shapp—single server: A single server with the following
parameters:

– OS—Microsoft Windows Server 2008 (as a virtual machine).
– CPU—Intel Xeon CPU E5-2630@2.30 GHz, Cores: 6, Threads: 12.
– RAM—3.34 GB of virtualized memory.

• For Shapp—separate computers workers run in a set of two computers with the following parameters:

– OS—Microsoft Windows 10.
– CPU—Intel Core i5-4670 CPU@3.40 GHz, Cores: 4, Threads: 4.
– RAM—32 GB DDR3.

• For Shapp—lab workers run on a set of total 18 computers in a single lab in the following
configuration:

– A set of six computers with the following parameters:

∗ OS—Microsoft Windows 10.
∗ CPU—Intel Core i5-4670 CPU@3.40 GHz, Cores: 4, Threads: 4.
∗ RAM—32 GB DDR3.

– A set of 12 computers with the following parameters:

∗ OS—Linux CentOS 7.
∗ CPU—Intel Core i5-8400 CPU @ 2.8GHz, Cores: 6, Threads: 6.
∗ RAM—32 GB DDR4.
∗ .NET execution environment—mono [59].

The first two hardware configurations were used in order to accomplish the following goals:

• A single server instance is used to compare the same task done using system threads and Shapp
library. The main purpose of it is to analyze the influence of distributed workload management
system usage on time and performance overhead, compared to threading solution.

• A set of individual computers is used to analyze the influence of distribution of the task on a
set of weaker computers and the influence of network transmissions over LAN with the task
parameters.

The third configuration was used in order to present computation scaling ability using Shapp
library and HTCondor.

All the computations made with Shapp library were using HTCondor as the executor of the tasks.
It is important to note, that extending the pool of available slots (in HTCondor nomenclature: A pair
of one CPU thread and 1

N of operating memory, where N describes the number of CPU threads) is as
easy as installation of HTCondorsystem on another server and appropriate configuration.
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7.2. Conducting the Experiment

The aim of the computations was to find the shortest trail over all the cities in the model. The graph
is modeled in a random way; however, the random generator seed is always the same. The realized
task has the following properties:

• The graph represents 500 cities.
• There are three workers realizing ACO algorithm.
• Each worker is holding and processing five ants,.
• The pheromone values on the edges are synchronized between workers once per 10 s.
• The algorithm runs for 240 s.

The computations were performed in two ways—via using threads, and via the Shapp library (on
a single computer and in lab network). The implementation details can be found on the Shapp project
repository [60], in the example project shipped with the library itself.

7.3. Results

The first parameter being captured during the test was the number of successfully performed
iterations of ACO algorithm. Each iteration consists of building up new trails for each ant and
pheromone update on graph edges. However, Shapp workers have to perform best trail checking once
per second, whereas in the threading case this task is delegated to a different core, also doing the same
thing once per second. This leads to a longer average time spent on a single iteration. Additionally,
each Shapp worker has to have an instance of the TCP client socket running, as well as once per 10 s it
has to send its status with the best found trail and its changes in pheromone on graph edges.

All of the mentioned differences lead to a processing time in Shapp—single server that is higher
by around 10% than in the threading—single server scenario, as it can be seen in Figure 6. However,
note that such difference is caused by the lack of shared memory, which greatly reduces the amount
of communication necessary in the threading scenario to keep the model coherent. The difference
between both Shapp scenario is caused by the hardware differences. Even though the Shapp—single
server used a better CPU, the virtualization overhead led to performance better about 1.8 times in the
Shapp—separate computers case. On the other hand, the Shapp—lab scenario was able to perform around
23 times more iterations than the Shapp—separate computers case, as it can be seen in Figure 7.
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Figure 6. The plot of the number of updates done to the ant colony optimization (ACO) model over
time. Shapp—single server plot is shifted to the right by 22 s and Shapp—separate computers by 25 s, which
stands for the delay introduced by the HTCondor system.
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Figure 7. Extension of the plot in Figure 6 with data series for iterations from start for Shapp—lab,
which reached the value of 56,674 successful iterations. It is shifted to the right by 58 s which stands
for the delay introduced by the HTCondor system. Ordinate axis scale was changed to logarithmic to
improve the readability of the plot.

Also, it has to be expressed that the Shapp—single server number of iterations plot is intentionally
shifted 22 s to the right. This was exactly the time that was necessary to setup all the workers using
Shapp library to be ready to start the computation. On the other hand, in the Shapp—separate computers
scenario, this delay took 25 s and in the Shapp—lab scenario, it took 58 s.

The second analyzed parameter was the behavior of the best trail discovered in the last second
of the execution. The plot of it is presented in Figure 8. The first important issue visible here is that
the Shapp—single server scenario has reached the best trail length at the 94 s time mark, whereas the
threading—single server scenario has reached a similar value almost at the end of the experiment, at the
237 s time mark; despite the fact that the Shapp—single server scenario required 22 s more for workers
startup. The Shapp—separate computers has reached the best trail length (501) in the last measurement,
at the 253 s time mark. However, since the 170 s mark, the best trail length reached 509, and after this
moment improvements became noticeably slower. On the other hand, Shapp—lab reached the best trail
length (524) at the 84 s time mark and didn’t improve more till the end of the experiment.

However, the shape of the plot lines varies. The threading line approves the optimal value in a
much smoother manner, reaching value 553; the same applies to Shapp—separate computers scenario,
where value 501 was reached. Whereas in Shapp case, the best trail is reached much faster and stabilizes
soon at value 554. The reason for such behavior is the conjunction of the following components:

• ACO algorithm parameters were not tuned very well (as this was not the aim of this experiment).
• Even though the synchronization of the pheromone along the workers was in all the scenarios done

each 10 s, in both Shapp scenarios there were present significant delays (due to TCP transmissions).
• Comparing the Shapp scenarios, separate computers had more computational capacity, as can be

seen in Figure 6.

Additionally, the Shapp—lab scenario approached the optimal value in a similar manner to the
Shapp—single server case. The reason for such behavior can be found in ACO parameters, which were
the same for each scenario. Most probably, for the Shapp—single server the pheromone amplification
parameter was not big enough, whereas for the Shapp—lab it was too large considering the number of
workers.
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Figure 8. The plot of best trail of all available from time. Shapp—single server plot is shifted to the right by
22 s and Shapp—separate computers by 25 s, which stands for the delay introduced by HTCondor system.

7.4. Experiment Conclusions

Even though computations performed using system threads are much more efficient and
easier to handle and communicate, they are not capable of further scaling up of the computations
(except for hardware updates). In the Shapp case, however, usage of HTCondor system allows for
easy scaling of the computation pool capacity by adding new hosts to the pool. And thanks to
additional functionalities provided by Shapp library, collected in Table 2, usage of distributed workload
management system in processing can be almost as easy as it is in the threading approach.

8. Conclusions and Further Studies

The article presents the workload management system using the original Shapp library, based
on the HTCondor. Unlike existing systems of this type, which simply allow for running executable
programs, our library makes it possible to run tasks from the programming language level, in this
case, C#. It is possible to run tasks in the legacy style, that is, to run programs on available cores in
a distributed system, and to control their state and finish calculations. This style of execution suits
massive simulations, as in the PRT Feniks simulator (Section 5.2), in which it is necessary to carry out
hundreds of simulations of the same model for different sets of parameters and to collect results.

However, many computational problems require more accurate control of running tasks, such
as finalizing calculations for some tasks when better promising calculation directions are found.
Taking the management to the level of the library available in the programming language and adding
certain functions to manage child tasks, such as checking the request to finish the task or task with its
descendants, the efficiency of running, and checking the completion of tasks, allows for better control
of the state of calculations. This provides a task tree or another complex calculation structure, for
example, to examine the tree space of solutions with the possibility of pruning. An example is the
algorithm of non-exhaustive search of the state space in the algorithm of partial deadlock detection
of 2-vagabonds. The basic faller process can run a pack of its brothers as needed, and can run any
number of crawlers to verify deadlock hypotheses. Crawlers can be equipped with input buffers to
reduce the cost of their cyclical startup, but they can also run their brothers when the input buffers are
overloaded. Other, complex calculation structures richer than tree are also possible.

Finally, communication between tasks allows for their effective management, dynamic
configuration of their work, change of their input parameters during execution, and in the opposite
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direction reporting of partial results or reconciliation of decisions with tasks of the same level. All
these capabilities are available through operations similar to the fork, wait, exit, and kill functions
in the POSIX specification, with restrictions due to distribution. A common feature with the POSIX
specification is the ability to run process clones, operating on the same global data structure (in the
library passed as a common input file), but with its own logic and work parameters, passed as call
parameters and files parameterizing the child’s work.

The use of the library in the Shapp simulator and DedAn verifier showed significant usability
in both the parallelization of calculations and the management of massive, parallel calculations.
The benchmark in the form of an ant algorithm shows the ease of using the library and managing
distributed tasks. Additionally, the experiment proved that a distributed approach to workload
management does not introduce significant overhead, instead of keeping it around 10%. However, at
the same time, HTCondor allows for easy and cheap scaling of the computational pool. Such scaling
can be done using regular computers, which during the day are used in regular day-to-day tasks,
and during the night utilized as outright participators in the research-requiring high-throughput
computing system.

The current state of the Shapp project is only the basis for further research. The ability to control the
flow of calculations in a distributed environment opens up completely new possibilities for intelligent
resource allocation for calculations. In the further development of the library, communication functions
will be developed, as well as the ability to group tasks and run a task group in a single operation, and
the group management of tasks. The most promising area of research is the ability to modify heuristics
used in algorithms to more efficiently use available resources.
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