
  information

Article

A Noise Study of the PSW Signature Family: Patching
DRS with Uniform Distribution †

Arnaud Sipasseuth *,‡ , Thomas Plantard *,‡ and Willy Susilo *,‡

Institute of Cybersecurity and Cryptology, School of Computing and Information Technology,
University of Wollongong, Wollongong 2522, Australia
* Correspondence: as447@uowmail.edu.au (A.S.); thomaspl@uow.edu.au (T.P.); Wsusilo@uow.edu.au (W.S.)
† This paper is an extended version of our paper published in ACISP 2019.
‡ These authors contributed equally to this work.

Received: 31 January 2020; Accepted: 19 February 2020; Published: 27 February 2020
����������
�������

Abstract: At PKC 2008, Plantard et al. published a theoretical framework for a lattice-based signature
scheme, namely Plantard–Susilo–Win (PSW). Recently, after ten years, a new signature scheme
dubbed the Diagonal Reduction Signature (DRS) scheme was presented in the National Institute of
Standards and Technology (NIST) PQC Standardization as a concrete instantiation of the initial work.
Unfortunately, the initial submission was challenged by Yu and Ducas using the structure that is
present on the secret key noise. In this paper, we are proposing a new method to generate random
noise in the DRS scheme to eliminate the aforementioned attack, and all subsequent potential variants.
This involves sampling vectors from the n-dimensional ball with uniform distribution. We also give
insight on some underlying properties which affects both security and efficiency on the PSW type
schemes and beyond, and hopefully increase the understanding on this family of lattices.

Keywords: Lattice-based cryptography; DRS; Lattice-based signatures; NIST PQC; diagonal dominant

1. Introduction

The popularity of post-quantum cryptography has increased significantly after the formal
announcement by the NIST to move away from classical cryptography [1]. This is due to the potential
threat that will be brought by the upcoming large-scale quantum computers, which theoretically break
the underlying traditional hard problem by using Shor’s algorithm [2]. Post-quantum cryptography,
in short, is the conception and analysis of cryptographic tools that are practically available to classical
computers but quantum-safe (i.e., safe against quantum computers).

To do so, one usually uses a mathematical structure in which computational problems are
perceived to be hard. There are currently three big families of mathematical structures in post-quantum
cryptology, namely code-based cryptography, multivariate cryptography, and lattice-based
cryptography. Smaller families do exist: hash-based functions, isogenies, etc. This work, however,
primarily concerns with lattice-based cryptography. First introduced by Minkowski in a pioneering
work [3] to solve various number problems, lattices have the advantage to often base their security
on worst-case assumptions [4] rather than the average case, and to be highly parallelizable and
algorithmically simple enough to compete with traditional schemes in terms of computing speed.
Inspired by this, Goldreich, Goldwasser and Halevi [5] proposed an efficient way to use lattices to build
a public-key encryption scheme, namely the Goldreich-Goldwasser-Halevi (GGH) scheme. The initial
iteration of GGH has been broken using lattice reduction techniques [6], however, the central idea
remains viable and it has enabled a wide array of applications and improvements, such as using
tensor products [7], Hermite Normal Form (HNF) [8], polynomial representations [9], rotations [10],
and the most popular one being Learning With Errors (LWE) [11] or its variants. One particular class of

Information 2020, 11, 133; doi:10.3390/info11030133 www.mdpi.com/journal/information

http://www.mdpi.com/journal/information
http://www.mdpi.com
https://orcid.org/0000-0002-1562-5105
https://orcid.org/0000-0003-2521-2520
https://orcid.org/0000-0002-1562-5105
http://dx.doi.org/10.3390/info11030133
http://www.mdpi.com/journal/information
https://www.mdpi.com/2078-2489/11/3/133?type=check_update&version=2


Information 2020, 11, 133 2 of 36

lattices enjoy a remarkable reputation: q-ary lattices. This family benefits from the worst-case hardness
reduction proof from Ajtai [4] and Regev [11] using two dual problems: Short Integer Solution (SIS)
and LWE. Lately, Gama, Izabachene, Nguyen and Xie have been shown that most lattices in general
benefit from this specific hardness reduction [12]. However, as this was relatively new, constructing
lattice-based schemes outside of the q-ary family is still unpopular.

More recently, the NIST attempt at standardizing post-quantum cryptography [13] received a lot
of interest from the community and the vast majority of the lattice-based submissions for “Round 1”
are actually based on LWE/SIS or their variants [13]. One of the few lattice-based submissions outside
of the q-ary family is the DRS Scheme [14], which uses a diagonal dominant matrix that can be seen as
a sum between a diagonal matrix with very big coefficients and a random matrix with low coefficients.
DRS was based on the original PSW framework from [15], however, the original paper had mostly
a theoretical interest and did not provide an explicit way to construct the random matrix with low
values, rather than merely stating conditions on norm bounds it should respect for the signature
scheme to be proven functioning. The NIST submission, however, provides a more straight-forward
way to generate the noise, using another proof and condition to ensure the functionality of the scheme.
This new way to generate the noise, however, is shown to be insecure: Soon after DRS was made
public, Yu and Ducas used machine learning techniques to severely reduce the security parameters [16].
While according to Ducas’ comments on the NIST forum [13], the attack was not devastating as it still
seems asymptotically secure, however, its concrete security was significantly decreased. On the same
work, Yu and Ducas also provided several suggestions in order to fix those issues and one of those
comments suggested using a statistical analysis. Another more recent attack from Li, Liu, Nitaj and
Pan [17] on a randomized version of the initial scheme proposed by Plantard, Susilo and Win [15]
can also be indirectly considered an attack to the DRS scheme, although this attack does not seem as
important as Yu and Ducas’s one.

In the following work, we do follow some of those suggestions and we aim to provide a new
noise generation method to eliminate the aforementioned attack and restore some of the DRS’ concrete
security. We will present some statistical heuristics and remove some of the structure that allow the
initial DRS scheme to be attacked and discuss open questions and alternatives.

Our Contribution and Paper Organization

The rest of the paper is organized as follows. We first present some relevant background on lattice
theory and re-introduce the DRS scheme from Plantard et al. Subsequently, we will comment on the
attack of Li, Liu, Nitaj and Pan [17] and explain why it is not applicable. Then we discuss the weakness
found by Yu and Ducas and our idea to correct this. We finally present the detail algorithms about
our security patch, discuss the relative hardness of the patch, alternative approaches and raise some
open questions.

2. Background

In this section, we briefly recall the basics of lattice theory.

2.1. Lattice Theory

Definition 1 (Integral lattice). We call lattice a discrete subgroup of Rn where n is a positive integer. We say
a lattice is an integral lattice when it is a subgroup of Zn. A basis of the lattice is a basis as a Z−module. If M
is a matrix, we define L(M) the lattice generated by the rows of M.

In this work we only consider full-rank integer lattices, i.e., such that their basis can be
repcresented by a n× n non-singular integer matrix.

Theorem 1 (Determinant). For any lattice L, there exists a real value we call determinant, denoted det(L),
such that for any basis B, det(L) =

√
det(BBT).



Information 2020, 11, 133 3 of 36

The literature sometimes call det(L) as the volume of L [3]. In the full-rank case, det(L) =√
det(B) and we say B is non-singular (or invertible) when det(B) 6= 0.

We note that the definition is similar to the one which can be found in fundamental mathematics
books [18] for diagonal dominant matrices. We will just adapt the lattice to its diagonal dominant basis.

Definition 2 (Minima). We note λi(L) the i−th minimum of a lattice L. It is the radius of the smallest
zero-centered ball containing at least i linearly independant elements of L.

Definition 3 (Lattice gap). We note δi(L) the ratio λi+1(L)
λi(L)

and call that a lattice gap. When mentioned
without index and called “the” gap, the index is implied to be i = 1.

In practice, only the case i = 1 is used, but other values are sometimes useful to consider [19].
We also define the “root lattice gap”, i.e., elevated to the power 1

n where n is the dimension of the lattice.

Definition 4 (Diagonal Dominant Lattices). We say a lattice is a diagonally dominant type lattice (of
dimension n) if it admits a diagonal dominant matrix as a basis B as in [18], i.e.,

∀i ∈ [1, n], Bi,i ≥ ∑n
j=1,i 6=j |Bi,j|

We can also see a diagonally dominant matrix B as a sum B = D + R where D is diagonal and
Di,i > ‖Ri‖1. To avoid conflicting notations between the diagonal matrix and the diagonal coefficient,
we will denote from now on DId the product of the integer D by the canonical basis Id. We might
also denote Dg a diagonal matrix which diagonal coefficients might not all be equals. In our scheme,
we use a diagonal dominant lattice as our secret key, and will refer to it as our “reduction matrix” (as
we use this basis to “reduce” our vectors).

Definition 5 (Vector Norms). Let F be a subfield of C, V a vector space over Fk, and p a positive integer or ∞.
We call lp norm over V the norm:

• ∀x ∈ V, ‖x‖p = p
√

∑k
i=1 |xi|p

• ∀x ∈ V, ‖x‖∞ = maxi∈[1,k] |xi|

l1 and l2 are commonly used and are often called taxicab norm and Euclidean norm, respectively.
We note that we also define the maximum matrix norm as the biggest value among the sums of the
absolute values in a single column.

The norm that was used by Plantard et al. for their signature validity is the maximum norm.
However, as far as the security heuristics are concerned the Euclidean norm (l2) is used, and as far as
the reduction termination proof is concerned the taxicab norm (l1) is used.

Definition 6 (Matrix Norms). Let A be a square matrix in Cn,n. A matrix norm denoted as ‖A‖ is said to be
consistent to a vector norm ‖.‖, if we have ‖A‖ = sup{‖xA‖, x ∈ Cn, ‖x‖ = 1}.

Matrix norms were an useful analytic tools in [15], and can also be used to simplify notations.

Definition 7 (Trace of a matrix). Let A be a square matrix in Cn,n. We say tr(A) = ∑n
i=1 Ai,i is the trace

of A.

2.2. Lattice Problems

The most famous problems on lattice are the Shortest Vector Problem (SVP) and the Closest Vector
Problem (CVP). We tend to approximatively solve the CVP by solving heuristically SVP in an expanded
lattice [5].



Information 2020, 11, 133 4 of 36

Definition 8 (Closest Vector Problem (CVP)). Given a basis B of a lattice L of dimension n and t ∈ Rn, find
y ∈ L such that ∀y2 ∈ L, ‖t− y‖ ≤ ‖t− y2‖.

Definition 9 (Shortest Vector Problem (SVP)). Given a basis B of a lattice L of dimension n, find y ∈ L
such that ‖y‖ = λ1(B).

In cryptography, we rely on the “easier” versions of those problems:

Definition 10 (γ-unique Shortest Vector Problem (uSVPγ)). Given a basis of a lattice L with its lattice gap
δ > 1, solve SVP.

Since λ1(L) is also hard to determine (it is indeed another lattice problem we do not state here),
measuring the efficiency of an algorithm is another challenge by itself. Therefore, to measure algorithm
efficiency we must be able to define a problem with easily computable parameters, which is where the
Hermite factor is originated from:

Definition 11 (γ-Hermite Shortest Vector Problem (HSVPγ)). Given a basis B of a lattice L of dimension
n and a factor γ we call Hermite Factor, find y ∈ L such that ‖y‖ ≤ γdet(L)1/n.

Some cryptosystems are based on worst-case hardness on uSVPγ with polynomial gap as [20]
and [11]. The practical hardness of uSVPγ depends on its gap compared to a fraction of the Hermite
factor, where the constant in front of the factor depends of the lattice and the algorithm used [21].
There exists an attack that was specifically built to exploit high gaps [22].

Definition 12 (γ-Bounded Distance Decoding (BDDγ)). Given a basis B of a lattice L, a point x and a
approximation factor γ ensuring d(x,L) < γλ1(B) find the lattice vector v ∈ L closest to x. When γ = 1/2,
we can omit γ and note the problem Bounded Distance Decoding (BDD).

It has been proved that BDD1/(2γ) reduces itself to uSVPγ in polynomial time and the same
goes from uSVPγ to BDD1/γ when γ is polynomially bounded by n [23], in cryptography the gap
is polynomial the target point x must be polynomially bounded therefore, solving one or the other
is relatively the same in our case. To solve those problems, we usually use an embedding technique
that extends a basis matrix by one column and one row vector that are full of zeroes except for one
position where the value is set to 1 at the intersection of those newly added spaces, and then apply
lattice reduction techniques on these. As far as their signature scheme is concerned, the GDDγ is
more relevant:

Definition 13 (γ-Guaranteed Distance Decoding (GDDγ)). Given a basis B of a lattice L, and a bound γ,
for any point x find a lattice vector v ∈ L such that ‖x− v‖ < γ.

As far as recovering a secret key is concerned, usually the problem reduces to SVP. However, if a
whole short basis is concerned, then the following problem becomes relevant:

Definition 14 (Shortest Basis Problem (SBP)). Given a basis of a latticeL of rank n, find a basis y1, ..., yn ∈ L
such that

maxi‖yi‖ ≤ min{maxj‖aj‖ |{a1, ..., an} is a basis of L}.



Information 2020, 11, 133 5 of 36

3. The Theoretical Framework of Plantard–Susilo–Win

3.1. Before PSW: Lattices for Number Representation

Before we present PSW, we will briefly give some hindsight about “number systems”, i.e., ways to
represent a number. The reason might not be apparent, but we hope a few examples will actually
help understand the core ideas behind PSW and DRS. We are not going to talk about Residue
Number System (RNS) or the Chinese Remainder Theorem (CRT) which are famous number systems,
but clearly irrelevant for what we present in this paper. Instead, we are going to talk about the very
basic representations of numbers.

Suppose we want to represent a number x in base k, such that x < kn. Then the number has the
unique following representation:

x = x0 + x1k + x2k2 + . . . xnkn such that ∀i, xi ∈ [0, k− 1]

Basically, the role of k is mostly to determine the number of symbols used, and the positions
1, k, k2, . . . , kn are written from increasing power from left to right for a simple representation when
writing the number

x = “x0x1kx2 . . . x′′n

Using k = 10 gives us the arabic numerotation most of us use today in science. but then, what if
we decide to strip the condition “∀i, xi ∈ [0, k − 1]”? The representation is then obviously not
unique anymore:

x = (x− bx/kc) + bx/kck =

(x− (b(x− bx/k2c)/kc+ bx/k2ck2)) + b(x− bx/k2c)/kc+ bx/k2ck2 = . . .

Most informed people would see here a reversing of the table Euclidean division. However we are
choosing another representation: we can also represent this phenomenon by a vector. In the following
example we reverse the order, putting the highest degree on the left:

1851 ' [1, 8, 5, 1]
1851 = 1× 103 + 0× 102 + 85× 101 + 1× 100 ' [1, 0, 85, 1]

1851 = 0× 103 + 18× 102 + 0× 101 + 51× 100 ' [0, 18, 0, 51]

We can see here, that all numbers are obtained by linear combinations by the vectors of the
following matrices:

B10 =

 −1 10 0 0
0 −1 10 0
0 0 −1 10

 and in base k would give Bk =

 −1 k 0 0
0 −1 k 0
0 0 −1 k


[1, 8, 5, 1] ≡ [1, 0, 85, 1] ≡ [0, 18, 0, 51] mod L(B10)

To decompose vectors in the unique representation we use in “everyday life”, we would reduce
successively the i-th coefficient to the maximum with the i-th vector, from the first to the last, which is,
rightfully so, the equivalent of a Euclidean division. Here the reduction works intuitively as we are
subtracting some large multiple of k in a position to add a small multiple of 1 in another. What now if
we decide to use number systems that are not the “number-system” lattice we showcased? Instead of
classical Euclidean division we could use some form of approximation of Babai’s Rounding-Off
algorithm [24]. Such was the idea of Bajard, Imbert and Plantard [25]: numbers would be represented
by vectors, which grow as computations are done but can be reduced by lattice reduction. Thus,
the main idea behind PSW is there as quoted initially [15]. To know more about lattices used as number
systems, we refer to [26] as an entry point. For now, we will continue with the description of the
PSW framework.



Information 2020, 11, 133 6 of 36

3.2. Spectral Radius and Eigenvalues

While the following mathematical concepts are not needed to understand DRS, they are essential
to understand the original framework of PSW. They are the exact same definitions given in [15] which
itself quotes various books. In all following definitions, n ∈ N.

Definition 15 (Polytope Norm). We denote ‖.‖P as the matrix norm consistent to the vector norm ‖.‖P
defined as ∀v ∈ Cn, ‖v‖P = ‖vP−1‖∞ where P is invertible.

To compute the polytope norm ‖.‖P of a matrix, we have ∀A ∈ Cn,n, ‖A‖P = ‖PAP−1‖∞.

Definition 16 (Eigenvalue). Let A be a square matrix in Cn,n, a complex number λ is called a eigenvalue of
A if there exists a column-vector h 6= 0 such that Ah = λh. The column-vector h is called an eigenvector of A.

Note that λ is the typical symbol for eigenvalues, but is also the typical symbol for a lattice minima
(see Definition 2). This is not unusual when we work in between different fields of mathematics (and/or
computer science). While we do use the same symbol here, we will make it clear context-wise when
the symbol represents a lattice minima or an eigenvalue. Typically, if we are writing about the
convergence of a reduction, the spectral radius or a diagonalization, then we mean an eigenvalue.
If we are discussing the complexity of a lattice problem or the security of a cryptosystem, we mean a
lattice minima.

Definition 17 (Spectral Radius). Let A be a square matrix in Cn,n. We denote ρ(A) as the spectral radius of
A defined as the maximum of the absolute value of the eigenvalues of A: ρ(A) = max{|λ|, Ax = λx}.

The spectral radius we just defined is essentially the cornerstone of all analysis provided in [15],
which is linked to but not mentioned in the original DRS description [14].

Theorem 2 (Gelfand’s spectral radius formula). ρ(M) = limk→∞ ‖Mk‖1/k

Gelfand’s formula basically states that all norms converge to the spectral radius.

3.3. The Original PSW Framework

While GGH and other lattice-based cryptosystems relied on having a “Good” basis as a secret key,
the definition of “Good” was dependent often relative to the cryptosystem chosen and an arbitrary
intuition. In that sense, [15] gives a specific definition of a good basis.

Definition 18 (A PSW-good basis). Let Dg, M be two matrices and a lattice L such that L = L(Dg −M).
We say Dg −M is PSW-good if and only ρ(MD−1

g ) < 1.

Note here that Dg does not have to be a diagonal matrix. For efficiency and implementation
simplicity, however, we usually pick Dg = DId. This definition of a “good” basis is born from an
approximation of Babai’s Rounding-Off algorithm [24] for CVP in maximum norm. With that in
mind, we present in Algorithm 1 the reduction algorithm (which is the signing algorithm) born of this
approximated Babai for a lattice L.

However, using a diagonal dominant basis (“weakly” or not), the algorithm can be simplified to
what we will call the PSW-reduction algorithm (see Algorithm 2).

A small MAGMA code can be found in the appendix for diagonal dominant lattices (see code
Figure A1 in Appendix A). The PSW vector reduction algorithm, however, is not proven to always
terminate, and an experimental conjecture was provided to ensure its termination to a solution.



Information 2020, 11, 133 7 of 36

Algorithm 1 Approximate vector reduction algorithm

Require: A vector v ∈, two matrices Dg, M such that L = L(Dg −M) and Dg is diagonal invertible.
Ensure: w ∈ Zn such that w ≡ v ( mod L) and ‖w‖Dg < 1.

1: w← v
2: while ‖w‖Dg ≥ 1 do
3: q← dwD−1

g c
4: w← w− q(Dg −M)
5: return w

Algorithm 2 PSW vector reduction algorithm

Require: v ∈ Zn, Dg, M ∈ Zn×n such that L = L(Dg −M) and Dg is diagonal invertible.
Ensure: w ∈ Zn such that w ≡ v mod L and ‖w‖Dg < 1.

1: w← v
2: i← 0
3: while k ≥ n do
4: k← n
5: q← bwi/Di,ic
6: wi ← wi − qDi,i
7: for j = 0 to n− 1 do
8: wi+j mod n ← wi+j mod n + qMi,j
9: if |wi+j mod n| < Di+j mod n, i+j mod n then k← k + 1

10: i← i + 1
11: return w

Conjecture 1 (The PSW conjecture). If ρ(MD−1
g ) < 1/2, then the PSW vector reduction algorithm converges.

Note that the PSW vector reduction algorithm iterates each position successively. It does not have
to be the case. Not only there is often more than one valid approximation, but its ordering does not
matter much as long as there is no infinite loop: those points can be important for future work in one
wishes to pick specific solutions with respect to statistical properties or other conditions.

Example 1. Example of the reduction with v =
[

32 45 37 23
]

and D = 10.

M =


10 −2 3 1
1 10 3 5
2 −4 10 3
−2 5 2 10


v← v− 3M1 =

[
32 45 37 23

]
−
[

30 −6 9 3
]
=
[

2 51 28 20
]

v← v− 5M2 =
[

2 51 28 20
]
−
[

5 50 15 25
]
=
[
−3 1 13 −5

]
v← v− 1M3 =

[
−3 1 13 −5

]
−
[

2 −4 10 3
]
=
[
−5 5 3 −8

]
Final result: [

32 45 37 23
]
≡
[
−5 5 3 −8

]
mod L(M)[

37 40 34 31
]
≡
[

0 0 0 0
]

mod L(M)

Check equivalency with the HNF(M):



Information 2020, 11, 133 8 of 36

HNF(M) =


7799 0 0 0
3359 1 0 0
1053 0 1 0
3569 0 0 1



Start :
[

37 40 34 31
]

4th coefficient:
[
−110602 40 34 0

]
3rd coefficient:

[
−146404 40 0 0

]
2nd coefficient:

[
−280764 0 0 0

]
1st coefficient:

[
0 0 0 0

]
However, note how the reduced solution is not unique and[

−5 5 3 −8
]
≡
[

5 3 6 −7
]

mod L(M)

Given n fixed, the initial first instantation of PSW then works as follows:

3.3.1. Setup

• Pick a random matrix M ∈ Zn with “low” values.
• Compute D = b2ρ(M) + 1c
• Compute H be the HNF of L(DId −M).

The public key is given as (DId, H) and the secret key M is kept. Note that M was initially set
within {−1, 0, 1}n but that was not made mandatory to function, neither was the condition D =

b2ρ(M) + 1c.

3.3.2. Sign

Given a message m:

• Hash a message m into a random vector h(m) = x ∈ Zn such that ‖x‖D2
Id
< 1

• Apply the PSW-vector reduction into x and save its output w.

The signature is given as w. Note ‖x‖D2
Id
< 1 was also facultative.

3.3.3. Verify

Given a public key (D, H) and a signature w for a message m:

• Check if ‖w‖DId < 1.
• Check if h(w)−m ∈ L(H).

Checking the second step here is fast given a HNF as showed in [8].

Now that we reintroduced the PSW signature scheme, note that constructing instances of PSW in
a fast manner is not trivial: One would need to be able to ensure that the PSW conjecture is respected.

3.3.4. Claimed Structural Security

The main selling point of the PSW approach is to be a “cheap” alternative security patch to
GGHSign against [27,28] aside from the one proposed in [29] which was secure but slow.

The hopes were for the l∞ norm to be more secure than the l2 norm, by revealing less structure
about the key. Figure 1 is taken straight from [15].



Information 2020, 11, 133 9 of 36

Figure 1. Signatures over l2 and l∞.

4. The Original DRS Scheme

The original definition of the DRS scheme can be considered another fork of the PSW framework.
The lattice admits a diagonal dominant basis, and the signature process uses the PSW vector reduction
algorithm. Their secret key is a diagonal dominant basis, which is different from the original theoretical
PSW proposition (although their practical proposition is heuristically a diagonal dominant basis).
The coefficient n will denote the dimension unless mentioned otherwise. The initial DRS scheme
requires multiple other parameters to be preset (see the file api.h in the NIST submission).

Our unwillingness to use multiprecision arithmetic also restricts DRS to use a HNF as a public
key, and enforces the choice of multiple algorithms and parameters in order to fit every computations
within 64-bits. This is mostly due to the licensing and the coding restrictions the NIST enforced for
their submissions: Without them, the difference between DRS and the first proposition for a practical
PSW would be minimal. We will describe the algorithm and refer to the appendix for a MAGMA
implementation. Note that a C implementation of most relevant algorithms should be available on the
NIST website [14].

4.1. Setup

Using the same notation as the report given in [14], we briefly restate all initial algorithms.

4.1.1. Secret Key Generation

The secret key is a n× n matrix that contains vectors of equal norm, all generated by an absolute
circulant structure. Only 4 coefficients, given publicly, compose each vector: D, B, 1 and 0.

• D, the large diagonal coefficient. This is a basic component in the PSW-framework. However, D
is fixed equal to n before key generation and not ad-hoc.

• NB, the number of occurences per vector of the “big” noise {−B, B}, and is the lowest positive
number such that 2NB( n

Nb
) ≥ 2λ. The reasoning behind this parameter is to thwart combinatorial

attacks which relies on finding the position of the values B.
• B, the value of the “big” noise, and is equal to D/(2NB). It is a coefficient that is chosen large

to increase the size of the shortest vector in the norm l2. The purpose of this coefficient was to
increase the security of the scheme against pure lattice reduction attacks.

• N1, the number of values {−1, 1} per vector, is equal to D− (NBB)− ∆. ∆ is a constant that will
be defined later. The role of those small 1 is to increase the perturbation within each coefficient
position per vector when applying the PSW vector reduction algorithm.

Those parameters are chosen such that the secret key matrix stays diagonal dominant as per the
definition written previously. Algorithm 3 is the original secret key computation. The only difference
between the secret key of the first PSW instantiation and DRS is the noise. As explained in both original
works, their estimated security is based on the noise.



Information 2020, 11, 133 10 of 36

Example 2. Secret key generation. D = 6, NB = 2, B = 2, N1 = 1.

Step 1:
[

6 2 2 1 0 0
]

Random Permutation−−−−−−−−−−−−→
[

6 0 2 0 1 2
]

Step 2:
[

6 0 2 0 1 2
]

Circulant Matrix−−−−−−−−−→



6 0 2 0 1 2
2 6 0 2 0 1
1 2 6 0 2 0
0 1 2 6 0 2
2 0 1 2 6 0
0 2 0 1 2 6



Step 3:



6 0 2 0 1 2
2 6 0 2 0 1
1 2 6 0 2 0
0 1 2 6 0 2
2 0 1 2 6 0
0 2 0 1 2 6


Random Signs−−−−−−−−→



6 0 −2 0 −1 2
2 6 0 −2 0 −1
1 −2 6 0 2 0
0 −1 2 6 0 2
−2 0 1 −2 6 0
0 −2 0 1 2 6



Algorithm 3 Secret key generation

Require: A random seed x
Ensure: A secret key x, S = DId −M

1: S← 0
2: t ∈ Zn

3: InitiateRdmSeed(x) . Sets the randomness via x
4: t← [D,B, ..., B︸ ︷︷ ︸

NB

,1, ..., 1︸ ︷︷ ︸
N1

,0,...,0] . Sets initial rotating vector

5: t← RdmPmtn(t) . Shuffle non-D positions randomly
6: for i = 1 ; i ≤ n ; i = i + 1 do
7: S[i][i]← t[1] . Set diagonals coefficient D
8: for j = 2 ; j ≤ n ; j = j + 1 do
9: c← t[j] ∗RdnSgn() . Set others with random signs

10: S[i][((i + j) mod n) + 1]← c
11: return x, S

4.1.2. Public Key Generation

The lattice of the public key Pk is the same lattice as the secret key Sk. However, we provide
a different basis, which is more in tune with a classical GGH approach of “good” and “bad” basis.
Roughly speaking, we need to provide an unimodular transformation matrix T such that Pk = TSk.
We have three objectives:

• Construct T in a fast manner, from a large combinatorial set.
• Bound the coefficients of Pk, making sure computations do not overflow.
• Make sure T−1 is hard to reconstruct.

The third objective will rely on assumptions, as we cannot prove it at this point for any T (except
specific unique forms like the HNF). The first two objectives, however, are reasonably achievable.
First of all, we can easily to include permutation matrices to construct T: They respect the first two
objectives. However, in the case of diagonal matrices, it is easy to see the third point is discarded with
just permutations: A diagonal dominant structure is easy to “permute” back. The problem then will be
to intermingle row vectors and control their growth without changing the lattice generated. We here
choose the intermingling of 2 vectors to be equivalent to a multiplication of random pairs of vectors
(a 2× n matrix) by a square unimodular matrix of dimension 2 and maximum norm of 2.

The set U{+,−} of the unimodular matrices we use for the purpose of intermingling vectors is
very particular:



Information 2020, 11, 133 11 of 36

U{+,−} =

{
U+ =

[
1 1
1 2

]
, U− =

[
1 −1
−1 2

]}
and let us define the set U′{+,−} constructed from U{+,−}:

U′{+,−} =


∀i ∈ [1, n/2], Ui ∈ U{+,−} :



U0 0 . . . 0

0 U1
. . .

... 0
. . . . . .

...
. . . Un/2−1 0

0 . . . 0 Un/2




Let P ∈ Sn a permutation matrix and U ∈ U′{+,−}, and M a structured matrix we want to make

hard to recover. We can conceive a “round” of scrambling to be the transformation M← UPM. In our
case one single round of scrambling is obviously not enough. Therefore, we need to scramble multiple
times, each new round being applied with a new randomly selected tuple (U, P). Let R be the number
of such rounds. Our choice for T such that Pk = TSk is thus:

U = PR+1 ∏R
i=1 UiPi

i.e., a combination of R + 1 permutations and R intermingling of vectors.
The number of rounds R is decided upon security consideration but also efficiency reasons as

we wanted to fit every computation within 64-bits. Each round multiplies the maximum size of the
coefficients (we will denote δ) by a factor at most 3. Note that the case 3 is rare. The number R is
dependent of other parameters we will explain later.

The public key is thus by successive additions/substractions of pair of vectors (see Algorithm 4).
Note that the only difference with the original scheme [14] is that we do not store the log2 of the
maximum norm. We estimate this information to be easily computed at negligeable time. A MAGMA
code can be found in the appendix (see code Figure A2).

Algorithm 4 Public key generation

Require: S = DId −M the reduction matrix, a random seed x
Ensure: P such that L(P) = L(S) and ‖S‖∞ << ‖P‖∞ ≤ 3R‖S‖∞

1: P← S
2: InitiateRdmSeed(x) . Sets the randomness via x
3: for i = 1 ; i < R ; i = i + 1 do
4: P← RdmPmtn(P) . Shuffle the rows of P
5: for j = 1 ; j ≤ n− 1 ; j = j + 2 do
6: t← RdmSgn()
7: P[j] = P[j] + t ∗ P[j + 1] . “Random” linear combinations
8: P[j + 1] = P[j + 1] + t ∗ P[j]
9: P← RdmPmtn(P)

10: return P

The power of 2 p2 we removed from the descrition has no security impact, and is used mostly for
the verification process to make sure intermediate computation results stay within 64-bits. This type of
public key is very different from the HNF [15] suggested to use; however, the computation time of a
HNF is non-negligible. As we will see later this directly impact the signature.

4.2. Signature

Rather than checking if the successive approximation of Babai’s algorithm on a vector m of
converges [15], DRS checks if the successive approximation on a vector m can reach a point where
‖m‖1 < nD, and if ∃i, |mi| > D, reduce m further without increasing ‖m‖1.

Given the fact that the secret key is a diagonally dominant matrix, Algorithm 5 is guaranteed to
complete: forcing tr(M) = 0 on the noise, we presented a proof that ignored the convergence of the



Information 2020, 11, 133 12 of 36

reduction steps but showed the existence of a reachable valid solution for ‖m‖∞ < D. A MAGMA
code of the signing algorithm can be found in the appendix (see the code Figure A3). In a certain sense,
it uses the fact that the PSW vector reduction algorithm (Algorithm 2) does not need to converge to
find a solution. The original proof can be seen in [14]; however, we are not going to mention it here
since a better proof will be shown after modification.

Algorithm 5 Sign: Coefficient reduction first, validity vector then

Require: v ∈ Zn, (x, S) the secret seed and diagonal dominant matrix
Ensure: w with v ≡ w [L(S)], ‖w‖∞ < D and k with kP = v− w

1: w← v, i← 0, k← [0, ..., 0]
2: while ‖w‖∞ < D do . Apply the PSW vector reduction
3: q← wi/D
4: ki ← ki + q . Ensure kS = v− w
5: w← w− qS[i]
6: i← i + 1 mod n
7: InitiateRdmSeed(x) . Set randomness identical to Setup
8: for i = 1 ; i ≤ R ; i = i + 1 do . Transform kS = v− w into kP = v− w
9: k← RdmPmtn(k)

10: for j = 1 ; j ≤ n− 1 ; j = j + 2 do
11: t← RdmSgn()
12: k[j + 1] = k[j + 1]− t ∗ k[j]
13: k[j] = k[j]− t ∗ k[j + 1]
14: k← RdmPmtn(k)
15: return k, v, w

Another difference with the original PSW is the fact that it did not have a second vector k to
output in their initial scheme and thus only had to deal with the reduction part [15]. The vector k is
needed to ensure v− w ∈ L(Pk), which in the case of a HNF was not needed as the triangular form
allowed an easy verification.

Note that if we wish to fit every computation within 64-bits, then we need to enforce log2 ‖k‖ < 63.
Thus we need to bound it with previous parameters, i.e.,

k′(D−M) = v− w

‖k′‖ ≤ ‖v− w‖‖(D−M)−1‖
‖k′‖ ≤ ‖v− w‖‖D−1 1

1−M
D
‖

‖k′‖ ≤ ‖v− w‖‖D−1‖‖ 1
1−M

D
‖

‖k′‖ ≤ ‖v− w‖‖D−1‖‖‖1 + M
D + (M

D )2 + ...‖
‖k′‖ ≤ ‖v− w‖‖D−1‖(‖1‖+ ‖M

D ‖+ ‖
M
D ‖2 + ...)

‖k′‖ ≤ ‖v− w‖‖D−1‖‖ 1
1−‖M

D ‖
‖

‖k′‖ ≤ ‖v− w‖‖ 1
D−‖M‖‖

‖k′‖ ≤ ‖v− w‖ 1
∆

‖k′‖ ≤ (δ + 1) 1
∆ = δ+1

∆

therefore:



Information 2020, 11, 133 13 of 36

k = k′U−1

‖k‖ ≤ ‖k′‖‖U−1‖

‖k‖ ≤ ‖ δ + 1
∆
‖‖U−1‖

‖k‖ ≤ (δ + 1)3R

∆

thus giving us the means to fix ∆, δ, R to fit every coefficients within 64-bits.

4.3. Verification

Given a hashed message vector v, the signature (k, w), the verification is reduced to the equality
test kPk = (v− w). However, as the computation kPk might overflow (the maximum size of k depends
of δ, ∆, R, and Pk’s ones from D, R). In the following verification algorithm we recursively cut k into
two parts k = r + p2q where p2 is a power of 2 that is lower than 263/‖Pk‖, which ensures rPk is
not overflowing.

Given Pk, 2k, t = v−w and k = r + p2q with ‖r‖ < p2, we have kPk − t = c with c = 0 if and only
if kPk = v− w. Therefore

qp2Pk + rPk − t = c → qPk =
c+t−rPk

p2

and thus p2 should divide t− rPk if c = 0: If not, that means c 6= 0 and the verification returns FALSE.
Otherwise, we set k′ ← q and t′ ← t− rPk and repeat

(qPk − t−rPk
p2

= c
p2
)→ (k′Pk − t′ = c′)

where c′ becomes exactly the integer c/p2 regardless of its value (if it didn’t fail before). The verification
stops when both t′ = 0 and k′ = 0. Note that both need to be 0 at the same time, if only one of them is
0 then the verification fails.

The verification, given k, v, w, Pk is then as follow in Algorithm 6. Note that the core algorithm
could be optimized but we just give here the overall idea. A MAGMA code is provided in the appendix
(see code Figure A5) for testing purposes.

Algorithm 6 Verify

Require: v, w, k ∈ Zn, P the public key
Ensure: Checks v ≡ w [L(P)] and ‖w‖∞ < D

1: if ‖w‖∞ >= D then . Checks ‖w‖∞ < D
2: return FALSE
3: q← k
4: t← v− w
5: p2 ← log2 ‖P‖∞
6: while q 6= 0∧ t 6= 0 do . Verification per block of size p2
7: r ← q− (p2 × dq/p2c) . Get the smallest sized remainder
8: t← t− (r ∗ P)
9: if t 6= 0 mod p2 then . Check block

10: return FALSE
11: t← t/p2 . Update values for next iteration
12: q← (q− r)/p2
13: if (t = 0) Y (q = 0) then
14: return FALSE
15: return TRUE

If multiprecision integers were to be used (as using GNU Multiple Precision Arithmetic Library
(GMP)), it would not take a while loop with multiple rounds to check. Whether this is more efficient
or not remains to be tested.



Information 2020, 11, 133 14 of 36

Example 3. Verification example for p2 = 10000:

P =



−1840 2471 −382 −820 710 3048
1966 −1378 1486 1721 1430 −4090
−1998 4317 994 271 3660 2211
2729 −3460 746 1375 −680 −4662
2784 −6566 −1866 −801 −6100 −2700
3679 −3323 2144 2716 1380 −7160


k =

[
−54029 −77227 6908 −38654 −4594 50148

]
v =

[
924 232 131 692 439 694

]
w =

[
0 9 −9 −1 −1 0

]
Goal: Verify kP = v− w =

[
924 223 140 693 440 694

]
with low size computations. Set q =

k and t = v− w.
First pass:

r ← q mod p2 =
[
−4029 2773 −3092 1346 −4594 148

]
t← t− r× P =

[
−10470000 2110000 −12480000 −13170000 −17100000 25390000

]
t is clearly divisible by p2, update q, t

q← (q− r)/p2 =
[
−5 −8 1 −4 0 5

]
t← t/p2 =

[
−1047 211 −1248 −1317 −1710 2539

]
Both are non-zero. Repeat.

Second pass:
r ← k mod p2 =

[
−5 −8 1 −4 0 5

]
t← t− r× P =

[
0 0 0 0 0 0

]
t is clearly divisible by p2, update q, t and continue

q← (q− r)/p2 =
[

0 0 0 0 0 0
]

t← t/p2 =
[

0 0 0 0 0 0
]

Both are zero. End with true.

5. On the Security of the Public Key

Note that the public key of DRS relies on successive multiplication of heavily structured 2× 2
matrices. There is no concrete security reduction or previous examples in the literature to assert the
security of this type of public key. However, the main objective of the public key setup of DRS was to
“evenly distribute” the coefficients around all positions while ensuring the setup could never overflow
(on 64-bits processors). If this specific method ever finds a weakness, we could either use a HNF
which can be computed in polynomial time [30], or use other types of unimodular matrices. GGH for
example used triangular matrices to generate their keys. Other methods of sampling are welcomed;
however, to the best of our knowledge the HNF still provides optimal safety as it is unique per lattice
and an attack on the structure of the HNF is therefore, an attack on all possible basis [8].

The problem with a HNF is its computation time and the objects we need to manipulate:
Multiprecision library are often needed and computation time for cryptographically secure sizes
goes well over a dozen of seconds even on high-end computers, which is a severe flaw for a lot of
applications. While speeding up the computations for this particular type of keys might be possible,



Information 2020, 11, 133 15 of 36

it was; however, not the point of our work so far. We here focus on patching the structure of the secret
key, as this is the only angle where flaws were discovered in the literature.

5.1. Li, Liu, Nitaj and Pan’s Attack on a Randomized Version of the Initial PKC’08

In ACISP 2018, Li, Liu, Nitaj and Pan [17] presented an attack that makes use of short signatures to
recover the secret key. Their observation is that two different signatures from the same message is also
a short vector of the lattice. Then, gathering sufficient number of short vectors enable easier recovery
of the secret key using lattice reduction algorithms with the vectors generated. Their suggestion to fix
this issue is to either store previous signed messages to avoid having different signatures, or padding
a random noise in the hash function. We should note that the initial DRS scheme is not randomized as
the algorithm is deterministic and produce a unique signature per vector.

We do note that the authors of DRS suggested in their report [14] to use a random permutation to
decide the order of the coefficent reduction, and thus Li, Liu, Nitaj and Pan’s attack might apply to their
suggestion. However, the order of the coefficient reduction could also be decided deterministically by
the hashed message itself, and therefore, Li, Liu, Nitaj and Pan’s attack is not fully applicable, as this
method would produce an unique signature per message. They can still generate a set of relatively
short vectors (r1, . . . , r2) ∈ Ln of the lattice L; however, it is unclear whether the specialized version
of their attack using vectors s,(v1, . . . , vn) where s− vi ∈ L is still applicable. It seems to be easier
to recover the key when using multiple signatures from the same message as a lattice basis when
using lattice reduction algorithms rather than using random small vectors of the lattice: This could
imply that diagonal dominant basis have inner weaknesses beyond the simple instantiation of DRS.
From our understanding, the secret key matrices they generated for their tests used a noise matrix
M ∈ {−1, 0, 1}n×n, which could have had an impact in their experimentations. It is still unknown if
other noise types such as the ones in DRS or the type of noise we are about to propose are affected:
To the best of our knowledge, DRS was not quoted in their work.

We stress that we do not claim the new setup to be perfectly secure against Li, Liu, Nitaj and
Pan’s attack, we merely claim more experimentations would need to be done as of now. Furthermore,
the countermeasures proposed by Li, Liu, Nitaj and Pan also apply to those new keys, and should
be applied if one wishes for a more concrete security. The next attack, however, does not have clear
known countermeasures as of now and is the main focus of this paper.

5.2. Yu and Ducas’s Attack on the DRS Instantiation of the Initial Scheme of PKC’08

We explained in the previous section about the security of DRS against Li, Liu, Nitaj and Pan’s
attack. On the other hand, it is unclear if such a modification would add an extra weakness against
Yu and Ducas’s heuristic attack. Their attack work in two steps. The first one is based on recovering
certain coefficients of a secret key vector using machine learning and statistical analysis. The second is
classical lattice-reduction attack to recover the rest of the secret key.

For the first step, Yu and Ducas noticed that the coefficients B of the secret key and the 1 could
be distinguished via machine learning techniques [16], noticing for one part that the non-diagonal
coefficients follow an “absolute-circulant” structure, and the fact that only two types of non-zero values
exist. Based on this information, a surprisingly small amount of selected “features” to specialize a
“least-square fit” method allowed them to recover both positions and signs of all if not most coefficients
B of a secret vector. We note they did not conduct a exhaustive search on all possible methods according
to their paper thus stressing that their method might not be the best. We did not conduct much research
on the related machine learning techniques; therefore, we cannot comment much on this part as of now.

A few points were presented to explain why their technique works. One point is the difference
between the noise coefficients: It was either close to non-existant or very large, causing wave-shaped
reductions that could be detected given enough samples. The other point is that this wave-shaped
reduction is absolute-circulant, which makes the structure more obvious as this wave-shaped



Information 2020, 11, 133 16 of 36

perturbation translates in incremental order. Figure 2 is a visual representation of the cascading
phenomenon, taken directly from [16] (S is a secret key vector and w a vector to reduce).

Figure 2. Figures in the second row show the regions to which (wi, wj) in two cap regions will be
moved by reduction at index i when Si,j = −b, 0, b, respectively, from left to right.

On the second step, the recovered coefficients and their positions and signs allowed them to apply
the Kannan embedding attack on a lattice with the exact same volume as the original public key but of
a much lower dimension than the original authors of DRS based their security on, by scrapping the
known B noise coefficients. Strictly speaking, using the same notation as in the previous description of
DRS and assuming the diagonal coefficient is equal to the dimension, the initial search of a shortest
vector of length

√
B2Nb + N1 + 1 in a lattice of dimension n of determinant nn becomes a search of

a shortest vector of length
√

N1 + 1 in a lattice of dimension n − Nb of determinant nn. A visual
representation on the effect of this attack can be seen in the next section or in Example 2 where all big
red coefficients are replaced by 0 in one basis vector. The efficiency of lattice reduction techniques then
affects the evaluation of the security strength of the original DRS scheme.

Yu and Ducas conducted experiments and validated their claims using only a few dozens of
thousands of signatures per key, reducing the security of the initial submission of DRS from 128-bits
to maybe at most 80-bits, using BKZ-138. The original concept (not the instantiation) from [15],
however, still seems to be safe for now: While it has no security proof, to the best of our knowledge,
no severe weaknesses have been found so far. Furthermore, Yu and Ducas advised of some potential
countermeasures to fix DRS, i.e., breaking the structure of the particular instance that was submitted:
The deterministic approach of the number of B, 1, being limited to those two values (5 if we consider
zeroes and signs), and the “absolute-circulant” structure. They also pointed that a lack of security
proof could be problematic and gave some opinions about how one can potentially find provable
security for the DRS scheme.

We invite readers to read their work: It is possible that new techniques relying on machine
learning could apply to all lattice-based cryptosystems beyond DRS by tweaking their process for each
specific structure.

In the following section, we provide a countermeasure which follows some of the
recommendations given by Yu and Ducas as breaking the secret key noise structure and giving
some statistical heuristic, while still preserving the original idea given in PKC 2008 [15].



Information 2020, 11, 133 17 of 36

6. New Setup

We do not change any algorithm here aside the setup of the secret key: The public key generation
method is left unchanged, along with the signature and verification. Compared to the old scheme, this
new version is now determined by less parameters, which leave 6 of them using the previous DRS:
The dimension n, a random generator seed s, a signature bound D, a max norm for hashed messages δ,
a sparsity parameter ∆ that we always set to one, and R a security parameter determining the number
of multiplication rounds to generate the public key.

We choose random noise among all the possible noises vectors which would still respect the
diagonal dominant property of the secret key. This choice is following Yu and Ducas’s suggestions on
breaking the set of secret coefficients, the “absolute-circulant” structure of the secret key, and allowing
us to provide statistical evidence. Roughly speaking, we aimed to transform the following structure of

15 0 0 0 0 0
0 15 0 0 0 0
0 0 15 0 0 0
0 0 0 15 0 0
0 0 0 0 15 0
0 0 0 0 0 15


+

��
��

�
��

�
��

�
��

��HH
HHH

HHH
HHH

HHHH



0 5 1 0 −1 1
−1 0 −5 1 0 −1
−1 1 0 5 1 0
0 1 1 0 5 −1
1 0 −1 1 0 −5
5 −1 0 1 −1 0


to something “less-structured”, more “random” but still diagonal dominant like

15 0 0 0 0 0
0 15 0 0 0 0
0 0 15 0 0 0
0 0 0 15 0 0
0 0 0 0 15 0
0 0 0 0 0 15


+



4 −2 0 3 −1 4 = 14
−2 3 −1 0 −8 0 = 14
6 1 2 −1 1 3 = 14
0 0 −4 3 2 3 = 12
−3 2 −1 −3 −1 3 = 13
1 −1 2 −4 −4 2 = 14


While we want to have random noise, we must ensure we can still sign every message and thus

guarantee the diagonal dominant structure of our secret key. Hence, the set of noise vectors we need to
keep are all the vectors v ∈ Zn that have a taxicab norm of ‖v‖1 ≤ D− 1. Let us call that set Vn.

Sampling from Vn, however, is no trivial task. However, preceding work in the academic literature
allows us to:

1. Count all points of Zn inside a n-ball for the l1-norm, i.e., |Vn|. [31]
2. Know how many of them have a fixed amount of zeroes. [31]
3. Sample uniformly from the n-simplex, fixing a certain amount of zeroes. [32]

Therefore, the plan is the following:

1. Creates a cumulative frequency distribution table from [31].
2. Use the table to sample uniformly a number of zeroes.
3. Sampling uniformly within the n-ball of with a fixed number of zeroes.

This new setup will also change the bounds used for the public key, as the original DRS authors
linked several parameters together to ensure computations stay within 64 bits. However, our paper
has a more theoretical approach and we do not focus on the technical implementations.

6.1. Picking the Random Vectors

We are aiming to build the new noise matrix M, which is a n× n matrix such that M ∈ Vn
n . In

that regard, we construct a table we will call T with D entries such that

T[i] = #vectors v ∈ Vn with i zeroes.



Information 2020, 11, 133 18 of 36

This table is relatively easy to build and does not take much time, one can for example use the
formulas derivated from [31,33].

From this table, we construct another table TS such that TS[k] = ∑k
i=0 T[i].

The generation algorithm of the table TS, which we will use as a precomputation for our new
setup algorithm can be seen in Algorithm 7.

Algorithm 7 Secret key table precomputation

Require: all initial parameters
Ensure: TS the table sum

1: m← min(n, D)
2: T ← {1}m+1

3: TS ← {1}m+1

4: for j = 2 ; j ≤ D ; j = j + 1 do . Loop over the norm
5: for i = 2 ; i ≤ m + 1 ; i = i + 1 do . Loop over possible non-zeroes
6: x ← 2i−1( n

i−1)(
j−1
i−2)

7: T[m + 1− i]← T[m + 1− i] + x
8: for i = 1 ; i ≤ m ; i = i + 1 do . Construct array TS from T
9: T[i + 1]← T[i + 1] + T[i]

10: TS ← T
11: return TS

Let us denote the function Z(x)→ y such that TS[y− 1] < x ≤ TS[y]. Since TS is trivially sorted
in increasing order Z(x) is nothing more than a dichotomy search inside an ordered table. If we
pick randomly x from [0; TS[D− 1]] from a generator with uniform distribution g()→ x then we got
Zero()→ Z(g(x)) a function that selects uniformly an amount of zeroes amount all vectors of the set
Vn, i.e.,

Zero()→ #zeroes in a random v ∈ Vn

Now that we can generate uniformly the number of zeroes we have to determine the coefficients
of the non-zero values randomly, while making sure the final noise vector is still part of Vn. A method
to give such a vector with chosen taxicab norm is given in [32] as a correction of the Kraemer algorithm.
As we do not want to choose the taxicab norm M directly but rather wants to have any random norm
available, we add a slight modification: The method in [32] takes k non-zero elements x1, . . . , xk such
that xi ≤ xi+1 and forces the last coefficient to be equal to the taxicab norm chosen, i.e., xk = M.
By removing the restriction and using xk ≤ D, giving the amount of non-zero values, we modify the
method to be able to take over any vector values in Vn with the help of a function we will call

KraemerBis(z)→ random v ∈ Vn

such that v has z zeroes which is described in Algorithm 8.

Algorithm 8 KraemerBis

Require: all initial parameters and a number of zeroes z
Ensure: a vector v with z zeroes and a random norm inferior or equal to D

1: v ∈ Nn

2: 0 ≤ x0 < x1 < . . . < xn−z ≤ D . Pick randomly n− z + 1 elements
3: for i = 1 ; i ≤ n− z ; i = i + 1 do
4: v[i]← xi − xi−1
5: for i = n− z + 1 ; i ≤ n ; i = i + 1 do
6: v[i]← 0

return v

With both those new parts, the new setup algorithm we construct is presented in Algorithm 9
using Kraemer bis. We note that in our algorithm, the diagonal coefficient in the secret key is not
guaranteed to be equal to the bound used for the maximum norm of the signatures. Nevertheless, we



Information 2020, 11, 133 19 of 36

will show that the termination is still ensured in Section 6.2. This heavy setup naturally affects the
speed of the DRS setup, as we noticed in our experiments as shown in Section 6.5.

Algorithm 9 New secret key generation

Ensure: all initial parameters and another extra random seed x
Require: x, S the secret key

1: S← DId
2: t ∈ Zn

3: InitiateRdmSeed(x) . Set randomness
4: for i = 1 ; i ≤ n ; i = i + 1 do
5: Z ← Zero() . Get the number of zeroes
6: t← KraemerBis(Z)
7: for j = 1 ; j ≤ n− Z ; j = j + 1 do . Randomly switch signs
8: t[j]← t[j]×RdmSgn()
9: t← RdmPmtn(t) . Permutes everything

10: S[i]← S[i] + t
11: return x, S

6.2. A Slightly More General Termination Proof

The proof stated in the DRS report on the NIST website [14] was considering that the diagonal
coefficient of S = DId + M stayed equal to the signature bound (i.e., tr(M) = 0), which is not this case.
We show here that the reduction is still guaranteed nevertheless. Suppose that some coefficients of
the noise matrix M are non-zero on the diagonal. Re-using for the most part notations of the original
report, where:

• m is the message we want to reduce, which we update step by step
• M is the noise matrix (so Mi is the i-th noise row vector).
• D is the signature bound for which the condition ‖m‖∞ < D has to be verified. We note di the i-th

diagonal coefficient of the secret key S.

Obviously, the matrix will still be diagonal dominant in any case. Let us denote di the diagonal
coefficient Si,i of S = DId −M.

If D > di we can use the previous reasoning and reduce ‖mi‖1 to ‖mi‖1 < di < D, but
keep in mind we stop the reduction at ‖mi‖1 < D to ensure we do not leak information about
the noise distribution.

Now di > D for some i: Reducing to |mi| < di is guaranteed but not sufficient anymore as we can
reach d < |mi| < di ≤ D + ∆ < 2d. Let us remind that ∆ = D−∑n

j=1 |Mi,j|, where ∆ is strictly positive
as an initial condition of the DRS signature scheme (both on the original submission and this paper),
di = D + c where c = |Mi,i|.

Without loss of generality as we can flip signs, let us set mi = D + k < di = D + c with k ≥ 0 the
coefficient to reduce. Substracting by Si transforms

mi ← (D + k)− di = (D + k)− (D + c) = k− c < 0

with D > c > k ≥ 0. Therefore, the reduction of ‖m‖1 without the noise is

‖m‖1 ← ‖m‖1 − (D + k) + (c− k) = ‖m‖1 − (D− c)− 2k.

but the noise contribution on other coefficients is at worst (D− ∆)− c thus

‖m‖1 ← ‖m‖1 − (D− c)− 2k + (D− c− ∆). ‖m‖1 ← ‖m‖1 − 2k− ∆ = ‖m‖1 − (2k + ∆).

where 2k + ∆ > 0. Therefore, the reduction is also ensured in the case di > D.



Information 2020, 11, 133 20 of 36

6.3. On Exploiting the Reduction Capacity for Further Security

Remark that the proof hints at the fact we can actually lower the norm ‖m‖1 of some vector m to
some value lower than D. It is easy to see that when M = 0 and S = DId, every coefficient of m can be
reduced to ‖m‖1 < D/2 in exactly n iterations of the PSW vector reduction algorithm. Clearly, there
should be some gap between the bound D and the amount of noise in M that can be filled. If we do fill
that gap, we can extend the number of available keys to use by extending the set of applicable noise
and hopefully making cryptanalysis harder. While it is hard to find examples in a “printable” size
where the PSW Conjecture (Conjecture 1 in Section 3.2) applies while the DRS reduction proof does
not, it becomes easier as the dimension grows. Using the code in Figure A6 gives us an example on the
gap between the PSW conjecture and the DRS proof. The output is shown in Figure 3

1 Random Seed is 1515430315
2 Diagonal Value D is 51
3 Dimension N is 51
4

5 Spectral Radius
6 0.491115563770558861830554360652
7 Minimum/Maximum l1 norm of noise vectors
8 59 94
9 Average l1 norm of noise vectors

10 76

Figure 3. Example output where the DRS bound fails but the PSW bound passes

We can see in Figure 3 that every noise vector comfortably goes over the DRS bound (here D = 51)
while ρ(MD−1) ≈ 0.49 < 0.5. Note that the opposite is also true: By changing the noise to enforce the
respect of the DRS bound (commenting line 14 and uncommenting line 16 of code in Figure A6), we
can obtain the inverted result as seen in Figure 4.

1 Random Seed is 1515430315
2 Diagonal Value D is 51
3 Dimension N is 51
4

5 Spectral Radius
6 0.510708190604545795839616917492
7 Minimum/Maximum l1 norm of noise vectors
8 17 32
9 Average l1 norm of noise vectors

10 25

Figure 4. Example output where the PSW bound fails but the DRS bound passes

One part of an explanation to this phenomenon is that the sign does not affect the DRS bound
while it does heavily affect the PSW bound. If weakness appears on this new DRS instantiation due to
the noise being too low, intuitively we think increasing the bound of the n-dimensional ball from which
we uniformly sample the noise should still lead to most keys being usable w.r.t the PSW-conjecture.
However, we discuss in the following part methods to efficiently generate keys for PSW that are proven
to respect the PSW conjecture. While they do seem to be relatively simple, establishing instances of a
general PSW scheme beyond a noise M ∈ {−1, 0, 1}n,n seems to have been lacking in the literature.
We hope this can help close the gap between the conclusions of DRS and PSW.



Information 2020, 11, 133 21 of 36

6.4. Ensuring the Termination of PSW

In this subsection we present simple ways for the PSW approach to be more practical. A first
example can be found as early as in 1965 [34]. Let us rephrase the (among others) theorem given by
Derzko and Pfeffer:

Theorem 3 (The 4th Derzko-Pfeffer theorem). Let M, S ∈ Cn,n where S is invertible. Then the following is
always true:

ρ(M) ≤ (1− 1/n)1/2{(ε(SMS−1))2 − |tr(M)|2/n}+ |tr(M)|/n

where ε(A) =
√

∑n
i,j=1 |Mi,j|2 is the Froebenius norm.

Now, using this theorem, let us attempt at constructing a noise matrix M. Setting tr(M) = 0 on
the noise, and fixing S as the canonical basis we obtain:

ρ(M) ≤ (1− 1/n)1/2 ∑n
i,j=1 |Mi,j|2

Now, we can rely on PSW conjecture forcing ρ(MD−1
Id ) < 1/2 using a diagonal matrix DId:

2(1− 1/n)1/2 ∑n
i,j=1 |Mi,j|2 ≤ D

i.e., given a fixed dimension n and a fixed value D, we can properly bound the values of the noise
matrix M such that the PSW Conjecture is respected. This can be done by carefully distributing the
coefficients outside the diagonal.

However, the first thing to notice is that the bound is worse than the one given in DRS in most
cases: The DRS bound is per vector, and this one is per matrix. Quick comparisons between the total
sum of matrix coefficients will show the DRS bound is almost always superior.

Another theorem we could use on spectral radius is Gelfand’s formula, which was also used
in [15]:

Theorem 4 (Gelfand’s spectral radius formula). ρ(M) = limk→∞ ‖Mk‖1/k.

An extreme case would then to fix the limit to 0. This then warrants the uses of nilpotent matrices,
i.e., matrices M ∈ Zn×n such that ∃k > 0, Mk = 0. We then need to have some form of generation for
nilpotent matrices. One easy group of nilpotent matrices is the following:

For M =


M1 . . . M1

M2 . . . M2
... . . .

...
Mn−1 . . . Mn−1

−∑n−1
i=1 Mi . . . −∑n−1

i=1 Mi

, M2 = 0.

As the values Mi can be as large as wanted in this particular family, the DRS bound can be rapidly
overblown, especially by the last row. We could also use other families of nilpotent matrices and
combine them: The sum of nilpotent matrices being nilpotent, the space of possible noise could be
large enough to ensure the security of cryptographic applications. However, it is unclear if using such
matrices will allow efficient reductions: Large coefficients might hinder the convergence, and reaching
a valid signature (if possible) might take unacceptable times for real-life cryptography. Furthermore,
let us stress that the PSW-vector reduction is an approximation of Babai’s rounding off algorithm:
Thus, if the initial basis is “bad”, then so could be the set of possible reduction results, i.e., having a
noise with a zero-valued spectral radius is not enough. Therefore, a basis that is not diagonal dominant
and have poor geometrical properties might not be suitable either.

Other approaches would be to remember that the spectral radius is the biggest eigenvalue
(see Definition 17). Then we can attempt to use simple properties of the eigenvalues and control



Information 2020, 11, 133 22 of 36

them to fix the exact value of the spectral value rather than bounding them. Let us look at the
following: If M is a noise matrix, then ρ(M) is the biggest value (in norm) that cancel the polynomial
in P(X) = det(M− XId). The literature on eigenvalues and their computations is extremely large [35]:
Bartel–Stewart [36], Hessenberg-Schur [37], Householder [38], etc. It might be possible to reverse
those methods and their subsequent works to construct a class of noise matrices respecting the
PSW-conjecture. We also leave those studies for further work, as it likely requires much more studies.
Overall, merging those approaches and the DRS approach into a uniform set of usable keys seems to
be a widely open research question, let alone the computational practicability of those lattice classes
(or subclasses).

For now, however, we provide practical efficiency tests on our new patch in the next subsection.

6.5. Setup Performance

Compared to the initial NIST submission where the code was seemingly made for clarity and not
so much for performance, we wrote a modified version of DRS using NIST specifications and managed
to have much higher performance. However, most of the performance upgrade from the initial code
have nothing much to do with the algorithms of the DRS scheme: We did notice that most of the time
taken by the DRS initial code was used for the conversion from the character arrays to integer matrices
and vice-versa, which they had to do to respect the NIST specifications: The algebraic computations
themselves were actually reasonably fast, considering the size of the objects manipulated.

This is the reason why we decided to isolate the secret matrix generation code from the rest of the
initial original DRS code, in order to have a fair comparison between our own secret key generation
algorithm to theirs. In that regard we choose to compare similar matrix sizes instead of similar security,
as initial security estimates for the DRS submission were severely undermined by Yu and Ducas’s
recent discoveries and thus would lead to comparing efficiency on matrices with massively different
sizes. Therefore, we are making tests on the initial parameters of the DRS scheme. Looking purely at
the secret key generation, we are indeed much slower, as shown in Table 1.

Table 1. Secret key generation time in milliseconds (average for 104 keys).

Dimension 912 1160 1518

OldDRS 2.871 4.415 7.957

NewDRS 31.745 63.189 99.392

Note that we use the options −march = native and −O f ast which led us to use AVX512
instructions and other gcc optimization tweaks. The new setup is barely parallelizable as there
is almost no code that can be vectorized which also explains the huge difference. While we wish
to make a comparative performance to all other similar approaches, it seems the initial approach
of PSW did not trigger further research and it remains an open topic, leaving DRS the only known
fork of PSW to the best of our knowledge. Furthermore, timings were not provided in the original
paper [15]: A figure illustrating the evolution of the number of reduction loops was deemed sufficient
to demonstrate its efficiency back in 2008.

Moreover, note that in theory, sampling randomly using our method should not be a problem
while growing the size of our keys if we only consider the time complexity. The problem, however,
concerns the amount of data to store (and the related memory accesses). The size of Vn grow more
than exponentially and thus storing all related exact sizes could pose a problem for larger dimensions.
A solution to drastically reduce the memory requirements would be to crop the extremely unlikely cases
and round the remaining results, but so far this does not seem to be necessary for our largest parameters.



Information 2020, 11, 133 23 of 36

7. Security Estimates

The goal of this section is to evaluate the security of the scheme. First computationally by
measuring the effectiveness of heuristic key-recovery attacks, and then by discussing the potential
structural weakness of choosing diagonally dominant matrices as our key structure.

7.1. BDD-Based Attack

Currently, the most efficient way to perform this attack will be, first, to transform a BDD problem
into a uSVPγ (Kannan’s Embedding Technique [39], assuming v = (0, . . . , 0, d, 0, . . . , 0), and use lattice
reduction techniques on the lattice spanned by [v|1] and the rows of [B|0]. By using this method,
we obtain a uSVP with a gap (

v 1
B 0

)
and second to solve this new uSVPγ using lattice reduction algorithm. By using this method, we
obtain a uSVPγ with a gap

γ ≈
Γ
( n+3

2
) 1

n+1 Det(L)
1

n+1

√
π‖M1‖2

≈
Γ
( n+3

2
) 1

n+1 dn 1
n+1

√
π‖M1‖2

. (1)

Lattice reduction methods are well studied and their strength are evaluated using the Hermite
factor. Let L a d−dimensional lattice, the Hermite factor of a basis B of L is given by ‖B[1]‖2/det(L) 1

n .
Consequently, lattice reduction algorithms strengths are given by the Hermite factor of their expected
output basis. In [21], it was estimated that lattice reduction methods solve uSVPγ with γ a fraction
of the Hermite factor. We will use a conservative bound of 1

4 for the ratio of the uSVPγ gap to the
Hermite factor. As we do not have a fixed Euclidean norm for our secret vectors we have to rely on
the approximates given to us by our new random method in sampling noise vectors Mi. In our case,
we know that for any vector v ∈ Zn we have ‖v‖2 ≥ ‖v‖1√

n , and our experiments (as seen below) allow
us to use a higher bound

‖v‖2 '
√

2 ‖v‖1√
n .

7.2. Expected Heuristic Security Strength

Different papers are giving some relations between the Hermite factor and the security parameter
λ [40,41] often using BKZ simulation [42]. Aiming to be conservative, we are to assume a security of
2128, 2192, 2256 for a Hermite factor of 1.006d, 1.005d, 1.004d, respectively. We set D = n, pick hashed
messages h(m) such that log2(‖h(m)‖∞) = 28, R = 24 and ∆ = 1.

Table 2 parameters have been choosen to obtain a uSVPγ gap (Equation (1)) with γ < δd+1

4 for
δ = 1.006, 1.005, 1.004. Our experiments show us that the distribution of zeroes among sampled
noise vectors form a Gaussian and so does the Euclidean norm of noise vectors when picking our
random elements x, xi uniformly. Here we include below the distribution of 106 randomly generated

noise vectors v with the x-axis representing f (v) = b100
√
‖v‖2

2
D c where D is the signature bound

(see Figure 5).

Table 2. Parameter sets.

Dimension ∆ R δ γ 2λ

1108 1 24 28 < 1
4 (1.006)d+1 2128

1372 1 24 28 < 1
4 (1.005)d+1 2192

1779 1 24 28 < 1
4 (1.004)d+1 2256



Information 2020, 11, 133 24 of 36

Figure 5. f (v) distribution for n = 1108, 1372, 1779 and D = n− 1 over 106 samples.

We can see that the generated noise vectors follow a Gaussian distribution as far as their norms
are concerned, and we believe it makes guessing values much harder for an attacker should they
choose to focus on finding specific values or vectors (as it was the case in the original attack from
Yu and Ducas [16]). We also conducted experiments, using BKZ20 from the fplll library [43] (see
Figure 6). Without any surprise we notice our new setup is seemingly resistant around dimension 400,
where conservative bounds led us to believe the break happen until approximately dimension 445.
However the sample size is relatively small (yet computationally expensive to obtain) and thus should
not be taken as a proof value, but rather as a heuristic support against heuristic attacks.



Information 2020, 11, 133 25 of 36

370 380 390 400
0

20

40

60

80

100

365 370 375 380 385 390 395 400 405
Dimension

Figure 6. Percentage of key recoveries of BKZ20 (20 sample keys/dim).

7.3. A Note on the Structure of Diagonally Dominant Lattices

Since there has been a lot of discussion about provably secure schemes, especially for lattice-based
schemes, one of the raised “flaws” of the DRS scheme compared to most of the other lattice-based
submissions to the NIST PQC competition was the lack of a security proof. This subsection does
not provide a security proof for this particular instantiation of the DRS scheme; however, it aims to
increase the confidence on the structure of diagonal dominant lattices. To do so, we are going to define
a “new” problem, based on a previously well-known problem.

Definition 19 (D-Pertubated Shortest Basis Problem (PSBPD)). Let P ∈ Zn×n such that P =

{P1, . . . , Pn} is known and a solution of SBP on L(P).
Given a known bound D and an unknown matrix M = {M1, . . . , Mn} ∈ Zn×n s.t:

• ∀i ∈ [1, n], ‖Pi‖ > D ≥ ‖Mi‖
• ∀i ∈ [1, n], ‖Pi + Mi‖ > ‖Pi‖+ ‖Mi‖

We set PM = {P1 + M1, . . . , Pn + Mn}.
Solve SBP on L(PM) (from a HNF or a different basis).

The idea here is to determine whether it is hard or easy to recover some randomly added noise on
a basis that we know is the shortest basis, and even to recompute a new shortest basis from a “close”
one. It is clear that this problem is “easier” to the original SBP problem. However, how much easier is
still a mystery: It is possible they are actually equivalent but as far as we know we have not seen any
evidence to prove it. This problem is known in academic folklore, although in an informal way and
probably with slightly different statements. The inequalities we state specialize in our “special” SBP
problem allow us to exclude several problematic cases:

• ‖Pi‖ > D allow us to exclude P = 0 where the problem is just equivalent to SBP.
• D ≥ ‖Mi‖ prevents insanely large M where D does not matter.
• ‖Pi + Mi‖ > ‖Pi‖+ ‖Mi‖ prevents heuristically easier cases.

The actual question here would be to determine whether the problem is easy or hard for specific
structures and distributions of P and values of D, which we currently do not know and probably
require a much deeper work. Heuristically, since P is known and M is bounded, the best way to recover
M is to use Kannan’s extension technique and solve uSVPγ where some coefficients are known, i.e.,
the coefficients of P(Note: This is exactly how the heuristic security of DRS was evaluated). To the best



Information 2020, 11, 133 26 of 36

of our knowledge, there is, however, no guarantee that recovering M would actually solve PSBPD:
It just recovers a basis “close” to the solution as M should be “shorter” than the known part P.

Note that if D = λ1/2 (We can assume λ1 = P1, however, this is not always true), then recovering
M can be heuristically reduced to solving n successive instances of BDD, namely one per vector of P.
We also stress that we did not define a particular norm here. To the best of our knowdlege, there is no
work in the literature to determine if solving n instances of BDD with non-trivial relations between
those instances is actually as hard as than solving one instance of BDD with no particular structure.
It is unclear how many instantiations of lattice-based cryptosystems are concerned by this problem.
Historically, it seems that whenever a structural weakness have been found, it was mostly due to the
structure of the variable part M rather than the fixed part P. The first structural attack on GGH seems
to reflect that [6] and so does the recent attack on DRS [16]: It does not seem there was historically much
concern on the public part P. This could be either credited on the luck (or foresight) of cryptographers,
or maybe there is an underlying relation we have yet to see.

However, we stress again that there might be a significant difference between a randomly sampled
basis (under any distribution) and a basis constructed from known coefficients and bounded noise.
As far as DRS is concerned, recovering M and solving PSBPD is considered to be the same problem.
The way instantiations of DRS are created, recovering the secret key in DRS is actually solving very
special instantiations of PSBPD.

Property 1 (Hardness of DRS key recovery). Recovering the secret key S = DId + M of a DRS lattice is
heuristically the same as solving PSBPD with P = DId on L(S) for the norm l1.

Proof. Substitute P by DId. As all vectors of DId are trivially orthogonal it follows that DId is the
SBP solution to L(DId). All vectors of M are lower than D in l1-norm by construction (a DRS key is
diagonal dominant). Heuristically, the secret key is the shortest basis of the public key lattice, thus
giving us the result.

Let us stress again that DRS is not equivalent to the general PSBPD: DRS instantiations are specific
and could potentially be broken in polynomial time, but even then it would not affect the hardness of
PSBPD. The original GGH also uses special instances of PSBPD: It uses keys S = (

√
n)Id + M where

M ∈ [−4, 4]n×n, i.e., PSBPD with norm l∞, D = 4 and P = (
√

n)Id, and was yet to be “asymptotically”
broken as far as key-recovery attacks were concerned. To the best of our knowledge, those attacks still
run in exponential time. We would like to stress that this section actually did not cover the message
security as [15] actually points out that a full-key recovery is not necessary to forge signatures: As long
as an attacker can find a PSW-good basis then the PSW vector reduction algorithm could converge.

This trivial analysis, however, showed that the security of key recovery attacks is, as expected,
based on the noise and hopefully removes the concern about having large diagonal coefficients in a
basis. If further work show that a noise matrix M is provably hard to recover under certain assumptions
for PSBPD, then constructing DRS under those assumptions could make it provably secure (although
this only concerns “exact” key-recovery attacks).

Note that, just like the attacks on GGH, the key recovery attack of Yu and Ducas is enabled by
the recovery a large amount of tuples “messages-signatures” from the same key. The problem we just
defined does not thwart the attack, as this is a problem related on a possible statistical leak given by
specific noise coefficients, all the while using a particular signing algorithm. In short, an interesting
research to thwart statistical heuristic attacks would be to find some form of pre-selection or/and
noise structure where statistical independency can be proven to hold for each signature: from our
understanding, this is actually a direction Yu and Ducas suggested to pursue [16]. It is possible that the
leak found by Yu and Ducas can be patched by modifying the signing algorithm without modifying
the noise as we did. As of November 2019, an extended version of [16] available in [16] reduces the
security of our original contribution [44]. While the updated attack is clearly not as strong as the
previous attack, it still provides further motivation to deepen the research.



Information 2020, 11, 133 27 of 36

7.4. A Small Density Comparison with Ideal Lattices

Using an ideal lattice as a noise reduce the available set of secret keys drastically. The main point
of ideal lattices is to reduce the size of the public key and the computation costs. In that regard, given a
principal ideal lattice L(p, f ), f should be public for efficient computations to be available. pi mod f
by iterating over i should give the rest of the noise beyond the first vector. Assuming f is anti-cyclic,
or chosen in a way where pi mod f has a taxicab norm lower than some constant D for all i, then the
noise structure is decided by the choice of the first vector p.

Basically, compared to an ideal lattice, we pick n− 1 more vectors randomly. Which means that
while the choice for p is at most ‖Vn‖ possibilities, our noise set has a factor ‖Vn‖n−1 over ideal lattices.
Vn being a set that grows more than exponentially as n increase, we can safely assume our noise set
has a higher density than ideal lattices. It is unclear, however, if the density is exponentially vanishing
for a fixed determinant as it is the case of ideal lattices: We do not know how to fix the determinant of
a newly sampled DRS lattice.

Nevertheless, we believe it is safe to claim that the structure used here is safer than the structure
provided by ideal lattices which are currently quite popular. Our reasoning should also apply for
module lattices in a lesser extent (but with a similar asymptotic scale).

8. Conclusions and Open Questions

We presented in this paper a new method to generate secret keys for the DRS scheme, providing
experimental results on the statistical distribution of the keys generated. We demonstrate that our
new approach is sufficient to improve DRS to be secure against machine learning attacks as reported
earlier in the literature. However, the secret matrix is still diagonal dominant and it remains an
open question whether there exists a tight security proof to a well-known problem or if there is any
unforeseen weaknesses to diagonal dominant lattices as both Li, Liu, Nitaj and Pan’s [17] and Yu and
Ducas’s attacks [16] could lead to. The open questions for improvement stated in the original DRS
report are also still applicable to our proposed iteration. Overall, we showed that both efficiency and
security of such schemes are related to the noise more than the diagonal coefficients. Given a fixed
diagonal, [16,17] showed weakness on particular noise sets. It is unclear if our choice of uniform
sampling in the n-dimensional ball is provably secure, but we stress that the literature is very scarce
concerning this lattice family and thus lots of open questions remain.

On the technical side, our method to generate random samples is also slow and might need
improvement. It also impacts the setup as mentioned earlier, as keeping the current DRS parameters
one can see the possibility to overflow and go over 64 bits, even though the probability is extremely
low; thus, changing the public key generation is also left as an open question. The initial DRS scheme
was very conservative not only on their security but also the manipulated integer size bounds: One
might use heuristics to drastically increase the memory efficiency of the scheme and allow some small
error probability, for example.

Author Contributions: These authors contributed equally to this work. If distinctions have to be made,
bigger shares could be attributed for: Software, A.S.; formal analysis, T.P.; funding acquisition, W.S.; supervision,
T.P., W.S. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: We would like to thank Yang Yu, Léo Ducas and the anonymous reviewers for useful
comments and suggestions.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

This appendix figures various code snippets, that people can use hopefully to test algorithms with
MAGMA. While MAGMA is not free and open-source unlike SAGEMATH, OCTAVE, PARI-GP and
other Computer Algebra System (CAS), it comes with a free online editor which is quite handy [45]



Information 2020, 11, 133 28 of 36

(note that at the time of testing a https connection is not available). We hope this can allow anybody to
test computations with just an access to a web browser and an internet connection. This is especially
useful for people without having access to admin rights in a public library computer or lightweight
laptops with small processing power. To adapt to any screen size, you can change the size of the cells
for input/output in the browser by dragging the lower-left corner.

Note that PARI-GP also has an online editor [46], but we have not tested much of it (yet). It seems
MAGMA online does not require Javascript to be active and works well on mobile devices. PARI-GP
needs Javascript. At the time of this thesis, MAGMA restricts “online” computations to 120 s, while
PARI-GP does not provide a limit (but slow your browser down). That being said, if computations
that lasts more than 2 min are needed, then using an online browser is probably not adapted: feel free
to use any other CAS then.

1 // INPUT: ’’v’’ a vector to reduce below ’’D’’ by ’’S’’ the reduction matrix
2 // OUTPUT: Write in ’’w’’ the reduced form of ’’v’’ by ’’S" undil "w < D"
3 ReduceDiag:=procedure(~w,~v,~S,D)
4 /* Initial values */
5 NbCols:=Ncols(S);
6 i:=1;
7 w:=v;
8

9 /* Reduce */
10 while Max([Abs(w[i]) : i in [1..NbCols]]) ge D do
11 q:=Round(w[i]/S[i][i]);
12 w:=w-(q*S[i]);
13 if i eq NbCols then i:=0; end if;
14 i:=i+1;
15 end while;
16 end procedure;

Figure A1. Magma code for Plantard–Susilo–Win (PSW)-reduction.



Information 2020, 11, 133 29 of 36

1 /* Number of "obfuscation" rounds */
2 Rounds:=10;
3 /* Set P as the result of the R obfuscation of S with seed s */
4 PublicKeyDRS:=procedure(~P,~S,~s)
5 /* Load constants */
6 NbRows:=Nrows(S);
7 Grp:=Sym(NbRows);
8 P:=S;
9 SetSeed(s);

10

11 /* Apply R rounds of obfuscations */
12 for i:=1 to Rounds do
13

14 /* Random permutation */
15 P:=PermutationMatrix(Integers(), Random(Grp))*P;
16

17 /* Multiplication by unimodular matrix */
18 for j:=1 to NbRows-1 by 2 do
19 sgn:=2*Random(1)-1;
20 P[j]:= P[j] + (sgn * P[j+1]);
21 P[j+1]:= P[j+1] + (sgn * P[j]);
22 end for;
23

24 end for;
25 P:=PermutationMatrix(Integers(), Random(Grp))*P;
26 end procedure;

Figure A2. Magma code for the public key generation of Diagonal Reduction Signature (DRS).



Information 2020, 11, 133 30 of 36

1 /* given a DRS secret key/seed S/s, find kP=v-w with w < D */
2 ReduceDRS:=procedure(~k,~w,~v,~S,~s,D)
3 /* Initialize constants */
4 NbCols:=Ncols(S);
5 NbRows:=Nrows(S);
6 Grp:=Sym(NbRows);
7 P:=S;
8 i:=1;
9 w:=v;

10 k:=Vector([0 : i in [1..NbCols] ]);
11

12 /* Reduce the vector to kS=v-w */
13 while Max([Abs(w[i]) : i in [1..NbCols]]) ge D do
14 /* Depending on the noise used, switch between division by D or the diagonal coefficient of the whole matrix */
15 //q:=Round(w[i]/S[i][i]);
16 q:=Round(w[i]/D);
17 k[i]:=k[i]+q;
18 w:=w-(q*S[i]);
19 if i eq NbCols then i:=0; end if;
20 i:=i+1;
21 end while;
22

23 /* Transform kS=v-w to kP=v-w */
24 SetSeed(s);
25 for i:=1 to Rounds do
26 k:=k*Transpose(PermutationMatrix(Integers(), Random(Grp)));
27 for j:=1 to NbRows-1 by 2 do
28 sgn:=2*Random(1)-1;
29 k[j+1]:= k[j+1] - (sgn * k[j]);
30 k[j]:= k[j] - (sgn * k[j+1]);
31 end for;
32 end for;
33 k:=k*Transpose(PermutationMatrix(Integers(), Random(Grp)));
34 end procedure;

Figure A3. Magma code for the signature of DRS.



Information 2020, 11, 133 31 of 36

1 /* put in res the max norm of mat with ln lines and col coloumns*/
2 MaxMatNorm:=procedure(~res,~mat,~ln,~col)
3 res:=0;
4 for i:=1 to col do
5 tmp:=0;
6 for j:=1 to ln do
7 tmp:=tmp+Abs(mat[j][i]);
8 end for;
9 res:=Maximum(res,tmp);

10 end for;
11 end procedure;

Figure A4. Magma code for computing the max norm of a matrix.



Information 2020, 11, 133 32 of 36

1 /* Put in Bool whether kP=v-w and w < D */
2 VerifyDRS:=procedure(~Bool,~k,~w,~v,~P,D)
3 /* Initialize constants */
4 NbCols:=Ncols(P);
5 NbRows:=Nrows(P);
6 /*Use B:=2 for speed, B:=10 is for visual representation*/
7 B:=10;
8 Zero:=Vector([0 : i in [1..NbCols]]);
9 End:=true;

10

11 /* Initialize loop parameters */
12 q:=k;
13 t:=v-w;
14 modulo:=0;
15 MaxMatNorm(~modulo,~P,~NbRows,~NbCols);
16 modulo:=B^Floor(Log(B,modulo));
17

18 /* Checks the max norm */
19 Bool:=Max([Abs(w[i]) : i in [1..NbCols]]) lt D;
20 if (not Bool) then End:=false;Bool:=false; end if;
21

22 while Bool do
23 /*Check r <- load part of q */
24 r:=Vector([Round(q[i]/modulo) : i in [1..NbCols]]);
25 r:=Vector([q[i] - (r[i]*modulo) : i in [1..NbCols]]);
26 t:=t-(r*P);
27

28 /* Check equality for that block */
29 t2:=Vector([t[i] mod modulo : i in [1..NbCols]]);
30 if (t2 ne Zero) then
31 End:=false;break;
32 end if;
33

34 /* Eliminate block and update values */
35 t:=Vector([ ExactQuotient(t[i], modulo) : i in [1..NbCols]]);
36 q:=Vector([ ExactQuotient(q[i]-r[i], modulo) : i in [1..NbCols]]);
37 q_not_zero:=(q ne Zero);
38 t_not_zero:=(t ne Zero);
39

40 /* Test if one component is prematurely zero */
41 if ((not q_not_zero) xor (not t_not_zero)) then
42 End:=false;break;
43 end if;
44

45 /* Test if all components are zero: If yes we finished */
46 Bool:= (q_not_zero) and (t_not_zero);
47 end while;
48 Bool:=End;
49 end procedure;

Figure A5. Magma code for the verification in DRS.

The code presented in Figure A6 was tested using the free version of MAGMA online at http:
//magma.maths.usyd.edu.au/calc/. At the time of the test, the MAGMA version was “V2.24-5".

http://magma.maths.usyd.edu.au/calc/
http://magma.maths.usyd.edu.au/calc/


Information 2020, 11, 133 33 of 36

1 /* Set Randomness, Diagonal Coefficient and Dimension */
2 Seed:=1515430315;
3 SetSeed(Seed);
4 N:=51;
5 D:=N;
6

7 /* Initialize to Real values for computation of the Spectral Radius */
8 M:=ZeroMatrix(GetDefaultRealField(),N,N);
9

10 /* Randomly put noise values */
11 for i:=1 to N do
12 for j:=1 to N do
13 /* High probability of respecting PSW-bound but not DRS-bound */
14 M[i,j]:=Random(0,3)*((Random(0,1)*2)-1);
15 /* High probability of respecting DRS-bound but not PSW-bound */
16 // M[i,j]:=Random(0,Ceiling(D/N));
17 end for;
18 end for;
19

20 /* Compute Spectral Radius to check validity of PSW Conjecture */
21 SR:=SpectralRadius(M)*(D^-1);
22

23 /* Check the norm l1 for each vector of the noise */
24 MinS:=2*D;
25 MaxS:=0;
26 AvgS:=0;
27

28 for i:=1 to N do
29 S:=0;
30 for j:=1 to N do
31 S:=S+Abs(M[i,j]);
32 end for;
33 if S gt MaxS then MaxS:=S; end if;
34 if MinS gt S then MinS:=S; end if;
35 AvgS:=AvgS+S;
36 end for;
37

38 AvgS:=AvgS/N;
39

40 /* Print Results */
41 print "Random Seed is " cat IntegerToString(Seed);
42 print "Diagonal Value D is " cat IntegerToString(D);
43 print "Dimension N is " cat IntegerToString(N);
44 print "";
45 print "Spectral Radius";SR;
46 print "Minimum/Maximum l1 norm of noise vectors";
47 print Floor(MinS),Floor(MaxS);
48 print "Average l1 norm of noise vectors";
49 print Floor(AvgS);

Figure A6. Magma code for testing both DRS and PSW conditions.



Information 2020, 11, 133 34 of 36

1 // Declare the secret key with D=10
2 S:=Matrix([
3 [10,0,2,-3,0,1],
4 [-1,10,2,3,0,2],
5 [1,0,10,3,0,-1],
6 [0,-4,2,10,0,3],
7 [-1,0,2,3,10,-2],
8 [3,3,0,-1,0,10]
9 ]);

10

11 // Create the public key
12 P:=S;
13 s:=3;
14 PublicKeyDRS(~P,~S,~s);
15

16 // Create a large vector and sign it
17 v:=Vector([Random(1000) : i in [1..6]]);
18 w:=v;
19 k:=v;
20 ReduceDRS(~k,~w,~v,~S,~s,10);
21

22 // Print the resulting computations
23 print "Secret Key:", S;
24 print "Public Key:", P;
25 print "v to reduce:", v;
26 print "signature k,w:";
27 print k,w;
28 print "v-w",v-w;
29 print "k*P",k*P;
30

31 // Verify the result
32 Bool:=true;
33 VerifyDRS(~Bool,~k,~w,~v,~P,10);
34 print "Check:", Bool;
35 k*P+w-v;

Figure A7. Magma code for playing around DRS.

References

1. NIST. NIST Kicks Off Effort to Defend Encrypted Data From Quantum Computer Threat; NIST: Gaithersburg, MI,
USA, 2016.

2. Shor, P.W. Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum
Computer. Siam J. Comput. 1997, 26, 1484–1509. [CrossRef]

3. Minkowski, H. Geometrie der Zahlen; B.G. Teubner: Leipzig, Germany, 1896.
4. Ajtai, M. Generating hard instances of lattice problems. In Proceedings of the Twenty-Eighth Annual ACM

Symposium on Theory of Computing; ACM: New York, NY, USA, 1996; pp. 99–108.
5. Goldreich, O.; Goldwasser, S.; Halevi, S. Public-key cryptosystems from lattice reduction problems.

In Proceedings of the Annual International Cryptology Conference; Springer: Berlin, Germany, 1997; pp. 112–131.
6. Nguyen, P. Cryptanalysis of the Goldreich-Goldwasser-Halevi cryptosystem from crypto’97. In Proceedings

of the Annual International Cryptology Conference; Springer: Berlin, Germany, 1999; pp. 288–304.
7. Fischlin, R.; Seifert, J.P. Tensor-based trapdoors for CVP and their application to public key cryptography.

In Cryptography and Coding; Springer: Berlin, Germany, 1999; pp. 244–257.
8. Micciancio, D. Improving lattice based cryptosystems using the Hermite normal form. In Cryptography and

Lattices; Springer: Berlin, Germany, 2001; pp. 126–145.
9. Paeng, S.H.; Jung, B.E.; Ha, K.C. A lattice based public key cryptosystem using polynomial representations.

In International Workshop on Public Key Cryptography; Springer: Berlin, Germany, 2003; pp. 292–308.

http://dx.doi.org/10.1137/S0097539795293172


Information 2020, 11, 133 35 of 36

10. Sloane, N.J.A. Encrypting by Random Rotations. In Cryptography, Proceedings of the Workshop on Cryptography
Burg Feuerstein, Germany, 29 March–2 April 1982; Beth, T., Ed.; Springer: Berlin/Heidelberg, Germany, 1983;
pp. 71–128.

11. Regev, O. New lattice-based cryptographic constructions. J. ACM 2004, 51, 899–942. [CrossRef]
12. Gama, N.; Izabachene, M.; Nguyen, P.Q.; Xie, X. Structural lattice reduction: Generalized worst-case to

average-case reductions and homomorphic cryptosystems. In Annual International Conference on the Theory
and Applications of Cryptographic Techniques; Springer: Berlin/Heidelberg, Germany, 2016; pp. 528–558.

13. NIST. Post-Quantum Cryptography Standardization; NIST: Gaithersburg, MI, USA, 2018.
14. Plantard, T.; Sipasseuth, A.; Dumondelle, C.; Susilo, W. DRS: Diagonal Dominant Reduction for Lattice-Based

Signature. PQC Standardization Process, Round 1 Submissions, 2018. Available online: https://csrc.nist.
gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions (accessed on 15 May 2019).

15. Plantard, T.; Susilo, W.; Win, K.T. A digital signature scheme based on CVP max. In InInternational Workshop
on Public Key Cryptography; Springer: Berlin/Heidelberg, Germany, 2008; pp. 288–307.

16. Yu, Y.; Ducas, L. Learning Strikes Again: The Case of the DRS Signature Scheme. In Proceedings of the
International Conference on the Theory and Application of Cryptology and Information Security, Brisbane,
Australia, 2–6 December 2018; pp. 525–543.

17. Li, H.; Liu, R.; Nitaj, A.; Pan, Y. Cryptanalysis of the randomized version of a lattice-based signature scheme
from PKC’08. In Proceedings of the Australasian Conference on Information Security and Privacy; Springer:
Berlin/Heidelberg, Germany, 2018; pp. 455–466.

18. Brualdi, R.A.; Ryser, H.J. Combinatorial Matrix Theory; Cambridge University Press: Cambridge, UK, 1991;
Volume 39.

19. Wei, W.; Liu, M.; Wang, X. Finding shortest lattice vectors in the presence of gaps. In Proceedings of
the Cryptographers’ Track at the RSA Conference, San Francisco, CA, USA, 20–24 April 2015; Springer:
Berlin/Heidelberg, Germany, 2015; pp. 239–257.

20. Ajtai, M.; Dwork, C. A public-key cryptosystem with worst-case/average-case equivalence. In Proceedings
of the Twenty-Ninth Annual ACM Symposium on Theory of Computing; ACM: New York, NY, USA, 1997;
pp. 284–293.

21. Gama, N.; Nguyen, P.Q. Predicting lattice reduction. In Proceedings of the Annual International Conference on the
Theory and Applications of Cryptographic Techniques; Springer: Berlin/Heidelberg, Germany, 2008; pp. 31–51.

22. Liu, M.; Wang, X.; Xu, G.; Zheng, X. Shortest Lattice Vectors in the Presence of Gaps. IACR Cryptol.
Eprint Arch. 2011, 2011, 139.

23. Lyubashevsky, V.; Micciancio, D. On bounded distance decoding, unique shortest vectors, and the minimum
distance problem. In CRYPTO 2009; Springer: Berlin/Heidelberg, Germany, 2009; pp. 577–594.

24. Babai, L. On Lovász’ lattice reduction and the nearest lattice point problem. Combinatorica 1986, 6, 1–13.
[CrossRef]

25. Bajard, J.C.; Imbert, L.; Plantard, T. Modular number systems: Beyond the Mersenne family. In International
Workshop on Selected Areas in Cryptography; Springer: Berlin/Heidelberg, Germany, 2004; pp. 159–169.

26. Plantard, T. Arithmétique modulaire pour la cryptographie. Ph.D. Thesis, 2005. Available online: https:
//documents.uow.edu.au/~thomaspl/pdf/Plantard05.pdf (accessed on 15 May 2019).

27. Nguyen, P.Q.; Regev, O. Learning a parallelepiped: Cryptanalysis of GGH and NTRU signatures. J. Cryptol.
2009, 22, 139–160. [CrossRef]

28. Ducas, L.; Nguyen, P.Q. Learning a zonotope and more: Cryptanalysis of NTRUSign countermeasures.
In International Conference on the Theory and Application of Cryptology and Information Security; Springer:
Berlin/Heidelberg, Germany, 2012; pp. 433–450.

29. Gentry, C.; Peikert, C.; Vaikuntanathan, V. Trapdoors for hard lattices and new cryptographic constructions.
In STOC 2008; ACM: New York, NY, USA, 2008; pp. 197–206.

30. Pernet, C.; Stein, W. Fast computation of Hermite normal forms of random integer matrices. J. Number Theory
2010, 130, 1675–1683. [CrossRef]

31. Serra-Sagristà, J. Enumeration of lattice points in l1 norm. Inf. Process. Lett. 2000, 76, 39–44. [CrossRef]
32. Smith, N.A.; Tromble, R.W. Sampling Uniformly From the Unit Simplex; Johns Hopkins University: Baltimore,

MD, USA, 2004.
33. Knuth, D.E.; Graham, R.L.; Patashnik, O.; Liu, S. Concrete Mathematics; Adison Wesley: Boston, MA,

USA, 1989.

http://dx.doi.org/10.1145/1039488.1039490
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions
http://dx.doi.org/10.1007/BF02579403
https://documents.uow.edu.au/~thomaspl/pdf/Plantard05.pdf
https://documents.uow.edu.au/~thomaspl/pdf/Plantard05.pdf
http://dx.doi.org/10.1007/s00145-008-9031-0
http://dx.doi.org/10.1016/j.jnt.2010.01.017
http://dx.doi.org/10.1016/S0020-0190(00)00119-8


Information 2020, 11, 133 36 of 36

34. Derzko, N.; Pfeffer, A. Bounds for the spectral radius of a matrix. Math. Comput. 1965, 19, 62–67. [CrossRef]
35. Wilkinson, J.H. The Algebraic Eigenvalue Problem; Clarendon: Oxford, UK, 1965; Volume 662.
36. Bartels, R.H.; Stewart, G.W. Solution of the matrix equation AX+ XB= C [F4]. Commun. ACM 1972,

15, 820–826. [CrossRef]
37. Golub, G.; Nash, S.; Van Loan, C. A Hessenberg-Schur method for the problem AX+ XB= C. IEEE Trans.

Autom. Control 1979, 24, 909–913. [CrossRef]
38. Householder, A.S. The Theory of Matrices in Numerical Analysis; Courier Corporation: Chelmsford, MA,

USA, 1964.
39. Kannan, R. Minkowski’s convex body theorem and integer programming. Math. Oper. Res. 1987, 12, 415–440.

[CrossRef]
40. Van de Pol, J.; Smart, N.P. Estimating key sizes for high dimensional lattice-based systems. In Proceedings of

the IMA International Conference on Cryptography and Coding; Springer: Berlin/Heidelberg, Germany, 2013;
pp. 290–303.

41. Hoffstein, J.; Pipher, J.; Schanck, J.M.; Silverman, J.H.; Whyte, W.; Zhang, Z. Choosing parameters for
NTRUEncrypt. In Proceedings of the Cryptographers’ Track at the RSA Conference; Springer: Cham, Switzerland,
2017; pp. 3–18.

42. Chen, Y.; Nguyen, P.Q. BKZ 2.0: Better lattice security estimates. In Proceedings of the InInternational Conference
on the Theory and Application of Cryptology and Information Security; Springer: Berlin/Heidelberg, Germany,
2011; pp. 1–20.

43. The FPLLL Team. FPLLL, a Lattice Reduction Library. Available online: https://github.com/fplll/fplll
(accessed on 15 May 2019).

44. Sipasseuth, A.; Plantard, T.; Susilo, W. Improving the security of the DRS scheme with uniformly chosen
random noise. In Proceedings of the Australasian Conference on Information Security and Privacy; Springer:
Cham, Switzerland, 2019.

45. Computational Algebra Group. U.o.S. 2018. Available online: https://magma.maths.usyd.edu.au/calc/
(accessed on 15 May 2019).

46. PARI Group. U.o.B. PARI-GP. 2018. Available online: https://pari.math.u-bordeaux.fr/gp.html (accessed on
15 May 2019).

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1090/S0025-5718-1965-0171792-1
http://dx.doi.org/10.1145/361573.361582
http://dx.doi.org/10.1109/TAC.1979.1102170
http://dx.doi.org/10.1287/moor.12.3.415
https://github.com/fplll/fplll
https://magma.maths.usyd.edu.au/calc/
https://pari.math.u-bordeaux.fr/gp.html
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background
	Lattice Theory
	Lattice Problems

	The Theoretical Framework of Plantard–Susilo–Win
	Before PSW: Lattices for Number Representation
	Spectral Radius and Eigenvalues
	The Original PSW Framework
	Setup
	Sign
	Verify
	Claimed Structural Security


	The Original DRS Scheme
	Setup
	Secret Key Generation
	Public Key Generation

	Signature
	Verification

	On the Security of the Public Key
	Li, Liu, Nitaj and Pan's Attack on a Randomized Version of the Initial PKC'08
	Yu and Ducas's Attack on the DRS Instantiation of the Initial Scheme of PKC'08

	New Setup
	Picking the Random Vectors
	A Slightly More General Termination Proof
	On Exploiting the Reduction Capacity for Further Security
	Ensuring the Termination of PSW
	Setup Performance

	Security Estimates
	BDD-Based Attack
	Expected Heuristic Security Strength
	A Note on the Structure of Diagonally Dominant Lattices
	A Small Density Comparison with Ideal Lattices

	Conclusions and Open Questions
	
	References

