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Abstract: Remote experiments have been gaining a lot of popularity over the last years. They are
available for many areas including control education. The majority of laboratories available
via the Internet were developed from scratch and lack modularity, which enables their easier
adaptation. Crucially, the diversity of experiments that can be performed on a single device is quite
limited. Along with the prospect of simple integration of new devices and simulation environments,
this approach presents a way to more effectively utilize the available resources. The presented online
laboratory system offers a possibility of an easy integration of new control experiments to the online
environment. It allows users to define selected variables inside their block diagrams, upload them to
the system and later initialize them within the system’s graphical user interface. The system was tested
on a new developed air levitation plant that can be controlled via Matlab simulation environment.

Keywords: control engineering education; remote control; online experiment platform;
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1. Introduction

Remote experiment is a term describing a real device designed to conduct experiments over the
Internet. Upon launch, relevant data is collected and displayed to the user via a web browser or other
client application either during or after the experiment runs. This interface may also provide the ability
to define input parameters that affect the course of the experiment and device behavior. It eliminates
the need for physical interaction. This means that experiments can be run from any location and
without time limits. Performing experiments in this way is also much safer in terms of protecting the
user as well as the device itself, as incorrect handling is ruled out. Examples of remote experiments
and experimentation were already described in many publications (see, e.g., [1–7]).

In recent years, a tendency to create more complex systems for managing remote experiments has
appeared. These systems are commonly referred to as “remote laboratories”or together with “virtual
laboratories” as “online laboratories” [8]. Several such web portals already exist around the world.
They are mostly managed by educational institutions. There are also systems that cover multiple
devices in different physical locations and use the resources of several universities (Table 1). In future
it is expected that they will be also required to follow the IEEE standard for online laboratories [9] that
was published recently.

In addition to facilitating access to experiments, these systems also provide features such as
authentication, authorization, and device reservation. This allows for more efficient allocation
of machine time with individual experiments and provides the possibility to monitor their use.
The obtained data can contribute to the optimization of the educational process.
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Table 1. Web portals providing access to remote experiments.

Title Provider Area Address

iLab Massachusetts Institute of
Technology (MIT), USA

Microelectronics, chemical
engineering, signal
processing

https://icampus.mit.edu/
projects/ilabs

UNILabs National Distance Education
University (UNED), Spain

Physics, mechatronics,
optics, robotics, control

http://unilabs.dia.uned.es

WebLab
Deusto

University of Deusto, Spain Electronics, physics http://weblab.deusto.es

NetLabs University of South Australia Electronics http://netlab.unisa.edu.au

RExLab Federal University of Santa
Catarina, Brasil

Electronics, optics, physics http://relle.ufsc.br/labs

GOLDi Ilmenau University of
Technology, Germany

Robotics, mechatronics http://goldi-labs.net

Online laboratory system should adapt to changes easily. It is necessary to integrate new devices
and implement new simulation environments regularly, so new technologies can be incorporated to
the educational process. The ability to innovate and grow is therefore essential.

These changes should not hinder the users in any way. A unified access to all experiments has to
be established. Each experiment and software solution requires a different approach when it comes
to communication, hence a number of interfaces were created to facilitate the data flow between the
interchangeable parts of a laboratory. Every interface handles a different task and is built on a different
technology for which it is best suited [10].

2. Laboratory Architecture and Data Flow

To maximize modularity within the laboratory, all of its parts are arranged in a star topology
with a central server acting as a center node. The central server is the interface between the users and
experiments. Its role is to facilitate a unified platform for experiment reservation, user management
and control algorithm configuration. The experiments consist of a real device and a dedicated server.
This experiment server is connected to the central server via Internet and to the device by a serial
connection, generally a USB cable. More information about the architecture (Figure 1) and data-flow
within the system is provided in [11].

Figure 1. The system architecture.
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2.1. Commands and Parameters

To simplify the integration of new experiments to the system, each device implements four
different commands - stop, start, init and change.

The initialization command serves to prepare the experiment device to a state where it can
safely operate and perform the experiment correctly. This is not necessary for all devices, so the
implementation of this command is not mandatory.

The termination of the experiment is handled by the stop command. It does not require any
arguments and simple stops the experiment process before the intended end time if the user decides to
do so.

To change the experiment parameters during its runtime a change command must be issued.
It generally requires the same arguments as the start command.

The main focus of this paper is the start command. It launches the experiment process and defines
all of its variables. The data transmitted from the central web server to the script implementing this
command can be divided into four separate categories.

2.1.1. Identifying Parameters

These parameters contain information about the device and simulation software. If the connected
device is capable to run with several simulation environments (Matlab, OpenModelica, Scilab, etc.),
these parameters serve to determine which one is used. In addition, the device type specification and
also the identification string of the particular instance is also transmitted. For now, this is just another
layer of validation, but in the future more than one device might be connected to the experiment server
and distinguishing between them will be crucial.

2.1.2. General Parameters

These data do not change with changing simulation environment or even the connected device.
General parameters include, for example, the simulation time or the sampling period.

2.1.3. Experiment Specific Parameters

This data might be different for each experiment device.

2.1.4. Schema Specific Parameters

The experiment requires additional data that is specific for each implementation. A control
algorithm is specified in a file created using a simulation environment. In case of Matlab it can
be an .mdl or .slx file. The algorithm selected by the user to test on a real device is automatically
downloaded to the experiment server using the central web server API. The defined controller can
contain several more variables, such as the P, I and D values of a PID controller.

2.2. Connected Device

The ball levitation device (Figure 2) was built to test and verify system’s unified interface for easy
integration. It is a simple one input two output system, that consists of a transparent vertical tube with
a fan mounted to its base. Various similar plants already exist and have been successfully introduced
to different online laboratory systems or work as standalone remote experiments [12–16].

The flow of air generated by the fan lifts a ping-pong ball situated inside of the tube. The air
current is controlled by a PWM signal altering the rotation speed of the fan. The height to which the
ball rises is measured by a laser-based proximity sensor. More on this device is written in [17].



Information 2020, 11, 131 4 of 9

Figure 2. The air levitation device connected to the online laboratory system.

3. Simulation Environment Integration

Simply passing parameters to a device and reading values from its sensors would not be enough
to facilitate the process of teaching control algorithms. Handling the device this way might be useful
to figure out the device dynamics, but to actually achieve some level of regulation, a feedback loop
must be established.

Arguably the best way to achieve this level of control is to use simulation environments. Matlab is
widely used and learning how to use it is beneficial for the students.

There are two different approaches when it comes to interfacing an experiment device to Simulink.
Previously connected devices (see e.g., [18]) are generally represented by a single block in a diagram.
This block is created as an S-function. Developing this subroutine can pose a challenge for people not
well-acquainted with Matlab as a programming language. However, once created, it is simple to use
and implement in different experiments.

Second approach is to take advantage of already existing built-in functionality for serial
communication in the form of “Serial send” and “Serial receive” blocks. These kinds of diagrams are
much easier to develop, but not every device can be connected without any issues. Problems might
stem from unsupported communication protocols or transmitted data formats. Since the described
device was developed with the goal of integrating it to the online laboratory system in mind, it is able
to communicate in this manner.

Regardless of the device representation, the online laboratory system lets users create their own
block diagrams to test different control algorithms. This means that the emphasis was placed on not
just running a single experiment defined by one block diagram, but on the ability to create, alter and
test new ones. With multiple possible variables defined within the diagram, users can rapidly change
these values without altering the diagram itself or even reuploading it to the server.

The problem arises from the communication between the simulation environment and the PHP
server. Since there is no functionality integrated in the PHP language to issue commands to Matlab,
a new interface had to be created to handle the communication. This is resolved by a Python script,
that is executed by the server.

The process of obtaining the correct simulation algorithm file might seem trivial but actually poses
a few challenges. Since actually multiple different simulation environments might be implemented,
the files are stored without a designated filename extension on the central web server. A proper one
is attached once the file is downloaded to the dedicated experiment server. Matlab is not capable of
loading a file without an extension. The same rule also applies to other environments, e.g., Scilab.
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Even though these files are generally not taking up a sizable part of a hard drive, it is a good
practice to erase them once the experiment has concluded. Since their name is altered by adding the
extension, they are located and deleted with the use of a regular expression or regex.

3.1. Linux Shell Script Interface

All of the necessary input arguments are passed to a linux shell script. In the past these
were generally written in bash, but recently due to several advantages Python is being preferred.
Matlab provides an API for Python since the R2014b version. Thanks to this, it is possible to start
the simulation environment, load the block diagram downloaded from the central web server and
initialize declared variables.

For each supported simulation environment a separate set of dedicated scripts must be created.
These are the scripts written for the different commands. The optional init command is not necessary
in this implementation. To prematurely terminate the experimentation process, the stop command
shuts down the fan motor by setting the PWM signal’s duty cycle to 0%. Running the experiment is
the most complex task so the start command is usually the one that is the most difficult to implement.

Starting the Matlab software each and every time a new experiment request is issued would be
extremely taxing on the server performance. Luckily, it is possible to run Matlab as a shared engine in
the background, which means that different processes can access its resources.

When the start command script is executed, it searches for a running instance of the Matlab
software and connects to it. It sets the values for the variables and initializes the experiment through
a set_param() command. To execute this command Matlab needs access to the graphical user interface
and cannot be executed solely by a command line instance. A supervisor script ensures that this
program does not close, or more exactly, if closed or terminated is swiftly relaunched.

3.2. Matlab

The script implementing the start command sets the value of the experiment output file to the
simulation environment. Its filename is a combination of an ID number of the logged-in user and
a string of characters representing the current time. This rules out the possibility of inadvertent duplicate
files, but also it serves to categorise the files mainly for debugging and troubleshooting reasons.

While the experiment is taking place, the sensor data is periodically written to the specified log
file. This file is read in a predefined time interval by a Node.js server and its contents are sent through
a websocket directly to the connected user’s internet browser. More on this functionality can be found
in [19]. The flow of data within the system is displayed in Figure 3.

Figure 3. Data flow within the system.



Information 2020, 11, 131 6 of 9

4. Passing Arguments

The experiment input parameters declared by the developer and later initialized by the user
might not always be a simple numerical value. It is possible to declare variables of any data type and
even to determine a set of their possible values. This might serve to reflect a hardware limitation,
to create a problem for the student or simply to protect the device from unwanted and potentially
dangerous states of operation.

An user interface to both declare these variables and also initialize them was created, so the
process is simplified. The layout and behaviour of the interface is also the same for all of the connected
devices and also all implemented simulation environments. Its contents are generated based on the
specific experiment.

The user must have the ability to pass any defined values within the input parameters sent to each
simulation environment while the start command is being issued. This argument can have various
forms or data types, so there must be a comprehensive and intuitive user interface that provides these
options. The user interface provided by the system for users to define the arguments can be seen in
Figure 4.

Figure 4. User interface only accessible to users with administrative privileges where block diagram
arguments can be specified.

The declared variables along with their labels and placeholder values are stored in the central
web server database. Once an experiment control panel is opened, a new HTML form is generated to
reflect each specific implementation.

All of this combined assures that the user can select from a variety of real devices and simulation
software, but also it is possible to have a variety of different control algorithms defined for each device
type (Figure 5).

Figure 6 shows an entity-relation diagram illustrating the stored tables and their attributes.
The diagram also visualizes some important connections to other tables to better demonstrate the inner
workings of this online laboratory system. The section visibly marked by a red rectangle contains
tables designed to store the experiment parameters, which are associated with a specific schema.
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Figure 5. A dashboard view generated based on arguments specified by an administrator.

Figure 6. Definition of arguments in entity-relation diagram.
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5. Conclusions

Having an online laboratory system capable of running different kinds of experiments on a single
device is very useful in teaching control algorithm design. Most remote experiments offer only one
type of experiment and changing the algorithm would require a lot of modifications to every level
of the system from its front end to the software running on the device’s control unit. The described
system resolves these issues by a highly modular architecture on both hardware and software levels.
The process of integration of the device described in the paper was proven to be straightforward
and replicable.

Communication with each device is handled by a dedicated server, which serves as an interface
between a generalized central web server and a specific device. When a command is issued by an user,
it traverses every level in the system hierarchy where is gradually broken down into particular sub
tasks. Each of these tasks is then performed by a software solution best suited for the job.

The process of new experiment integration was verified by connecting a ball levitation experiment
to the system. Since the device was developed for this reason, some further improvements were
made to increase its compatibility. Nevertheless, the system is capable of running even non-optimized
experiments, albeit not as effectively. An integration of a thermo-opto-mechanical plant [20] to the
system is described in [18].

Lastly, the administrative user interface for configuration further decreases the difficulty of
adding a new experiment type for an already integrated device. The variables once declared in a block
diagram within a simulation environment can easily be stored in the system and later initialized by
users, when experimenting.

Author Contributions: Conceptualization, M.R. and K.Ž.; Investigation, M.R. and K.Ž.; Writing-original draft,
M.R.; Writing-review & editing, M.R. and K.Ž. All authors have read and agreed to the published version of the
manuscript.

Funding: This research was funded by Kultúrna a Edukačná Grantová Agentúra MŠVVaŠ SR (KEGA) grant
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