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Abstract: Mobile edge computing (MEC) can use a wireless access network to serve smart devices
nearby so as to improve the service experience of users. In this paper, a joint optimization method
based on the Genetic Algorithm (GA) for task offloading proportion, channel bandwidth, and mobile
edge servers’ (MES) computing resources is proposed in the scenario where some computing tasks
can be partly offloaded to the MES. Under the limitation of wireless transmission resources and
MESs’ processing resources, GA was used to solve the optimization problem of minimizing user
task completion time, and the optimal offloading task strategy and resource allocation scheme were
obtained. The simulation results show that the proposed algorithm can effectively reduce the task
completion time and ensure the fairness of users’ completion times.
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1. Introduction

With the advent of the 5G network, various smart services are constantly emerging. Billions of
intelligent terminal devices are needed to handle a large number of tasks, but the limited number of
terminal devices restricts the capabilities to complete them. Mobile edge computing (MEC) [1] enables
terminal devices to not only access the network wirelessly but to also offload some computing tasks to
the mobile edge servers (MES) to reduce the distance between the servers and the MES and to shorten
the completion time of tasks [2]. In the MEC network, offloading strategies and resource allocation
will directly affect the performance of the system, so it has become a research hotspot recently [3].

In recent years, scholars have carried out studies on the MEC offloading problem. Offloaded
tasks can be divided into partly and fully offloading tasks [4]. A partly offloading task means that
users can offload tasks partly or offload all of them at once, and a fully offloading task means that
users can only choose to handle all of the tasks locally or in the MES [5]. In [6], an alternating direction
multiplier algorithm was proposed to solve the problem of satisfying users’ minimum delay and
minimizing energy consumption. In [7], a two-step traffic allocation approach was proposed for jointly
optimizing channel bandwidth and MES computing resources to minimize latency for all users. In [8],
an algorithm based on game theory was proposed to jointly optimize channel bandwidth and MES
computing resources to minimize the overall time and energy consumption. In [9], an algorithm based
on Q learning was proposed to solve the problem of minimizing the energy consumption of the system.
In [10], a potential game algorithm was proposed to solve the problem of minimizing users’ task
completion time. In [11], task offloading was mapped into a queuing model, which solved the problem
of minimizing task offloading time. In [12], the cache strategy was added to the offloading model and
the best edge computing offloading method with cache enhancement scheme was proposed in the
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paper, which made users’ delay shorter and energy consumption less. In [13], user task uploads were
mapped into the queuing model to describe network dynamics, and game theory was used to find out
the best scheme for computing offload and transmission scheduling. Authors in [14] further considered
a wireless powered MEC and minimized the probability of successful computations. The performance
optimization of multi-user wireless powered MEC system was later studied in [15,16]. In [17], users
offloaded independent tasks to the edge devices and downloaded results from them over prescheduled
time slots. Energy consumption at both the user and edge devices was considered herein. In [18], the
optimized user offloading strategy algorithm based on game theory was put forward in a transmission
queue model, and the optimization goal was defined as the overall time computing task to all users,
but it only considered each user’s offloading proportion and did not take channel resources and MES
computing resources into account. So far, according to the partly offloading task model, there has been
a limited joint allocation of partly offloading strategies and communication resources to minimize the
completion time mechanism of user devices’ (UDs’) overall task.

Although there are many literatures about joint optimization strategies and resources allocation to
minimize completion time of the UD’s tasks or energy, few of them conduct partly offloading scenarios,
especially proportional offloading. The main contributions of this paper are as follows:

• We solve the problem of minimizing the overall completion time in the scenario of multiple mobile
devices and the one edge server, as well as the UD’s task, which can be divided proportionally.
We also propose a joint optimization algorithm for users’ task partly offloading and resource
allocation to solve the problem to solve the problem.

• We propose a joint optimization algorithm of offloading and resource allocation based on the
Genetic Algorithm (GA) under the partial offloading task model. A strategy combination composed
of the user’s offloading proportion, bandwidth, and computing resources is an individual, and
each factor in the individual is a gene. Then, different individuals are combined into a population
matrix, and the optimal user’s offloading proportion and resource allocation combination is finally
obtained through selection, crossover, and mutation operations.

• Simulation results demonstrate that our proposed algorithm can effectively shorten the completion
time and guarantee fairness among users. For example, when the UD’s number is 10, the total
completion time in this paper is 12.1% lower than that in literature [18].

The rest of this paper is organized as follows: Section 2 gives the system model and problem
description of a multi-user single edge server. Section 3 presents the optimization problem analysis
and the joint optimization algorithm. In Section 4, the simulation results are presented and analyzed.
Finally, Section 5 summarizes this paper.

2. System Model

As shown in Figure 1, a BS is located at the center of a cell with a MES, M users’ devices (UDs)
are randomly distributed inside the cell and each of them is represented as UDm. Each UDm has a
computation task Um = { fm, Dm, Lm}, fm represents users’ local computing resources, Dm represents the
size of the task yet to be handled and Lm represents the number of CPU cycles required to process 1
byte task, where m ∈ (1, 2, 3 . . .M).
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Each UD is needed to offload Pm proportion of tasks to the MES for processing (Pm ∈ [0, 1]),
and the remaining (1−Pm) proportional computing tasks are left to be locally handled, so the local
processing time of UDm can be obtained as:

Tm_local =
(1− Pm) ∗Dm ∗ Lm

fm
(1)

Users upload the offloading data through FDMA (Frequency Division Multiple Access). The total
bandwidth of the system is Bmax, and the bandwidth allocated to UDm is Bm, so the uplink task data
rate of UDm is given by:

Rm = Bm ∗ log2(1 + SNRm) (2)

Therefore, the uplink time of UDm can be expressed as:

Tm_trans =
Pm ∗Dm

Rm
(3)

Assuming that the total computing resources of the MES is Fmax, and after the UDm uploads part
of the tasks to the edge server, the server will allocate Fm computing resources to process these tasks.
The time that the MES processes the offloading tasks of UDm can be expressed as

Tm_mec =
Pm ∗Dm ∗ Lm

Fm
(4)

After finishing handling the task, the edge server will send the processed data back to the UDs. The
download time is Tback, which has a small impact on the overall time compared with other times [19]
and can be ignored. Therefore, the processing time of the user offloading task can be obtained as:

Tm_o f f load = Tm_trans + Tm_mec =
Pm ∗Dm ∗ Lm

Fm
+

Pm ∗Dm

Rm
(5)

Since the UD’s task offloading and local task processing are carried out simultaneously, the total
completion time of UDm is expressed as:

Tm = Max(Tm_local, Tm_o f f load) (6)
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Since M UDs are handling tasks at the same time, the overall completion time of the system can
be obtained as:

T = Max(T1, T2, T3 . . .TM) (7)

The objective of this paper is to minimize the total completion time by jointly optimizing the
UDm’s task offloading proportion Pm, channel bandwidth Bm, and MES’ allocated resources Fm, which
not only reduce the total completion time but also ensures fairness among UDs. The above optimization
problem is formulated as:

min
Bm,Fm,Pm

T

s.t. C1 : Tm ≤
Lm∗Dm

fm
m ∈M

C2 :
∑

m∈M
Fm ≤ Fmax

C3 :
∑

m∈M
Bm ≤ Bmax

C4 : 0 ≤ Pm ≤ 1 m ∈M

(8)

C1 shows that the processing time after users’ offload should not be longer than the time when
all the tasks are processed locally, which will cause users not to offload. C2 shows that the sum of
MES computing resources allocated to each user should not be larger than the computing resources of
MES itself; C3 shows that the sum of bandwidth resources allocated to each user cannot be larger than
the channel bandwidth itself; C4 represents the offload proportion of UDm, and each UD can choose
not to offload, partially offload, or fully offload, depending on the number of users, local computing
resources, MES computing resources, and channel bandwidth.

3. Algorithm Formulation

The above optimization problem (8) is a non-convex optimization problem, which cannot be
solved by common optimization methods such as the Lagrange multiplier method or the KKT condition.
GA, as a kind of heuristic algorithm [20], does not process object parameter itself, but rather through a
parameter set encoded by multiple genetic individuals, in other words, it evaluates multiple solutions
in the search space. It has a good global search capability and, through the gene selection, crossover,
and mutation genetic operation, the search is not easy to fall into local optimum and can rapidly and
accurately solve complex problems [21].

In this paper, a genetic algorithm was adopted to solve the optimization problem (8). The encoding
method is shown in Figure 2. n different strategy combinations {P, F, B} are coded to form a population
matrix, as shown in (9). {P, F, B} is an individual in the population matrix, and each value in {P, F, B}
becomes a gene for the individual in the population matrix. For each strategy combination in the
matrix, the {P, F, B} with the lowest task completion time is selected as the optimal individual in an
iteration. Crossover and mutation operators, through different combinations between {P, F, B}, achieve
a new population matrix into the next iteration and finally get the global optimal value.
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3.1. Population Formation and Optimal Individual Selection

Assuming that there are M UDs, each of them needs to optimize the three variables Pm, Fm, Bm,
so a n row 3*M column population matrix K is generated. The row set at 4 to 6 times the number of
column is easier to make the algorithm convergence and reduce the iteration complexity, so the n is
4*3*M. The population K is formulated as
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K =


k1,1, k1,2 . . . k1,M, k1,M+1 . . . k1,2M, k1,2M+1, . . . k1,3M
k2,1, k2,2 . . . k2,M, k2,M+1 . . . k2,2M, k2,2M+1, . . . k2,3M

. . . . . .
kn1,, kn,2 . . . kn,M, kn,M+1 . . . kn,2M, kn,2M+1, . . . kn,3M

 (9)

where ki, j(i ∈ [1, n], j ∈ [1, m]) is the offloading proportion of the UD j in the strategy combination i,
ki, j(i ∈ [1, n], j ∈ [m + 1, 2m]) is the allocated MES computing resources of the UD j−m in the strategy
combination i. ki, j(i ∈ [1, n], j ∈ [2m + 1, 3m]) is the allocated channel bandwidth of the UD j− 2m in
the strategy combination i.

The optimization problem proposed in this paper is a minimization problem, T is defined as
the fitness function in the algorithm, and each iteration process has the selection process of excellent
individual {P, F, B} (for simplicity, we define it as Ki) in the population to enter the next genetic operation.
This is to avoid the optimization falling into the local optimal, so the subsequent iteration process can
converge to the global optimal solution faster. The specific process is shown in Algorithm 1.

Algorithm 1 Optimal individual selection

1. Input: K, Um =
{
fm, Dm, Lm

}
, Bmax, Fmax.

2. For i = 1 : N:
3. For j = 1 : M:
4. Tlocal =

(
1− ki, j

)
/ f j;

5. To f f load =
((

ki, j
)
∗D j

)
/
(
ki, j+2M ∗ log2

(
1 + SNR j

))
+

(
ki, j ∗D j ∗ L j

)
/ki, j+M;

6. T j = Max
(
Tlocal,To f f load

)
;

7. End
8. Ti = MAX(T1, T2 . . .Tm);
9. End
10. T = ( T1, T2 . . .Tn).Qn = Tn/sum(T).Q = ( Q1, Q2 . . .Qn).
11. Generate a random number rand ([0, 1]). Calculate where x is in Q. Select the individuals Ki to whom the
scope belongs.
12. Output: Ki

3.2. Crossover and Mutation operation

After the selection of an excellent individual, crossover and mutation operations are carried out in
different combinations of {P, F, B} in K. Two strategy combinations i and i′ in a group are as parents,
and crossover operations mean that the Bm, Fm, Pm of the same UD are randomly exchanged in the two
strategy combinations. The specific process is shown in Figure 3.
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If the exchanged variables exceed the limits of the constraints, a new individual is selected or a set
of strategy combinations are used for cross-operations.

The mutation operation randomly changes the Bm, Pm, Fm in a combination of strategy, so the
algorithm has a higher global search capability, and it also makes the algorithm’s local search capability
stronger and maintains the diversity of the group. The specific operation process is shown in Figure 4.
If the changed variable exceeds the limit of the constraint, a new random value is selected for mutation
operation. The specific process is shown in Algorithm 2.
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Algorithm 2 Crossover and mutation

1. Input K
2. For i = 1 : n/2:
3. Generate a random number m (m ∈ [0, 3M]).Change the value of k2∗i−1,m and k2∗i,m.
4. End.
5. Get new population matrix K1.
6. Perform Algorithm 1 on K1. Get new greatest individual kii.
7. For i = 1 : n:
8. Generate a random number b(b ∈ [0, 3M]).
9. If: 0 ≤ b ≤M:
10. Generate c(c ∈ [0, 1]);
11. Else if : M + 1 ≤ b ≤ 2M :
12. Generate c(c ∈ [0, Fmax]);
13. Else if : 2M + 1 ≤ b ≤ 3M :
14. Generate c(c ∈ [0, Bmax]);
15. If c satisfies the condition of (8):
16. ki,b = c;
17. else return (8)
18. End.
19. Get new population matrix K2

20. Perform Algorithm 1 on K2.Get new greatest individual kiii.
21. Output: kii, kiii
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3.3. Algorithm Overview

In this algorithm, the optimal individual selection, crossover, and mutation operations are used
to obtain the three best strategy combinations ki, kii, and kiii, and they are add to the next iteration to
continue the genetic operation. For each iteration, the three strategy combinations will be substituted
into the fitness function T to get the minimum completion time, which will be compared with the
minimum completion time in the last iteration. If the difference is less than exp(precision), iteration
will be stopped and the best {P, F, B} will be output in [ki, kii, kiii]; otherwise, the next genetic operation
will be continuously conducted until the emergence of the max iteration numbers (iter).The specific
process is shown in Algorithm 3.

Algorithm 3 A joint optimization algorithm of offloading and resource allocation

1. Input Um =
{
fm, Dm, Lm

}
, Bmax,Fmax,exp,iter.

2. Randomly generate a 3 row 3∗M column matrix K′

3. For k = 1 : iter:
4. Randomly generate a n row 3∗M column matrix K
5. Replace the first 3 lines of K with K′

6. Do Algorithm 1 and Algorithm 2 on K. Get ki,kii,kiii.
7. K′′ = [ki, kii, kiii]

8. If abs((min(T(K′′ )) − min(T(K′ )))) ≤ exp:
9. break;
10. Else:
11. If min(T(K′′)) ≤ min(T(K′)):
12. K′ = K′′;
13. End
14. Output: Argmax(T(K′′));
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4. Simulation Results and Discussions

In this section, the performance of the proposed algorithm was evaluated through Matlab
simulation. The simulation scenario is shown in Figure 1. The simulation parameters are cited in
Table 1.

Table 1. Simulation parameters.

Parameter Value

MES computational resource Fmax {2.5, 5, 10, 15} GHz/s
Channel bandwidth Bmax [10, 20] MHz

Data task Dm [8, 12] MB
Needed cpu cycles to calculate 1 bit task Lm 1000 cycles/byte

exp 0.001
UD’s local computational capacity fm [0.8, 1.2] GHz/s

n 4 * 3 * M
UD numbers M [2, 30]

SNRm [5, 25] dB

Figure 5 shows the simulation results of the total completion time with the number of iterations
for 10 users and 15 users. It can be seen from the figure that the overall task completion time of the
genetic algorithm tends to converge after 20 iterations.
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Figure 6 shows the simulation results of the comparison of the UD numbers and the total completion
time T when Bmax = 10 MHz, Fmax = 5 GHz/s and compares the algorithm of this paper with the
algorithm of [12], the algorithm that does not offload, the algorithm that only optimizes bandwidth
(average allocating computing resource), and the algorithm that only optimizes computing resource
(average allocating bandwidth). It illustrates that if there is no offloading, the average completion time
will be around 10 seconds. As the number of UDs increases, other algorithms approach this value.
Algorithm [18] does not consider the allocation of bandwidth and MES computing resources, resulting
in a waste of resources, so the overall completion time of this paper is faster. In conclusion, both the
optimized bandwidth and the computing resources can get a fast total completion time.
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Figure 7 shows the simulation results of the comparison of the UD numbers and the UD’s fairness
when Bmax = 10 MHz, Fmax = 5 GHz/s and compares the algorithm of this paper with the algorithm
of [18]. In this paper, the standard deviation of time was used to reflect the fairness of users [22] and
the metric was given by:

Fairness =

√
M∑

m=1

(
tm − t

)2

M
(10)

where t is the average task completion time of all UDs. The figure illustrates that the larger the
distributable resources are, the stronger the fairness is. Compared with the literature [18], the UD’s
completion time in this paper was fairer.
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Figure 8 shows the simulation results of T vary with Bmax. According to the figure, the completion
time decreases in line with an increase in the bandwidth that can reduce the transmission time.
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However, when the bandwidth increases to a certain value, the time reduction tends to be flat, because
the transmission time is small when the bandwidth is wide. While the MEC computing power does
not change, Tm_mec does not change either. So, when the transmission time is not an order of Tm_mec,
the change in completion time will be much smaller.
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Figure 9 shows the simulation results of T vary with Fmax. According to the figure, as the Fmax

increases, the total completion time T continuously decreases. Since the MES calculation time is larger
than the data transmission time in the scenario assumed in this paper, the trend of time decline is larger
than that of Figure 8. Similar to Figure 8, when the Fmax increases to a certain extent, the completion
time tends to be stable. Comparing Figures 8 and 9 with Figure 6, it can be seen that jointly optimizing
MES computing resources and communication resources is more effective in reducing task completion
time than considering only one resource.
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Figure 10 shows that the simulation results of the UD’s average offload proportion vary with UD
numbers when Bmax = 10 MHz. According to the figure, as the number of UDs increases, the UD’s
average offload proportion in the three environments gradually decreases. This is because, although
the number of UDs is increasing, Fmax and Bmax do not change. If the offload proportion is the same,
then Tm_local will not change but Tm_o f f load will gradually rise. T slows down, and hence the average
offload proportion decreases as the number of UDs increases. And when the number of users is the
same, Fmax is larger and, therefore, the average UD’s offload proportion is larger.

Information 2020, 11, x FOR PEER REVIEW 11 of 13 

 

Figure 9. Total completion time T  varies with maxF . 

Figure 10 shows that the simulation results of the UD’s average offload proportion vary with 

UD numbers when max 10B MHz= . According to the figure, as the number of UDs increases, the UD's 
average offload proportion in the three environments gradually decreases. This is because, although 

the number of UDs is increasing, maxF  and maxB  do not change. If the offload proportion is the 

same, then _ lm locaT  will not change but _m offloadT  will gradually rise. T  slows down, and hence the 
average offload proportion decreases as the number of UDs increases. And when the number of users 

is the same, maxF  is larger and, therefore, the average UD’s offload proportion is larger. 

 
Figure 10. UD's average offload proportion varies with UD numbers. 

5. Conclusions 

This paper minimizes the overall completion time in the scenario of multiple mobile devices and 
a one edge server and proposes a joint optimization algorithm for user task offloading and resource 
allocation to solve the problem of minimizing the overall completion time. The simulation results 

0 5 10 15 20 25
Fmax（GHz/s）

2

3

4

5

6

7

8

9

10

To
ta

l c
om

pl
et

io
n 

tim
e(

s)

5 UDs
10 UDs
15 UDs

2 4 6 8 10 12 14 16 18 20
UD numbers

10

20

30

40

50

60

70

80

90

U
D

's
 a

ve
ra

ge
 o

ffl
oa

d 
pr

op
or

tio
n(

%
)

Fmax=2.5GHz/s
Fmax=5GHz/s
Fmax=10GHz/s

Figure 10. UD’s average offload proportion varies with UD numbers.

5. Conclusions

This paper minimizes the overall completion time in the scenario of multiple mobile devices and
a one edge server and proposes a joint optimization algorithm for user task offloading and resource
allocation to solve the problem of minimizing the overall completion time. The simulation results
show that, compared with a single allocation offload strategy, the joint allocation of resources can make
the overall completion time shorter. Optimizing bandwidth or MES computing resources separately
can reduce the task offload completion time, however, it will encounter bottlenecks. Jointly optimizing
communications and computing resources can make tasks offload faster. However, the scenario in this
article is relatively simple. It only considers the user’s completion time and does not consider energy
consumption. It does not take into account the true distance and does not consider the situation of
multiple edge servers and base stations. This will be the direction of further research in the future.
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