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Abstract: Object detection for vehicles and pedestrians is extremely difficult to achieve in autopilot
applications for the Internet of vehicles, and it is a task that requires the ability to locate and
identify smaller targets even in complex environments. This paper proposes a single-stage object
detection network (YOLOv3-promote) for the detection of vehicles and pedestrians in complex
environments in cities, which improves on the traditional You Only Look Once version 3 (YOLOv3).
First, spatial pyramid pooling is used to fuse local and global features in an image to better enrich the
expression ability of the feature map and to more effectively detect targets with large size differences
in the image; second, an attention mechanism is added to the feature map to weight each channel,
thereby enhancing key features and removing redundant features, which allows for strengthening
the ability of the feature network to discriminate between target objects and backgrounds; lastly,
the anchor box derived from the K-means clustering algorithm is fitted to the final prediction box
to complete the positioning and identification of target vehicles and pedestrians. The experimental
results show that the proposed method achieved 91.4 mAP (mean average precision), 83.2 F1 score,
and 43.7 frames per second (FPS) on the KITTI (Karlsruhe Institute of Technology and Toyota
Technological Institute) dataset, and the detection performance was superior to the conventional
YOLOv3 algorithm in terms of both accuracy and speed.

Keywords: Internet of vehicles; autonomous driving; object detection; attention mechanisms;
spatial pyramid pooling

1. Introduction

Currently, the development of the Internet of vehicles in China is gaining increasing attention.
The Internet of vehicles integrates the Internet of Things, intelligent transportation, and cloud computing.
The most well-known and vigorously developed Internet of vehicles application is autonomous driving,
involving a driver assistance system. The system uses cameras, lasers, and radars to collect information
outside the car in real time and make judgments to remind the driver of abnormal conditions around.
This allows the driver to promptly identify hidden dangers, thereby improving driving safety. The rapid
detection of targets such as vehicles and pedestrians is an important task for driving assistance systems.
In recent years, object detection methods based on deep learning have stood out among many detection
algorithms, attracting the attention and use of professionals and scholars in the industry. Driver
assistance systems not only require an extremely high accuracy of object detection but also cannot miss
small targets that are difficult to detect in complex scenes.
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The computational aspect of deep learning is roughly divided into target classification [1–4],
object detection, semantic segmentation [5], and instance segmentation [6]. Object detection is improved
on the basis of various basic networks of target classification to realize the recognition of objects in
pictures or videos. Accordingly, object detection is the basis of subsequent semantic segmentation,
and instance segmentation, finding target objects for both tasks. Therefore, the pros and cons of object
detection algorithms are particularly important.

2. Theory of Related Methods

2.1. Current Background in the Field of Object Detection

Current object detection methods can be roughly divided into two categories. The first involves
two-stage methods, which are region-based detection methods, including R-CNN(regions with
convolution features) [7], SPP-Net(Spatial Pyramid Pooling Net) [8], fast R-CNN(fast regions with
convolution features) [9] and Faster R-CNN (faster regions with convolution features) [10]. R-CNN can
be regarded as the pioneering work of deep learning target detection. Its proposal improved upon
previous traditional detection algorithms. R-CNN uses the selective search (SS) algorithm [11] to
select a candidate frame (region proposal) and a neural network to extract the features of the image
before finally sending the obtained features to the classifier and regressor. However, a drawback of
R-CNN is that the size of the input picture must be fixed, and the repeated calculation of a candidate
frame in the CNN increases the computational complexity and seriously affects the test speed [12].
SPP-Net abandons R-CNN’s repeated calculation of candidate regions. Instead, it proposes the spatial
pyramid pooling structure, whereby the entire target image is passed to the CNN to obtain a feature
map of the entire image; then, according to the principle of the receptive field, the feature map is
directly mapped corresponding to the candidate frame to obtain the feature vector before finally using
the SPP layer to perform a unified size transformation on the feature vector. Because SPP-Net has
disadvantages such as the entire process being carried out in stages, the feature vector needing to be
written to disk, and the CNN parameters being unable to be backpropagated during training, fast
R-CNN proposes replacing the SPP layer with the region of interest (ROI) layer, thereby reducing
the amount of calculation. The ROI layer integrates convolutional networks, fully connected layers,
support vector machines (SVMs), and bounding box regression [13], no longer storing features to disk,
and the ROI layer has the function of backpropagation, whereby CNN parameters can be updated
while training SVMs and bounding box regression. However, fast R-CNN still uses the selective search
method to select candidate frames, preventing it from achieving real-time performance as well as
from truly implementing end-to-end training and testing. Therefore, Faster R-CNN was proposed,
which combines feature extraction, candidate box selection, classification, and bounding box regression
into one framework. The whole framework is divided into two modules, the region proposal network
(RPN) and fast R-CNN. Compared with fast R-CNN, it has improved accuracy and speed, and it allows
realizing end-to-end target detection; however, it is still far away from real-time target detection.

In order to solve the trade-off between real-time detection and accuracy, a one-stage method was
proposed, i.e., object detection based on regression. This type of method directly obtains the object’s
bounding box position and classification score (object score) through regression. Examples include
single shot multibox detector (SSD) [14–18] methods and you only look once (YOLO) [19–21] methods.
YOLO enabled solving the object detection as a regression problem for the first time, with a detection
speed of 45 frames per second (FPS); however, compared with Faster R-CNN, there were serious
positioning errors. YOLOv2 improved on the original YOLO by increasing the accuracy while
maintaining the advantages of the original speed. YOLOv2 proposes a method for simultaneous
training of target classification and detection, which achieves improvements in three aspects: accuracy,
speed, and robustness. Furthermore, YOLOv3 was developed, presenting a deep residual network able
to extract image features by referring to the residual network structure of ResNet, thereby obtaining
the best detection speed and accuracy. Although YOLOv3 has the ability to detect small targets, it is
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not applicable for long-distance small targets in complex situations, where missed detection, false
detection, and repeated detection can occur, as shown in Figure 1.
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2.2. Spatial Pyramid Pooling

In this paper, Yolov3-promote refers to the idea of space pyramid pooling in SPP-Net. In reality, the
image size is varied. The fully connected layer only accepts fixed-size feature maps, which will cause
those large images to be cropped or stretched before being transmitted to the network. These operations
will cause the original image to lose important target information or image distortion and other issues,
thus reducing the accuracy of the model. Therefore, adding spatial pyramid pooling to SPP-Net
will remedy the defect whereby the fully connected layer can only receive fixed-size feature maps.
The principle is shown in Figure 2.
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Figure 2. Principle of spatial pyramid pooling.

As shown in Figure 2, the input feature maps are obtained through multiple pooling windows
(the blue, green, and gray windows in the above figure have 16 × 256-d, 4 × 256-d and 1 × 256-d
feature maps, respectively). Then, merging them will provide a fixed-length output. This is the spatial
pyramid pooling described above. It can remedy the defect whereby the fully connected layer can
only receive fixed-size feature maps. Regardless of the size of the input, the SPP can always produce a
fixed-size output.

However, the SPP idea used in the YOLOv3-promote model proposed in this paper is not for
the above purpose. In this paper, the pooling operations involved in spatial pyramid pooling are
combined into one SPP Module, as shown in Figure 3.
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First, the SPP Module receives the output from the previous layer of convolution, which is the
19 × 19 × 512 feature map in Figure 3. The SPP Module is divided into four parallel branches, which
are the maximum pooling of convolution kernel sizes of 5 × 5, 9 × 9, and 13 × 13, and the rightmost
shortcut branch. The route layer in Figure 3 is to locate the output of the previous convolutional layer
and then pass the output to the second and third largest pooling layers. After the feature map passes
through the three pools of the SPP Module, the three resulting feature maps are fused and finally
passed to the YOLO detection layer. This paper draws on the idea of spatial pyramid pooling, mainly
in order to obtain the global and local features of the feature map, using the largest pooling kernel in
the SPP Module to be close to or equal to the size of the feature map that needs to be pooled; to better
fit the global features of the feature map, use a smaller pooling kernel, such as 5 × 5, to fit the local
features of the feature map, and then, through the final stitching, the fusion of the local and global
features can be obtained, which can better enrich the feature map. The expressive ability can detect
targets with large size differences in images more effectively and improve the detection accuracy of
the network.

2.3. Attention Mechanism

In recent years, the attention mechanism [22] has been widely used in the fields of natural
language processing and computer vision. The visual attention mechanism is obtained through the
response of the human brain. Humans obtain important target information by quickly viewing images.
This important target information is the so-called attention point [23]. The attention mechanism in
computer vision is similar to the attention mechanism of the human brain [24–26], and in essence,
it also selects the most important information currently needed from various target information.
Attention mechanisms are now divided into two categories: one is soft attention, and the other is
hard attention. The soft attention mechanism can focus on channel and region information and it
is differentiable. As such, the attention weights of channels and regions can be assigned through
back-propagation of the neural network so that the channels or regions corresponding to important
targets in the image receive more weight. Strong attention is not differentiable, and it is generally used
in reinforcement learning.

This paper proposes an efficient attention mechanism and then adds the SE Net attention
mechanism [27], the convolutional block attention module (CBAM) attention mechanism [28], and the
attention mechanism proposed in this paper to the backbone networks of ResNet50, ResNet101,
and ResNet152. We then compared their advantages and disadvantages in terms of parameter quantity
and accuracy. After many experiments, it was concluded that the attention mechanism proposed in
this paper has the advantages of fewer parameters and higher accuracy, as shown in Figure 4.

Although the SE module uses two fully connected layers to weight the channels, the dimensionality
reduction operation of the first full connection layer reduces the correlation between the channels.
Therefore, the attention mechanism used in this paper abandons the dimension reduction and captures
cross-channel interaction in an effective way, as shown in Figure 5.

The channel attention mechanism used in this paper uses global pooling to aggregate the spatial
characteristics of the feature map. Unlike the SE module, the attention module in this paper generates
channel weights quickly by using K one-dimensional convolutions, where K represents the coverage
of local cross-channel interaction; that is, there are K neighbors participating in the attention prediction
of a channel. In order to avoid manual tuning of K by cross-validation, the value of K is adjusted
adaptively through channel dimension mapping. Since the purpose of the attention mechanism in this
paper is to capture the local cross-channel interaction, the key is to determine the interaction coverage
(i.e., the kernel size K of 1D convolution). Although the interaction coverage of convolution blocks
with different channel numbers can be manually tuned, manual tuning of cross-validation requires a
lot of computing resources. Group convolutions have been successfully used to improve the CNN
architecture, where high-dimensional channels involve convolution of a given number of groups over a
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long distance. By analogy, the coverage ratio of the interaction (i.e., the kernel size k of 1D convolution)
should be proportional to the channel dimension C; that is, there is a mapping ϕ between K and C:

C = ϕ(K) (1)
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The mapping ϕ is unknown. Generally, the simplest linear function can be expressed
as C = y ∗ k + B. However, from the above analysis, K and C are in nonlinear proportion, and channel
C is generally the exponential power of 2. Therefore, we introduced a possible solution to convert the
linear function C = y ∗ k + B into the exponential form of nonlinear function:

C = ϕ(K) = 2(y+k+b) (2)
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Then, given the size of channel dimension C, the kernel size K can be solved by the following formula:

K = ∅(C) =

∣∣∣∣∣∣ log2 c
y

+
b
y

∣∣∣∣∣∣
odd

(3)

The odd in Formula (3) denotes the odd number nearest to each other. In this paper, y and b are
taken as 2 and 1, respectively. Because y and b are determined, K is only related to c. The larger the
value of c, the larger the value of K; that is, through mapping ∅, the high-dimensional channel has a
longer interaction range and vice versa.

Figure 6 shows the effect of adding an attention module. After the feature map passes through
the first SPP layer, the target with higher confidence is selected to map to the original image. The red
part in Figure 6 is the place with high confidence. It can be seen that the attention module proposed in
this paper can make the image focus more on the part of the target object and pay less attention to
the background. This shows that adding an attention mechanism can effectively enhance the important
features of the image, suppress the redundant features, and improve the network’s ability to recognize
foreground and background.
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2.4. Obtaining Anchor Points by K-Means Clustering

The anchor mechanism was first proposed by Faster R-CNN and used as the reference of the
object boundary box in the prediction image, namely the anchor box and prior box. Through the
anchor mechanism, the convolution network does not need to use the sliding box method and then
go to each pixel to find the target box in turn, which not only improves the running speed of the
model but also reduces the complexity so that the accuracy of the model is improved. The SSD and
YOLO series are inspired by using the anchor mechanism through Faster R-CNN, and they also use
the anchor mechanism one after another and have achieved good results. In this paper, an anchor
mechanism is used to generate prior boxes for the KITTI (Karlsruhe Institute of Technology and
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Toyota Technological Institute) dataset (Currently the world’s largest algorithm evaluation data set in
autonomous driving scenarios); that is, the image is divided into N × N grid cells, and each cell is
allocated with three anchors. Therefore, each image will generate N ×N × 3 prior boxes, which can
significantly improve the accuracy and efficiency of prediction.

The application of the anchor mechanism in Faster R-CNN and SSD series is relatively traditional.
Faster R-CNN generates nine anchors by sliding on the feature map according to the frame size and
aspect ratio, which is similar to the sliding box. Similarly, the SSD algorithm generates six different
size anchors. The above methods are more traditional, and obtaining the anchor information manually
will inevitably cause errors. Therefore, this paper uses the K-means clustering [29] method to cluster
the marked ground truth box in the KITTI dataset and then selects the appropriate box as the anchor
box, which has a better effect on the subsequent vehicle and pedestrian object detection, which can
make the model quickly converge and save training time. Because the use of traditional Euclidean
distance will cause more errors in the large bounding box than in the small one, the distance formula
in K-means clustering method is defined as follows:

d(box, centroid) = 1− IOU(box, centroid) (4)

In this paper, by predicting the relative position relative to the grid cell, the bounding box
coordinates of the target vehicle and pedestrian are obtained. Each bounding box has four coordinates,
which are tx, ty, tw and th. They are defined as follows:

bx = σ(tx) + cx (5)

by = σ
(
ty
)
+ cy (6)

bw = awetw (7)

bh = aheth (8)

Among them, cx and cy are the x and y distance between the grid cell and the origin of the upper
left corner, respectively, and aw and ah are the width and height of the anchor box, respectively.

2.5. Loss Function

Interest over Union (IoU), i.e., the intersection and union ratio—in the target detection task,
the bounding box is generally used to represent it. IoU calculates the ratio of the intersection and
union of the predicted bounding box and the real bounding box. IoU is calculated as follows:

IoU =
A∩ B
A∪ B

(9)

When IoU is used to measure the loss of positioning, Loss (IoU) = 1 - IoU. However, there are two
problems with IoU. One is that if there is no intersection between the prediction box and the real box,
i.e., IoU = 0, the distance between the two frames cannot be reflected, and there is no gradient in the
loss function at this time, so it is impossible to adjust the network parameters by back-propagation,
which will produce certain errors. Second, when the calculated IoU values are the same in several
cases, the positioning of the prediction frame is not the same, as shown in Figure 7.

As can be seen from Figure 7, although the IoU is the same, the coincidence degree of the real box
and the prediction box is completely different. Therefore, this paper uses GIoU(generalized intersection
over union) Loss as the loss function, which is defined as follows:

GloU = loU−
C− (A∪ B)

C
(10)
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where C represents the smallest box that wraps A and B. As shown in Figure 7, their GIoU values are
0.24, 0.33, and −0.1, respectively. The regression effect in the middle of Figure 7 is the best. When the
real box and the prediction box overlap, namely |A∪ B| = |A∩ B|, GIoU = 1 can be calculated by the
formula. When the real box and prediction box do not overlap, when A and B are far apart, GIoU tends
to −1; that is, the range of GIoU is between −1 and 1. When the real box and the prediction box do not
overlap, IoU is always equal to 0, and the distance between the two boxes cannot be displayed.

To sum up, IoU only focuses on different overlapping regions, while GIoU not only focuses on
overlapping regions but also focuses on the situation without overlapping, which can better reflect the
overlapping degree of prediction box and real box.
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3. Results

In this paper, we propose the YOLOv3-promote method on the open dataset KITTI. The experiment
was based on the deep learning framework of Pytorch. The hardware configuration of the experiment
was as follows: the processor was an Intel (R) core (TM) i9-9900k CPU @ 3.60 GHz; the memory size
was 16.0 GB; the video card was single 2080ti, and the video memory size was 11 GB. The configuration
environment of the software was Windows 10, CUDA 10.2, CUDNN 7.6.5, and the programming
language was Python 3.7.

3.1. Dataset Description

The KITTI dataset [30,31] was co-founded by the Karlsruhe Institute of Technology in Germany
and the Toyota American Institute of Technology. It is the largest computer vision algorithm evaluation
dataset in the automatic driving scene in the world. KITTI contains a variety of real-scene image
data, such as urban, rural, and highway areas, and each image contains vehicles and pedestrians
as well as various shadows, different illuminations, occlusions, and truncations, which provides an
effective reference for the robustness of the algorithm. The labels of the KITTI original dataset are
divided into eight categories: Car, Van, Truck, Pedestrian, Pedestrian (sitting), Cyclist, Tram, and Misc.
However, since the primary goal of automatic driving in the application of Internet of vehicles is to
detect the targets of vehicles and pedestrians, this paper changes the original eight categories of labels
into three categories, classifying Van, Truck, and Tram into Car, Pedestrian and Pedestrian (sitting)
as Person, and removes the Misc category. The final three categories are Car, Person, and Cyclist.
This paper selected 7481 images in the dataset as the experimental data and allocated one-tenth of the
dataset as the verification set.
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3.2. Execution Details

The system presented in this article was trained and tested on images of the same size, and
we compared YOLOv3 as a baseline with the YOLOv3-promote proposed in this article. The input
image was zoomed to 608 × 608 pixels. Through the darknet53 network, SPP, and attention modules,
the information of the target vehicle and pedestrian in the image was extracted, and three feature
maps with different scales were used to predict the target location and type. For anchor box selection,
this paper used the K-means algorithm to generate a total of nine anchor points for the labeled images
in KITTI dataset: (7,66), (9,23), (13,34), (19,54), (22,161), (24,36), (35,65), (57,107), and (96,196). Figure 8
shows the distribution of the nine anchors in all real frames.

Figure 8. Anchor distribution.

In the whole training process, the backbone network used the model parameters of
Darknet53.conv.74. YOLOv3-promote has carried out a total of 2000 epochs. The batch size was
set to 64, and the number of subdivisions was 16. The momentum parameter and weight decay
regularization term were set to 0.9 and 0.0005, respectively, and the learning rate parameter was set
to 0.001. When iterating to 7000 times and 10,000 times, the learning rate decreased to one-tenth of
the previous. In addition, this paper also used data enhancement to generate more training samples.
By setting the saturation parameter equal to 1.5, exposure amount equal to 1.5, hue equal to 0.1, and
data jitter and horizontal flipping, the robustness was increased and the accuracy of the model and the
generalization of various real environments were improved.

3.3. The Method of the Network Design

Based on YOLOv3, this paper added a spatial pyramid pooling. Through the SPP module,
the local feature information and global feature information in the feature map are fused to further
enrich the information expression ability of the feature map and improve the detection ability of
multiple targets. In addition, this paper added an attention mechanism to YOLOv3 through a local
cross-channel, non-dimensionality reduction channel interaction method, which autonomously learns
the weight of each channel, thereby eliminating redundant features and enhancing features containing
key information. The network structure of YOLOv3-promote based on spatial pyramid pooling and
attention mechanism is shown in Figure 9. The orange and purple parts in Figure 9 are the spatial
pyramid pooling module and the attention module, respectively.
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The backbone of YOLOv3-promote is Darknet53. The network refers to the residual structure
proposed by ResNet. A total of 23 residual modules were used in the backbone to avoid the risk
of overfitting caused by increasing the network depth. At the same time, YOLOv3-promote uses
convolution with a stride of two to achieve down-sampling [32], abandoning the pooling layer used in
many networks. The purpose of this was to further reduce the negative effect of gradients caused by
pooling and improve the accuracy of the network. The Convolutional layer in Figure 9 is composed
of three components, namely Conv2d, Batch Normalization, and Leaky Relu. In order to enhance
the accuracy of the network for small object detection, YOLOv3-promote uses up-sample and fusion
(here called Concatenation) methods similar to feature pyramid networks (FPN) [33] to construct a
convolutional layer containing three different scales in the feature pyramid, namely: 19 × 19, 38 × 38,
and 76 × 76 resolution. In Figure 9, the size of the feature map is increased through the 93rd and
112th up-sampling layers, and the route layer of the 94th and 113th layers in Figure 9 is obtained
by Concatenation with the shallow feature maps. For example, the 112th layer up-samples the
38 × 38 × 128 feature map into a 76 × 76 × 128 feature map and then cascades it with the 76 × 76 × 256
feature map of the 36th layer to obtain a 76 × 76 × 384 Route layer feature.Information 2020, 11, x FOR PEER REVIEW 11 of 15 
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The 90th, 109th, and 128th layers in Figure 9 are the YOLO layers, that is, the detection layers.
The sizes of the three detection layers are 19 × 19 × 24, 38 × 38 × 24, and 76 × 76 × 24. Since the smaller
the size of the feature map, the larger the receptive field, the 19 × 19 × 24 detection layer is used to
detect large targets, and the 38 × 38 × 24 detection layer is used to detect medium-sized targets, and
the 76 × 76 × 24 detection layer tends to detect some small targets. Because each grid cell is assigned
three anchor boxes, the predicted vector length of each cell is 3 × (3 + 4 + 1) = 24, where 3 corresponds
to the three types of Car, Cyclist, and Person in the modified KITTI dataset in this article, 4 represents
the coordinate information (x, y, w, h) corresponding to the detection frame, and 1 represents the
object score.

3.4. Detection Result

In this paper, we use mean average precision (mAP), F1 Score, namely the number of floating-point
operations per second, FPS(frames per second), and parameters as the evaluation criteria.

Table 1 lists the comparison between the method proposed in this paper and the traditional
YOLOv3 method. It can be seen that although the method proposed in this paper increases the number
of model parameters by 3.7%, the mAP for target object detection is much higher than that of traditional
YOLOv3, which makes many targets that could not be detected before now able to be detected; the F1
score of this method is 83.2. Since F1 is the average of precision and recall, and the precision and
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recall of YOLOv3-promote are higher than the original YOLOv3, the value of F1 is naturally higher
than that of the traditional YOLOv3 system. Under the same image input size, because the parameter
amount of the YOLOv3-promote model is 2 MB higher than the traditional YOLOv3, the amount of
calculation is a little more than the original, so the FPS is slightly reduced, but overall, the improved
YOLOv3-promote FPS is basically the same as YOLOv3. Figure 10 shows the mAP diagram of the
YOLOv3-promote method proposed in this article after 500 epochs.

Table 1. Performance comparison of algorithms.

Method Input mAP F1 FPS Parameter

YOLOv3 608*608 86.1% 73.9 45.1 61.5 M
YOLOv3-promote 608*608 91.4% 83.2 43.7 63.8 M
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The model where the maximum mAP is 91.4 was selected as the optimal model and compared
with the optimal model of YOLOv3. The comparison chart is shown in Figure 11, which is classified by
day, night, extreme weather, multi-target, and small targets.

As can be seen from Figure 11, in the daylight, the effect gap between the two algorithms is the
smallest, but YOLOv3 still misses several small target vehicles (the missed detection vehicles have been
marked with yellow arrows in Figure 11), and all of them are detected in this paper; as for the night, the
difference between the two algorithms is particularly obvious, and YOLOv3 faces more difficulties with
correct identification due to the lack of attention mechanism. In extreme weather, YOLOv3 does not
detect small targets in the distance due to the interference of water mist in the window; in the case of
multi-target and small targets, the difference between YOLOv3 and the proposed YOLOv3-promote is
reflected in the small target detection in the distance. Because the spatial pyramid pooling proposed in
this paper can effectively combine the local features and global features of the feature map, both large
and small targets can be detected accurately.
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4. Conclusions

By adding spatial pyramid pooling and an attention mechanism, the improved network structure
of YOLOv3-promote not only integrates the local and global features of the image, but also improves
the generalization of the model for various environmental targets and makes each channel of the feature
map learn their respective weights, which makes the network more sensitive to the target objects in
the image. Whether it is during the day, night, or extreme weather conditions, the detection effect
for multiple targets and small targets is better than the previous YOLOv3. Although the traditional
YOLOv3 has the ability to detect small targets, it is not obvious for long-distance small targets in the
above complex situations, and it is easy to miss detection, false detection, and repeated detection.
The method proposed in this paper perfectly solves the above problems. The K-means clustering
method is used to automatically generate an anchor that conforms to the data set, which further
speeds up the model convergence. Using GIoU as a new loss function, extra attention is paid to the
situation when there is no overlap, which better reflects the degree of overlap between the predicted
frame and the real frame. Experiments on the KITTI dataset show that YOLOv3-promote can achieve
real-time performance and is superior to the current YOLOv3 detection algorithms in vehicle and
pedestrian target detection. In the automatic driving of the Internet of vehicles applications, more
lightweight models are needed for real deployment to reduce the requirements of various hardware.
Therefore, further research will be conducted on how to compress the model size and increase the
accuracy slightly in the future.
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