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Abstract: A multi-terminal network, in which an encoder is assisted by a side-information-aided
helper, describes a memoryless identically distributed source to a receiver, is considered. The encoder
provides a non-causal one-shot description of the source to both the helper and the receiver.
The helper, which has access to causal side-information, describes the source to the receiver
sequentially by sending a sequence of causal descriptions depending on the message conveyed
by the encoder and the side-information subsequence it has observed so far. The receiver reconstructs
the source causally by producing on each time unit an estimate of the current source symbol based
on what it has received so far. Given a reconstruction fidelity measure and a maximal allowed
distortion, we derive the rates-distortion region for this setting and express it in terms of an auxiliary
random variable. When the source and side-information are drawn from an independent identically
distributed Gaussian law and the fidelity measure is the squared-error distortion we show that for
the evaluation of the rates-distortion region it suffices to choose the auxiliary random variable to be
jointly Gaussian with the source and side-information pair.

Keywords: source coding; causal helper; causal side-information

1. Introduction

In the classical source coding with decoder side information problem, the source and side
information are generated by independent drawings (Xk, Yk) of the pair (X, Y) ∼ PXY. The encoder
forms a description of the source sequence Xn = (X1, . . . , Xn) using a map f (n) : X n → {1, . . . , b2nRc},
while the decoder forms its reconstruction X̂n depending on both the side-information sequence Yn

and the index T ∈ {1, . . . , b2nRc} conveyed by the encoder. In their seminal work [1], Wyner and Ziv
derived the rate distortion function for this setting, given a fidelity measure, when X̂n can depend on
Yn in an arbitrary manner. Yet, Wyner–Ziv source coding with non-causal decoder side-information
involves binning the implementation of which is complex.

A successive refinement for the Wyner–Ziv problem with side-information (Y, Z) is a variant of
the Wyner–Ziv model, in which the encoder provides a two-layer description of the source sequence
Xn to a pair of decoders. Decoder 1, which obtains just the course description layer, has available
as non-causal side-information the memoryless vector Zn, while Decoder 2, which obtains both
description layers, has available as non-causal side-information the memoryless vector Yn. It is further
assumed that the reconstruction formed by Decoder 2 should be of smaller distortion compared to that
formed by Decoder 1. Such a model has been considered in [2], wherein a complete characterization of
the rates-distortion region has been obtained for the case where Z is stochastically degraded to Y with
respect to X—i.e., X ↔ Y ↔ Z forms a Markov chain.

The work [3] studies an extension of the model of [2] where a conference link of given capacity
allows the unidirectional cooperation between Decoder 1 and Decoder 2—i.e., Decoder 1 functions
also as a helper. The results in [3] are partially tight in the sense that the characterization of the
encoder rates is conclusive, the remaining gap being in the characterization of the helper’s rate.

Information 2020, 11, 553; doi:10.3390/info11120553 www.mdpi.com/journal/information

http://www.mdpi.com/journal/information
http://www.mdpi.com
https://orcid.org/0000-0002-8206-9209
http://www.mdpi.com/2078-2489/11/12/553?type=check_update&version=1
http://dx.doi.org/10.3390/info11120553
http://www.mdpi.com/journal/information


Information 2020, 11, 553 2 of 18

Thus, with non-causal side-information at both decoders, the successive refinement for the Wyner–Ziv
problem with a helper is yet unsolved.

Motivated by practical delay-constrained sequential source coding with decoder side information
Weissman and El Gamal considered in [4], a scheme with causal side information at the decoder,
where the sequence of reconstructions X̂n = (X̂1, . . . , X̂n) is formed sequentially in a causal manner
according to X̂k = X̂k(T, Yk), and derived the corresponding rate distortion function. Similar to [1],
the rate distortion function in [4] is expressed in terms of an auxiliary random variable, thus leaving
the optimal choice of which an open issue depending on the specifics of the model. For the Gaussian
setting where (X, Y) are Gaussian, the authors in [4] compute an upper bound on the rate distortion
function by choosing the auxiliary random variable to be jointly Gaussian with X, while leaving the
question of whether this choice is optimal yet an open problem.

With the vision that modern network design will support the use of cooperation links in favor of
reduction of encoding/decoding complexity and network deployment constraints, this work considers
an extension of the model [4], involving a causal helper and causal side information at the decoder,
which is described as follows. The components of a trivariate independent identically distributed (IID)
finite-alphabet source {Xk, Yk, Zk}∞

k=1 are observed by three terminals. The source component {Xk}∞
k=1

is observed by the encoder, while the source component {Yk}∞
k=1 is observed by the helper. Both the

encoder and the helper describe the length-n source sequence Xn according to a given fidelity to the
decoder in two steps. First, the encoder when given Xn sends a rate-R description of it to both the
helper and the decoder. Then, the helper sends to the decoder, per each source symbol Yk, a causal
description depending on the message it had received from the encoder and the source subsequence
Yk it had observed so far, with the aggregate rate not exceeding Rh. The decoder, which observes the
source component {Zk}∞

k=1 in a causal manner, per channel use k, uses the descriptions it had received
so far and the source subsequence Zk to form its reconstruction X̂k for the source symbol Xk. Given a
fidelity measure and a maximal allowed distortion, the goal is to determine the set of all rate pairs
(R, Rh) that satisfy the distortion constraint.

Causal decoder side information has been considered as well in context with successive refinement.
With the aim of reducing encoder/decoder complexity, a two layer description model with successive
refinement has been considered in [5], under the setting that the side information is available
causally at each of the decoders. A single-letter characterization of the rates-distortion region is
obtained in [5], irrespective of the relative ordering of the side information quality at the decoders.
Furthermore, the direct part in [5] demonstrates that similarly to [4] with causal side-information
at the decoders the optimal code avoids binning, hence its implementation is practically appealing.
The extension of the model [5] with a causal helper has recently been studied in [6].

2. Problem Formulation

Formally, our problem can be stated as follows. A discrete memoryless source (DMS) (X , PX)

is an infinite sequence {Xi}∞
i=1 of independent copies of a random variable X taking values in the

finite set X with generic law PX. Similarly, a triple source (XYZ , PXYZ) is an infinite sequence of
independent copies of the triplet of random variables (X, Y, Z), taking values in the finite sets X ,Y
and Z , respectively, with generic joint law PXYZ. Since our goal is to encode the source X, let X̂ denote
any finite reconstruction alphabet and let d : X × X̂ → [0, ∞) be a single-letter distortion measure.
The vector distortion measure is defined as

d(x, x̂) =
1
n

n

∑
i=1

d(xi, x̂i), ∀ x ∈ X n, x̂ ∈ X̂ n.

A system diagram appears in Figure 1.
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Figure 1. The causal listening-helper model.

Definition 1. An
(
n, M(n), ∏n

k=1 L(n)
k , D

)
code for the source X with causal side-information (SI) (Y, Z) and

causal helper, consists of:

1. An encoder mapping

f (n) : X n → {1, . . . , M(n)}. (1)

2. A unidirectional conference between the helper and the decoder consisting of a sequence of causal
descriptions

f (n)1,k : {1, . . . , M(n)} × Y k → {1, . . . , L(n)
k }, k = 1, . . . , n (2)

and
3. A sequence g(n)1 , . . . , g(n)n of decoder reconstructions

g(n)k : {1, . . . , M(n)} × {1, . . . , L(n)
1 } × . . .× {1, . . . , L(n)

k } × Z
k → X̂ , k = 1, . . . , n (3)

such that

E d
[

Xn,
(

g(n)1
(

f (n)(Xn), f (n)1,1 ( f (n)(Xn), Y1), Z1
)
, . . . ,

g(n)k
(

f (n)(Xn),
{

f (n)1,j ( f (n)(Xn), Y j)
}k

j=1, Zk), . . . ,

g(n)n
(

f (n)(Xn),
{

f (n)1,j ( f (n)(Xn), Y j)
}n

j=1, Zn))] ≤ D. (4)

The rate tuple (R, Rh) of the code is

R =
1
n

log M(n)

Rh =
1
n

n

∑
k=1

log L(n)
k . (5)

Given a non-negative distortion D, the tuple (R, Rh) is said to be D-achievable for X with
causal SI (Y, Z) if, for any δ > 0, ε > 0, and sufficiently large n, there exists an (n, exp[n(R +

δ)], exp[n(Rh + δ)], D + ε) code for the source X with causal SI (Y, Z) and causal helper. The collection
of all D-achievable rate tuples is the achievable source-coding region and is denoted byR(D).

In this work, we provide a single-letter characterization forR(D). In contrast to [5], a consequence
of Definition 1 is that R(D) may depend on the joint law of the triple PXYZ, not only through the
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marginal laws PXY and PXZ. This is due to the fact that the decoder acquires, in addition to its
private side information Z, some additional side information on Y via the conference link. As a result,
the expectation in (4), which takes into account the mapping g(n)k (·), is taken over the joint law PXYZ
and not just over the marginal law PXZ, as is the case in [5].

Finally, although not of the finite alphabet, of particular interest to us is the Gaussian source.
This is a memoryless source, where (X, Y, Z) are centered jointly Gaussians with each pair (Xi, Yi)

drawn such that PXY satisfies

Yi =
√

ρXi + Wi (6)

where ρ > 0 is a fixed constant, Xi ∼ N (0, 1) and Wi ∼ N (0, 1) are mutually independent.
Moreover, Zi is drawn according to

Zi = aXi + bYi + Ti (7)

where a and b are real numbers and Ti ∼ N (0, 1) is independent of (Xi, Yi). Furthermore, in this case,
the fidelity measure will be

E d[Xn, X̂n] ,
1
n

n

∑
i=1

E
[
(Xi − X̂i)

2], (8)

in which case we may restrict the reproduction functions g(n)k to be the MMSE estimates of

Xk, k = 1, . . . , n given f (n)(Xn), the sequence of causal descriptions
{

f (n)1,j ( f (n)(Xn), Y j)
}k

j=1
, and the

side-information Zk. That is,

X̂k = E
[

Xk

∣∣∣ f (n)(Xn),
{

f (n)1,j ( f (n)(Xn), Y j)
}k

j=1
, Zk
]
.

In the Gaussian network setting, our focus will be on determining the optimal choice of the
auxiliary random variable by means of which the rates-distortion region is defined. Specifically,
we will show that choosing it to be jointly Gaussian with X is optimal.

3. Main Results

Given a maximal allowed distortion D, define R∗(D) to be the set of all rate pairs (R, Rh) for
which there exist random variables (U, V), taking values in finite alphabets U ,V , respectively, such that

1. U ↔ X ↔ (Y, Z) forms a Markov chain.
2. Conditioned on U, X ↔ Y ↔ V forms a Markov chain.
3. There exist deterministic maps

f̃1 : U × Y → V
g : U × V ×Z → X̂ (9)

such that, with V , f̃1(U, Y),
Ed(X, g(U, V, Z)) ≤ D. (10)

4. The alphabets U ,V satisfy

|U | ≤ |X |+ 2

|V| ≤ |X |(|X |+ 2) + 1. (11)
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5. The rates R and Rh satisfy

R ≥ I(X; U) (12a)

Rh ≥ H(V|U) = I(Y; V|U). (12b)

Our first result is a single-letter characterization of the rates-distortion region.

Theorem 1. R(D) = R∗(D).

Proof. See Section 4.1.

Remark 1. The converse holds as well for the setting where the causal helper and the reconstructor benefit from
causal disclosure—i.e., are cognizant of the past realizations of the source sequence, hence they are allowed to
depend also on Xk−1, when forming f (n)1,k and X̂k, respectively. That is,

f (n)1,k = f (n)1,k ( f (n)(Xn), Yk, Xk−1),

X̂k = g(n)k

(
f (n)(Xn),

{
f (n)1,j ( f (n)(Xn), Yi, Xi−1)

}k

j=1
, Zk, Xk−1

)
. (13)

3.1. The Gaussian Setting with Z = ∅.

To simplify the presentation, we consider first the Gaussian setting with Z = ∅. In this case,
the region R(D) is defined as the set of rate pairs (R, Rh) for which there exist random variables
(U, V), taking real values, such that

1. U ↔ X ↔ Y forms a Markov chain.
2. Conditioned on U, X ↔ Y ↔ V forms a Markov chain.
3. There exist deterministic maps

f̃1 : U × Y → V
g : U × V → X̂ (14)

such that, with V , f̃1(U, Y),

D ≥ E
[(

X− g(U, V)
)2]

, σ2
X|UV . (15)

4. The rates R and Rh satisfy (12a) and (12b), respectively.

Our second result characterizes the optimal choice of PXU in the Gaussian setting.

Theorem 2. For the evaluation of R(D) when (X, Y) are Gaussian, it suffices to assume that (X, U) are
jointly Gaussian.

Proof. For the treatment to follow, let us define the Gaussian channel Y =
√

$X + W where X has
an arbitrary law with E[X2] ≤ 1, W ∼ N (0, 1) is independent of X, and $ > 0 is the channel
signal-to-noise ratio. We shall denote by G($)

Y|X the conditional law of Y given X for this additive

Gaussian model. Furthermore, the notation (Un, Xn, Yn) ∼ PUnXnG
($)
Yn |Xn

would imply that (Un, Xn) ∼
PUnXn and Yn =

√
$Xn + Wn with Wn ∼ N (0, 1) independent of (Un, Xn). Using this notation, the law

PUXYV definingR(D) (see also (45) ahead) may equivalently be expressed as

PXUYV = PXUG
($)
Y|XPV|YU . (16)
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Henceforth, we denote a law which factors as in (16) by X ↔ Y ↔ V|U—i.e., conditioned on U,
X ↔ Y ↔ V forms a Markov chain and, furthermore, PY|X = G($)

Y|X independently of the rest.
Define the region (12a) and (12b) subject to constraint (15) by OK, where the subscript K denotes

the covariance constraint (15). The region OK is a closed convex set.
In line with [7,8], we define a λ-parametrized family of functions which are related to the sum

rate associated withR(D).
Fix some λ > 1, and consider the minimization of the λ-sum rate defined as

min
(R,Rh)∈OK

R + λRh. (17)

Observe that

min
(R,Rh)∈OK

R + λRh

(a)
≥ inf

PXUYV : X↔Y↔V|U
σ2

X|UV≤D

I(X; U) + λI(Y; V|U), (18)

where (a) follows using the lower bounds (12a) and (12b). Since the marginal law of X in our model (6)
is Gaussian, the differential entropy h(X) is fixed, thus for the minimization of (18) over a law of the
form (16), we define the following functional of PXU (i.e., of the conditional law PX|U)

sλ(X, $|U) , −h(X|U) + inf
V : X↔Y↔V|U

σ2
X|UV≤D

λI(Y; V|U). (19)

Thus, the minimum in (17) may be expressed as

Vλ($) , inf
PXU : E[X2]≤1

sλ(X, $|U). (20)

Henceforth, the set of laws PUXYV defined by (16) which satisfy σ2
X|UV ≤ D will be denoted by Q

and will be attributed as the feasible set.
As shown below, with a proper choice of λ, the functional (19) exhibits a “pair grouping” property

with respect to the input X in the sense that the value of sλ does not increase under this operation.
Having established that, we follow the same steps as in the proof of ([9] Theorem 9) to establish that
the objective (20) is attained when PX|U is Gaussian. More specifically,

• Lemma 1 shows that the value of sλ “improves” under the pair grouping operation.
• With the proper time-sharing of two distributions attaining the infimum in (20) and satisfying

the extremal property defined in (23) ahead, Lemma 2 proves that the pair grouping operation
exhibits Gaussianity in the sense of Bernstein’s characterization.

Lemma 1. Let PXU be a law on X × U , let PUXY = PXUG
($)
Y|X , and let (U1, X1, Y1) and (U2, X2, Y2) be two

independent copies of (U, X, Y). Define

X+ ,
X1 + X2√

2
, X− ,

X1 − X2√
2

(21)

and similarly

Y+ ,
Y1 + Y2√

2
, Y− ,

Y1 −Y2√
2

.

with U = (U1, U2), there exists some λ∗ > 1 such that for any λ ≥ λ∗, the following inequalities hold

2sλ(X, $|U) ≥ sλ(X+, $|X−, U) + sλ(X−, $|Y+, U) (22a)
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2sλ(X, $|U) ≥ sλ(X+, $|Y−, U) + sλ(X−, $|X+, U). (22b)

Proof. See Section 4.2.

Assume that the infimum in (20) is attained, and let P denote the subset of laws PXU achieving
the minimum. Suppose further that there exists a law PXU ∈ P such that, for (Y, X, U) ∼ PXUG

($)
Y|X,

for any other PX′U′ ∈ P where (Y′, X′, U′) ∼ PX′U′G
($)
Y′ |X′

h(Y|U)− h(X|U) ≤ h(Y′|U′)− h(X′|U′). (23)

Denote the value of the LHS of (23) by g∗($).

Lemma 2. Fix ε > 0. Let PXU be an admissible law such that

sλ(X, $|U) ≤ Vλ($) + ε (24a)

h(Y|U)− h(X|U) ≤ g∗($) + ε. (24b)

There exists a law (Y′, X′, U′) ∼ PX′U′G
($)
Y′ |X′ satisfying

sλ(X′, $|U′) ≤ Vλ($) + 2ε (25)

and

h(Y′|U′)− h(X′|U′) + 1
2

I(X1 + X2; X1 − X2|Y1, Y2, U1, U2) ≤ g∗($) + ε, (26)

where (U1, X1, Y1) and (U2, X2, Y2) denote independent copies of (U, X, Y).

Proof. See Section 4.3.

Inequality (26) combined with assumption (23) and Lemma 6 in ([9] Section VI.B) establish
the following.

Lemma 3. There exists a sequence {Xn, Un}, such that for each n ≥ 1, (Xn, Un) is feasible,

lim
n→∞

sλ(Xn, $|Un) = Vλ($) (27)

and there exists a feasible law PX∗U∗ on R×U such that

(Xn, Un)
D→ (X∗, U∗) ∼ PX∗U∗

and with Un , (U1,n, U2,n), Yn , (Y1,n, Y2,n), where the tuple (U1,n, X1,n, Y1,n) and the tuple
(U2,n, X2,n, Y2,n) are two independent copies of (Un, Xn, Yn) ∼ PUnXnG

($)
Yn |Xn

, we have

lim inf
n→∞

I(X1,n + X2,n; X1,n − X2,n|Yn, Un = u) = 0 for PU∗ × PU∗ − a.e u. (28)

Finally, we apply to identity (28) the extended form of Bernstein’s theorem (see [10,11]), which is
proved in ([9] Appendix A), to conclude that X1,∗|{U1,∗=u1} (i.e., the conditional random variable:
X1,∗ conditioned on U1,∗ = u1) and X2,∗|{U2,∗=u2} are independent Gaussian random variables of
equal variance.

Since the marginal of X is Gaussian, with no loss in generality, we may choose (X, U) to be jointly
Gaussian, which establishes our claim in Theorem 2.
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3.2. The Gaussian Setting with Decoder Side-Information Z

In the Gaussian setting where the decoder side-information Z in non-void, using our previous
definition Y =

√
ρX + W, let

Z = aX + bY + T (29)

for a pair of real numbers (a, b) where T ∼ N (0, 1) is independent of (X, Y) and U. For arbitrary
X with E[X2] ≤ 1, let us define by G̃($,a,b)

YZ|X the conditional law obtained by forming the pair (Y, Z),
when given X, via the additive independent Gaussian pair (W, T) as described above.

The rates-distortion regionR(D) is defined in Theorem 1 with

Ed(X, g(U, V, Z)) = E
[(

X− g(U, V, Z)
)2]

, σ2
X|UVZ ≤ D (30)

and it is evaluated over a law of the form

PXUYZV = PXUG̃
($,a,b)
YZ|X PV|YU . (31)

Consequently, for the minimization of (20), we consider the functional

sλ(X, $|U) , −h(X|U) + inf
V : X↔Y↔V|U

σ2
X|UVZ≤D

λI(Y; V|U). (32)

under a law of the form (31). Next, in Lemma 1, for PXU , a law on X ×U and PUXYZ = PXUG̃
($,a,b)
YZ|X we

let (U1, X1, Y1, Z1) and (U2, X2, Y2, Z2) be two independent copies of (U, X, Y, Z).
Upon defining (X−, X+) and (Y−, Y+) as before, we also define

Z+ ,
Z1 + Z2√

2
, Z− ,

Z1 − Z2√
2

.

It can be verified that

Z+ = aX+ + bY+ +
1√
2
(T1 + T2) , aX+ + bY+ + T+

Z− = aX− + bY− +
1√
2
(T1 − T2) , aX− + bY− + T− (33)

where T− and T+ are independent. Furthermore, the pair (T−, T+) is independent of
(U, X−, X+, Y−, Y+) and is equal in distribution to the pair (T1, T2). Thus, the simultaneous unitary
transformation (Y1, Y2) 7→ (Y−, Y+) and (Z1, Z2) 7→ (Z−, Z+) preserves the Gaussian nature of the
channel and factors according to

PUX−X+Y−Y+Z−Z+V = PX−X+UG̃
($,a,b)
Y−Z− |X−G̃

($,a,b)
Y+Z+ |X+

PV|UY−Y+
. (34)

Observe that with the choice of U , U = (U1, U2) and V = (V1, V2) where (U1, X1, Y1, Z1, V1)

and (U2, X2, Y2, Z2, V2) are two independent copies of (Ũ, X, Y, Z, Ṽ) such that X ↔ Y ↔ Ṽ|Ũ and
σ2

X|ŨṼZ ≤ D –i.e., PŨXYZṼ is feasible for the minimization of (20), we have

σ2
X+ |UY−Z+V ≤ σ2

X+ |UVZ+
≤ D

σ2
X− |UY+Z−V ≤ σ2

X− |UVZ− ≤ D. (35)

Thus, Lemma 1 holds for this setting with decoder side-information Z as well.
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4. Proofs

4.1. Proof of Theorem 1

Converse: Assume that the pair (R, Rh) is D-achievable. For j = 1, . . . , n with the convention
Z0 , ∅, define the RV’s

T , f (n)(Xn) (36a)

Vj , f (n)1,j ( f (n)(Xn), Y j) , j = 1, . . . , n (36b)

Uj , (T, X j−1, Y j−1, Zj−1) , j = 1, . . . , n. (36c)

The rate R is lower bounded as follows

nR ≥ log M(n) ≥ H(T)

= I(Xn; T) =
n

∑
k=1

I(Xk; T|Xk−1)

(a)
=

n

∑
k=1

I(Xk; TXk−1)

(b)
=

n

∑
k=1

I(Xk; TXk−1Yk−1Zk−1)

=
n

∑
k=1

I(Xk; Uk). (37)

Here, (a) follows since Xn is memoryless, and (b) follows since Xk ↔ (T, Xk−1)↔ (Yk−1, Zk−1)

forms a Markov chain.
We may now lower bound Rh as follows

nRh ≥
n

∑
k=1

log L(n)
k ≥ H(V1, V2, . . . , Vn)

≥ H(V1, V2, . . . , Vn|T)

=
n

∑
k=1

H(Vk|TVk−1)

≥
n

∑
k=1

H(Vk|TVk−1Xk−1Yk−1Zk−1)

(c)
=

n

∑
k=1

H(Vk|TXk−1Yk−1Zk−1)

(c)
=

n

∑
k=1

I(Yk; Vk|TXk−1Yk−1Zk−1)

=
n

∑
k=1

I(Yk; Vk|Uk), (38)

where (c) follows since Vj is a deterministic function of (T, Y j).
The sum-rate can be lower bounded as follows

n(R + Rh) ≥ log M(n) +
n

∑
k=1

log L(n)
k

≥ H(T) + H(V1, . . . , Vn)

≥ H(T) + H(V1, . . . , Vn|T)
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= I(T; Xn) + H(V1, . . . , Vn|T)

=
n

∑
k=1

I(Xk; T|Xk−1) + H(V1, . . . , Vn|T)

(d)
≥

n

∑
k=1

[I(Xk; Uk) + I(Yk; Vk|Uk)] , (39)

where (d) follows by equality (37) and inequality (38).
Draw J uniformly from {1, . . . , n} independently of {(Xk, Yk, Zk, Vk, Uk)}n

k=1, and define the RV’s
U = (UJ , J), V = VJ , Z = ZJ , Y = YJ , and X = XJ . Using J, we may express (37) as follows

R ≥ 1
n

n

∑
k=1

I(Xk; Uk) = I(XJ ; UJ |J)

= I(XJ ; UJ , J)− I(XJ ; J)

= I(XJ ; UJ , J) = I(X; U), (40)

and we may express (38) as follows

Rh ≥ 1
n

n

∑
k=1

I(Yk; Vk|Uk)

= I(YJ ; VJ |UJ , J) = I(Y; V|U) = H(V|U). (41)

With regard to the expected distortion, we may write

D ≥ 1
n

n

∑
i=1

E[d(Xi, X̂i)]

=
1
n

n

∑
i=1

E[d(Xi, g(n)i (T, V1, . . . , Vi, Zi))]

(e)
≥ 1

n

n

∑
i=1

E[d(Xi, g∗i (T, Xi−1, Yi−1, Zi−1, Vi, Zi))]

=
1
n

n

∑
i=1

E[d(Xi, g∗i (Ui, Vi, Zi))]

= E[d(XJ , g(UJ , J, VJ , ZJ))]

= E[d(X, g(U, V, Z))]. (42)

Step (e) is justified as follows: Since V1, . . . , Vi−1 are deterministic functions of (T, Yi−1)

(Xi−1, Zi−1, Zi)↔ (T, Yi−1)↔ (V1, . . . , Vi−1)

is a Markov chain and, given (Uk, Vk, Zk), the tuple (T, V1, . . . , Vk, Zk) is independent of (V1, . . . , Vk−1).
As a consequence of that, Lemma 1 in ([12] Section II.B) guarantees the existence of a reconstruction
X̂∗k (Uk, Vk, Zk) which dominates X̂k in the sense that

E
[
d(Xk, X̂∗k (Uk, Vk, Zk))

]
≤ E

[
d(Xk, X̂k(T, V1, . . . , Vk, Zk, Zk−1))

]
. (43)

This observation interpreted as the “data processing inequality” for estimation has already been
made in ([12] Lemma 1).

Furthermore,

VJ = f (n)1,J ( f (n)(Xn), Y J) = f (n)1,J ( f (n)(Xn), Y J−1, YJ)
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= f̃ (n)1,J (T, X J−1, Y J−1, Z J−1, YJ) = f̃ (n)1,J (UJ , J, Yj). (44)

By (1) and the memoryless property of the sequence (Xk, Yk, Zk), k = 1, . . . , n one can verify
the Markov relation Uk ↔ Xk ↔ (Yk, Zk) which implies the Markov relation U ↔ X ↔ (Y, Z).
Similarly, the definitions of Uk and Vk and the memoryless property of (Xk, Yk), k = 1, . . . , n imply that,
conditioned on Uk, Xk ↔ Yk ↔ Vk forms a Markov chain.

Thus, conditioned on U, X ↔ Y ↔ V forms a Markov chain, hence

PXUYV = PXUPY|XPV|YU , (45)

where PY|X denotes the conditional law induced by the marginal law PXY. The combination of (40)–(42)
and (44) together with the latter Markov relations establish the converse.

We shall now obtain an alternative characterization for the lower bound (38). For a law

PUXZYV = PU PX|U PZY|XPV|YU ,

and its induced conditional law PXZYV|U , let

Q(PXZYV|U , D̃) , inf
g∗ : U×V×Z→X̂ : E[d(X,g∗(U,V,Z))|U=u]≤D̃

H(V|U = u),

and let Q̄(PXZYV|U , ·) denote the lower convex envelope of Q(PXZYV|U , ·).
Define

Qs(PUXZYV , D) , inf
ρ(u) :

∫
ρ(u)dPU(u)≤D

∫
U

Q̄(PXZYV|U , ρ(u))dPU(u),

then by ([13] Section III.C, Lemma 1) Qs(PUXZYV , ·) is convex.
Note that

H(Vk|T, Xk−1, Yk−1, Zk−1) = H
(

f (n)1,k (T, Yk−1, Yk)|Uk
)

=
∫

H
(

f (n)1,k (t, yk−1, Yk)|Uk = uk
)

dµ(uk). (46)

The integrand on the RHS of (46) is the entropy of the scalar quantizer of Vk , f (n)1,k (T, Yk−1, Yk)

conditioned on Uk = uk where Uk is defined in (36c). Now, conditioned on Uk = uk, Lemma 1
in ([12] Section II.B) ensures that

E
[
d(Xk, X̂k(t, yk−1, f (n)1,k (t, yk−1, Yk), Zk))|Uk = uk

]
≥ E

[
d(Xk, g∗k (Uk, Vk, Zk))|Uk = uk

]
.

Consequently, we may lower bound the RHS of (46) as follows

∫
H
(

f (n)1,k (t, yk−1, Yk)|Uk = uk
)

dµ(uk)
(a)
≥
∫

Q̄(PXZYV|U ,E[d(Xk, X̂k)|Uk = uk]) dµ(uk)

≥
∫ [∫

Q̄(PXZYV|U ,E[d(Xk, g(u, V, z))|Uk = u]) dµ(z|u)
]

dµ(u)

(b)
≥
∫

Q̄(PXZYV|U ,E[d(Xk, g(u, V, Z))|Uk = u]) dµ(u)

≥ Qs(PUXZYV , D), (47)

where in (a) we used the definition of Q and in (b) its convexity. The lower bound (47) may be
interpreted as follows. Fix ρ : U → R+ and consider, for each u ∈ U , time shraing of at most two scalar
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quantizers for the “source” PV|U=u attaining a distortion level ρ(u). The optimal helper time shares
side-information-dependent scalar quantizers of Vk (at most two per each side-information symbol
Uk), while the reconstruction at the decoder is a function of (U, V, Z).

Direct: To establish the achievability of R∗(D), consider the codebook construction as follows.
The codebook A = {u1, . . . , uM} , uk ∈ Un is obtained by drawing the n-length sequences
uk independently of Tδ

PU
. (For the definition of Tδ

PU
—the set of δ-strongly typical n-sequences

corresponding to a marginal law PU and a few properties of these sequences see [14–16]).
Given the source sequence x, f (n)(x) is defined as follows.

1. If x ∈ Tδ
PX

the encoder searches for the first sequence Uk = u in A such that (s.t.) (x, u) ∈ T2δ
PXU

and sets f (n)(x) = k.
2. If x /∈ Tδ

PX
, or @Uk ∈ A s.t. (x, u) ∈ T2δ

PXU
, an encoding error is declared.

Given f (n)(x) = k, the helper forms the sequence of descriptions Vi = f̃1(Uk,i, Zi), Vi ∈ [1, . . . , Li]

that is sent causally to the decoder.
Decoding: Given f (n)(x) = k as well as the sub-sequence V1, . . . , Vi, the decoder forms the

reconstruction sequence X̂i = g(Uk,i, Vi, Zi), i ∈ [1, . . . , n].
Given that (U, X) are jointly typical since (X, Y , Z) is memoryless, the Markov lemma guarantees

that, for large n, with high probability (U, X, Y , Z) are also jointly typical. Since X ↔ (U, Y) ↔ V
forms a Markov chain, by the Markov lemma, with high probability, (X, V) as well as (X, V , Z) are
jointly typical. Thus, with high probability, (X, X̂) are jointly typical, hence the distortion constraint (10)
is fulfilled for large n. That the sequence V1, . . . , Vn can be described at a conditional entropy rate
satisfying (12b)–(47) can be established along similar lines as the proof of the direct part of Theorem 2
in ([13] Section III.C). Finally, standard error probability analysis verifies that, with high probability,
(U, X) are jointly typical as long as (12a) holds.

4.2. Proof of Lemma 1

If Yi =
√

ρXi + Wi, i = 1, 2, then

Y+ =

√
ρ
√

2
(X1 + X2) +

1√
2
(W1 + W2) ,

√
ρX+ + W+ (48a)

Y− =

√
ρ
√

2
(X1 − X2) +

1√
2
(W1 −W2) ,

√
ρX− + W− (48b)

where W− and W+ are independent and the pair (W−, W+) is equal in distribution to the pair (W1, W2).
Thus, the unitary transformation (Y1, Y2) 7→ (Y−, Y+) preserves the Gaussian nature of the channel
and factors according to (see (53) ahead)

PUX−X+Y−Y+V = PX−X+UG
($)
Y− |X−G

($)
Y+ |X+

PV|UY−Y+
. (49)

To show (22a), consider the sequence of identities

λI(Y+Y−; V|U)− h(X+X−|U)

= λI(Y+; V|U) + λI(Y−; V|UY+)− h(X−|UY+)− h(X+|UX−)− I(X−; Y+|U)

= λI(Y+; V|UX−) + λI(Y−; V|UY+)− h(X+|UX−)− h(X−|UY+)

+(λ− 1)
[
I(Y+; X−|U)− I(Y+; X−|UV)

]
− I(Y+; X−|UV). (50)

Moreover, to show (22b), consider the sequence of identities

λI(Y+Y−; V|U)− h(X+X−|U)

= λI(Y−; V|U) + λI(Y+; V|UY−)− h(X+|UY−)− h(X−|UX+)− I(X+; Y−|U)
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= λI(Y−; V|UX+) + λI(Y+; V|UY−)− h(X+|UY−)− h(X−|UX+)

+(λ− 1)
[
I(Y−; X+|U)− I(Y−; X+|UV)

]
− I(Y−; X+|UV). (51)

Starting with (50), consider the difference

I(Y+; X−|U)− I(Y+; X−|UV) = I(X−; V|U)− I(X−; V|UY+) (52)

under a law of the form

PUX−X+Y−Y+V = PX−X+U PY− |X−PY+ |X+
PV|UY−Y+

(53)

i.e., that X− ↔ Y− ↔ V|(U,Y+) forms a Markov chain (see also ([9] Section VI.A, Lemma 4)).
We distinguish between the two cases:

(1) In case that I(X−; Y+|UV) = 0, the non-negativity of mutual information implies that the
expression (52) is non-negative, hence the inequalities (63) ahead hold for any λ > 1.

(2) In case that I(X−; Y+|UV) > 0, we prove first that for the set of laws which are feasible for the
optimization problem (20), the expression (52) is strictly positive.

Observe that with the choice of U , U = (U1, U2) and V = (V1, V2) where (U1, X1, Y1, V1) and
(U2, X2, Y2, V2) are two independent copies of (Ũ, X, Y, Ṽ) such that X ↔ Y ↔ Ṽ|Ũ and σ2

X|ŨṼ ≤ D
i.e., PŨXYṼ ∈ Q, we have

σ2
X+ |UY−V ≤ σ2

X+ |UV =
1
2

σ2
X1|U1V1

+
1
2

σ2
X2|U2V2

≤ D

σ2
X− |UY+V ≤ σ2

X− |UV =
1
2

σ2
X1|U1V1

+
1
2

σ2
X2|U2V2

≤ D. (54)

Thus, the unitary transformation (Y1, Y2) 7→ (Y−, Y+) picks a pair of independent copies of a law
PŨXYṼ ∈ Q and “creates” a pair of laws, X− ↔ Y− ↔ V|UY+ and X+ ↔ Y+ ↔ V|UY− , which factor
jointly according to (53) with

PY− |X− = G($)
Y− |X−

PY+ |X+
= G($)

Y+ |X+
,

hence are symmetric w.r.t. the inputs X− and X+. We shall define the latter set of laws by P∗ and,
as shown above, P∗ ⊆ Q.

Remark 2. Suppose that (Ũ, X, Y) ∼ PXŨG
($)
Y|X with Ũ ∈ U then, for both laws X− ↔ Y− ↔ V|UY+ and

X+ ↔ Y+ ↔ V|UY− , we have (U, Y+) ∈ U × U ×R and (U, Y−) ∈ U × U ×R. Since the image of the map

PXŨ 7→ (E[X2], σ2
X|ŨV , sλ(X, $|Ũ)) (55)

is a convex set, standard dimensionality reduction argument can be used to establish the existence of a law PXU
where PU is supported on a finite set and achieves any point in the image of the map (55) (See ([9] Section IV,
Remark 2)).

By rate-distortion theory, the constraint σ2
X− |U,V ≤ D with both U and V non-void implies that

I(X−; U) < I(X−; UV) ⇒ I(X−; V|U) > 0. (56)
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Now, for any PUX−X+Y−Y+V as per (49), conditioned on (U, Y+), the random variable V is
dependent on Y− i.e. I(Y−; V|UY+) > 0. As a consequence of that, since the mutual information
I(X−; Y−) is strictly positive and, conditioned on (U, Y+), X− ↔ Y− ↔ V forms a Markov chain

I(X−; V|UY+) > 0. (57)

Since a law of the form (53) dictates

I(X−; V|UY−Y+) = 0, (58)

the combination of (56)–(58) yields that

I(X−; V|U) ≥ I(X−; V|UY+) > I(X−; V|UY−Y+) = 0.

Thus, the conditional mutual information I(X−; V|U) is non-increasing under the conditioning
on (Y−, Y+).

By the symmetry of the pair of laws X− ↔ Y− ↔ V|UY+ and X+ ↔ Y+ ↔ V|UY− induced by
PUX−X+Y−Y+V , conditioned on (U, Y−), the random variable V is dependent on Y+, hence

I(Y+; V|UY−) > 0. (59)

Now

PUX−X+Y−Y+V = PX−X+U PY− |X−PY+ |X+
PV|UY−Y+

= PX−X+U PY+ |X+
PVY− |UX−Y+

, (60)

hence

PUX−X+Y+V = ∑
Y−

PX−X+UY−Y+V

= ∑
Y−

PX−X+U PY+ |X+
PVY− |UX−Y+

= PX−X+U PY+ |X+
PV|UX−Y+

. (61)

However, with the latter factorization, if indeed I(X−; V|U) = I(X−; V|UY+), i.e.,

I(X−; V|U) = I(X−; V|UY+) > I(X−; V|UY−Y+) = 0

then, since the conditional mutual information I(X−; V|U) is non-increasing under the conditioning
on (Y−, Y+), it follows that PV|UX−Y+

= PV|UX− , which is in contradiction with (59). Consequently,
for PUX−X+Y−Y+V ∈ P∗, I(X−; V|U) − I(X−; V|UY+) = ∆ > 0, thus establishing that the
expression (52) is positive.

Consequently, there exists some λ∗ > 1, such that for any λ ≥ λ∗ , I(Y+ ;X− |UV)
∆ + 1

(λ− 1)
[
I(Y+; X−|U)− I(Y+; X−|UV)

]
− I(Y+; X−|UV) > 0. (62)

The combination of (50) and (62) implies that, for any λ ≥ λ∗,

λI(Y+Y−; V|U)− h(X+X−|U)

(a)
≥ −[h(X+|UX−) + h(X−|UY+)] + λ[I(Y+; V|UX−) + I(Y−; V|UY+)]

(b)
≥ sλ(X+, $|X−, U) + sλ(X−, $|Y+, U). (63)



Information 2020, 11, 553 15 of 18

Here, (a) follows by (50) and (62), and (b) is true, since the set of laws over which the infimum on
the RHS of (63) is evaluated is not empty. Indeed, the choice of U = (U1, U2) and V = (V1, V2) where
(U1, X1, Y1, V1) and (U2, X2, Y2, V2) are two independent copies of (Ũ, X, Y, Ṽ) such that X ↔ Y ↔ Ṽ|Ũ
and σ2

X|ŨṼ ≤ D –i.e., PŨXYṼ ∈ Q (hence it is feasible for sλ(X, $|U) in (19)), satisfies (54), hence it
belongs to the feasible set.

On the other hand, since both mappings (X1, X2) 7→ (X+, X−) and (Y1, Y2) 7→ (Y+, Y−) are
invertible, then with U = (U1, U2)

λI(Y+Y−; V|U)− h(X+X−|U) = λI(Y1Y2; V|U)− h(X1X2|U)

= λI(Y1; V|U) + λI(Y2; V|UY1)− h(X1|U)− h(X2|UX1)

(a)
= λI(Y1; V|U) + λI(Y2; V|UY1)− h(X1|U)− h(X2|U)

= λI(Y1; V|U) + λI(Y2; V|U)− h(X1|U)− h(X2|U)

−λ[I(Y2; V|U)− I(Y2; V|UY1)]

= λI(Y1; V|U) + λI(Y2; V|U)− h(X1|U)− h(X2|U)

−λ[I(Y2; V|U)− h(Y2|UY1) + h(Y2; |UVY1)]

(b)
= λI(Y1; V|U) + λI(Y2; V|U)− h(X1|U)− h(X2|U)

−λ[I(Y2; V|U)− h(Y2|U) + h(Y2; |UVY1)]

= λI(Y1; V|U) + λI(Y2; V|U)− h(X1|U)− h(X2|U)

+λI(Y2; Y1|UV). (64)

Here, (a) follows since, conditioned on U, X1 and X2 are independent, and (b) follows since,
conditioned on U, Y1 and Y2 are independent.

When U = (U1, U2) and V = (V1, V2) where (U1, X1, Y1, V1) and (U2, X2, Y2, V2) are two
independent copies of (Ũ, X, Y, Ṽ), such that X ↔ Y ↔ Ṽ|Ũ and σ2

X|ŨṼ ≤ D, then Y2 ↔
(U, V) ↔ Y1 forms a Markov chain. Thus, I(Y1; Y2|UV) = 0 and the RHS of (64) becomes
λI(Y1; V1|U1) + λI(Y2; V2|U2)− h(X1|U1)− h(X2|U2) thus establishing that,

inf
V : X↔Y↔V|U

σ2
X|UV≤D

{
−h(X1, X2|U) + λI(Y1, Y2; V|U)

}

≤
2

∑
i=1

inf
V : Xi↔Yi↔V|Ui

σ2
Xi |UiV≤D

{
−h(Xi|Ui) + λI(Yi; V|Ui)

}
= 2 sλ(X, $|U), (65)

where the inequality follows, since the infimum on the LHS is taken over a larger set than that on the
RHS. The combination of (63) and (65) establishes (22a) for λ ≥ λ∗.

Now, returning to (51), consider the difference

I(Y−; X+|U)− I(Y−; X+|UV) = I(X+; V|U)− I(X+; V|UY−) (66)

under the law (53) i.e., that X+ ↔ Y+ ↔ V|(U,Y−) forms a Markov chain. By rate-distortion theory,
the constraint σ2

X+ |U,V ≤ D with both U and V non-void implies that

I(X+; U) < I(X+; UV) ⇒ I(X+; V|U) > 0. (67)

Moreover, an argument similar to that leading to the conclusion that (52) is non-negative
establishes that (66) is non-negative.
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Consequently, there exist some λ∗ > 1 such that for any λ ≥ λ∗

(λ− 1)
[
I(Y−; X+|U)− I(Y−; X+|UV)

]
− I(Y−; X+|UV) > 0. (68)

In addition, the combination of (51) and (68) implies that, for any λ ≥ λ∗,

λI(Y+Y−; V|U)− h(X+X−|U) ≥ sλ(X−, $|X+, U) + sλ(X+, $|Y−, U). (69)

The combination of (69) and (65) establishes (22b) for λ ≥ λ∗.

4.3. Proof of Lemma 2

Consider the tuple (X+, X−, Y+, Y−, U) as defined in Lemma 1 that is constructed from
independent copies of (U, X, Y) ∼ PXUG

($)
Y|X. With the transformation (21) X+ and X− preserve

the variance of Xi, i = 1, 2 and W+ and W− preserve the variance of Wi, i = 1, 2. Furthermore,
as shown in the proof of Lemma 1, the unitary transformation (Y1, Y2) 7→ (Y−, Y+) picks a pair of
independent copies of a law PUXYV ∈ Q and “creates” a pair of laws, X− ↔ Y− ↔ V|UY+ and
X+ ↔ Y+ ↔ V|UY− , which factor jointly according to (53) with

PY− |X− = G($)
Y− |X−

PY+ |X+
= G($)

Y+ |X+
,

hence are symmetric w.r.t., the inputs X− and X+ and both are in the feasible set. Similarly, the unitary
transformation (Y1, Y2) 7→ (Y−, Y+) picks a pair of independent copies of a law PUXYV ∈ Q and
“creates” a pair of laws, X− ↔ Y− ↔ V|UX+ and X+ ↔ Y+ ↔ V|UX− , which are both in the feasible
set (see the factorization (61)).

Consequently, by (20), each of the quantities sλ(X+, $|X−, U), sλ(X−, $|Y+, U), sλ(X−, $|X+, U)

and sλ(X+, $|Y−, U) is at least Vλ($). The assumption PXU ∈ P leads by (22) of Lemma 1 to an
opposite conclusion. Therefore, all four quantities are equal and coincide with the minimum, i.e.,

sλ(X−, $|Y+, U) = sλ(X+, $|Y−, U) = Vλ($) (70a)

sλ(X−, $|X+, U) = sλ(X+, $|X−, U) = Vλ($). (70b)

Let B ∼ Ber(1/2) be a Bernoulli random variable with values in the set {+,−} independent of
(X−, X+, Y−, Y+, U). Let B̄ be the complement of B in the set {+,−} and define (X̃, Ũ) by X̃ , XB and
Ũ , (B, YB̄, U). Then

sλ(X̃, $|Ũ) =
1
2
sλ(X−, $|Y+, U) +

1
2
sλ(X+, $|Y−, U)

≤ Vλ($) + 2ε, (71)

where the inequality follows by assumption (24a).
Furthermore, E[(X̃)2] = E[X2] and by (54)

σ2
X̃|ŨV ≤

1
2

σ2
X+ |UV +

1
2

σ2
X− |UV ≤ D. (72)

Next

h(Ỹ|Ũ) = h(YB|B, YB̄, U) =
1
2

h(Y+|Y−U) +
1
2

h(Y−|Y+U)

h(X̃|Ũ) = h(XB|B, YB̄, U) =
1
2

h(X+|Y−U) +
1
2

h(X−|Y+U).
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Thus

h(Ỹ|Ũ)− h(X̃|Ũ) =
1
2
[
h(Y+|Y−U) + h(Y−|Y+U)

]
− 1

2
[
h(X+|Y−U) + h(X−|Y+U)

]
=

1
2
[
h(Y+Y−|U)− h(Y−|U) + h(Y−|Y+U)

]
− 1

2
[
h(X+|Y−U) + h(X−|Y+U)

]
=

1
2
[
h(Y+Y−|U)− h(X+X−|U)

]
− 1

2
I(Y−; Y+|U)

+
1
2
[
h(X+|U) + h(X−|X+U)

]
− 1

2
[
h(X+|Y−U) + h(X−|Y+U)

]
(a)
=

1
2
[
h(Y+Y−|U)− h(X+X−|U)

]
− 1

2
I(Y−; Y+|U) +

1
2

I(X+; Y−|U)

+
1
2
[
h(X−|X+Y+U)− h(X−|Y+U)

]
(b)
=

1
2
[
h(Y+Y−|U)− h(X+X−|U)

]
+

1
2
[
h(Y−|Y+U)− h(Y−|X+Y+U)

]
−1

2
I(X−; X+|Y+U)

=
1
2
[
h(Y+Y−|U)− h(X+X−|U)

]
+

1
2

I(Y−; X+|Y+U)− 1
2

I(X−; X+|Y+U)

(c)
=

1
2
[
h(Y+Y−|U)− h(X+X−|U)

]
+

1
2

I(Y−; X+|Y+U)− 1
2

I(X−Y−; X+|Y+U)

=
1
2
[
h(Y+Y−|U)− h(X+X−|U)

]
− 1

2
I(X−; X+|Y−Y+U)

= h(Y|U)− h(X|U)− 1
2

I(X−; X+|Y−Y+U). (73)

Here,

(a) follows since X− ↔ (X+U)↔ Y+ forms a Markov chain,
(b) follows since Y− ↔ (X+U)↔ Y+ forms a Markov chain, and
(c) follows since Y− ↔ (X−Y+U)↔ X+ forms a Markov chain.

The combination of identity (73) with inequality (24b) proves (26).
Since X̃ ∈ R while Ũ ∈ {+,−}×R×U ×U a dimensionality reduction argument as in Remark 2

establishes the existence of a law PX′U′ , where U′ has finite support, such that (25) and (26) are fulfilled,
hence (U′, X′) are in the feasible set.
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