
  information

Article

Ensemble Classification through Random Projections
for Single-Cell RNA-Seq Data

Aristidis G. Vrahatis *, Sotiris K. Tasoulis, Spiros V. Georgakopoulos and Vassilis P. Plagianakos

Department of Computer Science and Biomedical Informatics, University of Thessaly, 35131 Lamia, Greece;
stas@uth.gr (S.K.T.); spirosgeorg@uth.gr (S.V.G.); vpp@uth.gr (V.P.P.)
* Correspondence: arisvrahatis@uth.gr

Received: 21 September 2020; Accepted: 23 October 2020; Published: 28 October 2020
����������
�������

Abstract: Nowadays, biomedical data are generated exponentially, creating datasets for analysis
with ultra-high dimensionality and complexity. An indicative example is emerging single-cell
RNA-sequencing (scRNA-seq) technology, which isolates and measures individual cells. The analysis
of scRNA-seq data consists of a major challenge because of its ultra-high dimensionality and
complexity. Towards this direction, we study the generalization of the MRPV, a recently published
ensemble classification algorithm, which combines multiple ultra-low dimensional random projected
spaces with a voting scheme, while exposing its ability to enhance the performance of base classifiers.
We empirically showed that we can design a reliable ensemble classification technique using random
projected subspaces in an extremely small fixed number of dimensions, without following the
restrictions of the classical random projection method. Therefore, the MPRV acquires the ability to
efficiently and rapidly perform classification tasks even for data with extremely high dimensionality.
Furthermore, through the experimental analysis in six scRNA-seq data, we provided evidence that
the most critical advantage of MRPV is the dramatic reduction in data dimensionality that allows for
the utilization of computational demanding classifiers that are considered as non-practical in real-life
applications. The scalability, the simplicity, and the capabilities of our proposed framework render it
as a tool-guide for single-cell RNA-seq data which are characterized by ultra-high dimensionality.
MRPV is available on GitHub in MATLAB implementation.

Keywords: ensemble classification; random projections; big biomedical data; single-cell RNA-seq;
high dimensional data

1. Introduction

Ongoing technological advances in the biomedical research field have increased the amount
of the produced data to such an extent that research has shifted to data-driven computational
methodologies. This evolution has revolutionized several areas including the biomedical domain [1]
along with its important sub-disciplines, such as bioinformatics, clinical informatics, and public
health informatics [2]. Regarding the bioinformatics aspect, expression profiles through omics studies
(genomics, transcriptomics, proteomics, etc.) consist of an important part of the biomedical data
expansion. The main reason is the Human Genome Project, which changed the way we approach the
interpretation of complex diseases and biological processes [3]. The technological development of
recent decades in this field has created a large pool of ultra-high dimensional datasets. As the DNA
sequencing cost significantly drops each year [4], the data volume increments relatively. Therefore the
need arises to create new computational methods under the perspective of Machine Learning to
uncover data volume and complexity.

Nowadays, we are in the era of emerging single-cell RNA-sequencing (scRNA-seq) technology,
which belongs to the family of next-generation sequencing (NGS) technologies. The main difference
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with traditional methods, which export measurements from a bulk of cells, is that it isolates individual
cells offering gene expressions for each one. Through the scRNA-seq data we can achieve a deeper
knowledge of the cellular functions opening new roads for the discovery of novel disease biomarkers.
From a computation perspective, scRNA-seq studies generate a large amount of data with several cells
and tens of thousands of gene measurements. Most scRNA-seq data so far belong to the “small n large
p” category, where n is the number of samples (cells) and p is the number of dimensions (genes). Νow,
the technological evolution allows us to manage datasets with with hundreds of thousands or even
millions of cell samples. In both cases, we have datasets with ultra-high dimensionality, where there is
a great risk of falling into the “curse of dimensionality” trap.

Classifying scRNA-seq data is a major computational challenge for this optimized NGS technology,
while they explore the cellular differences offered in a higher resolution for the main building blocks
of organisms. There is remarkable progress in classification methods of gene expressions data for
single-cell RNA-sequencing studies [5,6]; however, this field is in its infancy.

In this work, we studied the generalization of the MRPV (Multiple Random Projections with
Voting), a recently published in-house classification algorithm [7] focusing on their high-dimensionality
aspect, on its scalability and on its capability to enhance the performance of a given base classifier.
The MRPV combines multiple ultra-low dimensional random projected spaces with the predictions of
a given base classifier through a voting scheme. It has the true potential to be established as the new
default in dealing with biomedical tasks with similar characteristics. Our main aim in this work is so
to study its generalization as to highlight its scalability in various single-cell RNA-seq data

In what follows, Section 2 provides details regarding the background material for MRPV. Next,
in Section 3, we describe the MRPV algorithmic procedure in every detail, while Section 4 is devoted to
the experimental analysis and evaluation. Extensive commenting and discussion regarding the results
is presented in Section 5. The paper concludes in Section 6 with remarks and future directions.

2. Background Material

2.1. The Random Projection Method

Dimensionality reduction methods offer the potential to discover the structure of data with high
dimensionality. Data projection to a lower dimensional space without loosing its information structure
comprises of the most appropriate strategy. The random projection (RP) method [8–10], appears to
have the upside of great information portrayals with negligible calculation exertion for information
measurements in the scope of many thousands or even millions. The corpus of the RP method in a
random matrix with unit size columns projects the initial data to a lower dimensional space.

This is based on the Johnson–Lindenstrauss lemma [11], where it has been proven that we can
reduce the dimension dramatically and be sure that the pairwise distances will maintain a small error.
More specifically, given a group of n sample points in a Euclidean space with a dimensions, it can
be transformed onto an r < O(log n/ε2) dimensional space, such that the distances are not distorted
more than a factor of 1± ε, for any 0 < ε < 1. The RP method can efficiently operate with data in
extremely high dimensions, since the lower bound on r does not depend on the a dimensions but on
the n sample points.

The RP method is an appropriate choice when dealing with millions of dimensions, since its
inherent simplicity allows for parallel implementation, a very crucial feature when we have to deal
with computational complexity and memory management issues. Studies have shown its similar
behavior or superiority over the widely-used Principal Component Analysis (PCA). Indicatively, it has
been shown that the random projection method efficiently preserves the pair-wise distances among
samples points on a similar level to other dimensionality reduction techniques, such as the PCA;
however, with a much shorter execution time [9]. Furthermore, studies have been provided evidence
that, in a data clustering process, after the RP method, clusters with more spherical structure are
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created [11,12]. Comparing RP with PCA, it seems that the first has a better performance on eccentric
data, where the latter might fail.

The main computational bottleneck of the RP is the orthonormalization of the random matrix
R along with alternative random projection types with specific restrictions and choice. It has been
shown that it is not necessary to generate the random matrix from a normal distribution. More efficient
schemes have been proposed [8], imposing further computational benefits. Although these strategies
may improve the RP method, however, it has been shown that this advantageous feature may be
omitted when we perform an ensemble technique using multiple RP spaces [13]. A reasonable
explanation is the fact that, in a high-dimensional data space, the random vectors tend to be near to
orthogonal [14].

2.2. Random Projections for Ensemble Classification

An ensemble classification technique using random projections is proposed in [15], where the
authors reported the reliability and efficiency of the concept, but without considering real high
dimensional applications. Recently, a similar classification framework for high-dimensional data
was proposed [13], providing evidence that the straightforward aggregation is not always sensible.
They claimed that possible bad projections can negatively affect the ensemble classifier; as such, they
proposed a methodology that minimizes the test error, closely related to the projection pursuit concept.
Although these restrictions allow for the establishment of theoretical guarantees, several considerations
arise for very high dimensional tasks with respect to computational complexity. More importantly,
while these criteria reduce the data diversity [16], it may also reduce the benefits of an ensemble
technique. In other words, the potentially bad projections may positively affect our prediction
performance if considered under an ensemble classification strategy.

In this direction, it has been experimentally shown [7] that utilizing random projection ensembles
along with a simplistic majority voting scheme on the classification results from all independent
data spaces, we can achieve improved classification accuracy when tested on very high dimensional
biomedical data, while simultaneously minimizing computational complexity.

Motivated by the promising early results [7] in this paper, we focus on extensively testing the
performance of this approach for the task of single cell data classification which, due to its basic
characteristics, seems like a best fit challenge, allowing us to expose its usefulness in similar small
“n” large “p” tasks. Applying the MRPV framework on high-dimensional scRNA-seq data with high
diversity regrading the sample size, we showed the scalability of the MRPV. Furthermore, we achieved
reliable classification performance results by setting on the MPRV an extremely small fixed number for
the projected dimensions, without following the restrictions of the classical random projection method.
Additionally, we improved its accuracy when the MRPV incorporates the LDA classifier, by using a
factor that regularizes the LDA operation (more details in the next section).

3. The Multiple Random Projection and Voting Methodology

The multiple random projection and voting (MRPV) framework consists of four main steps:
(i) the creation of multiple random projected subspaces, (ii) the training phase of a given classifier for
each space, (iii) the prediction of each test sample for the given classifier for each space and (iv) the
final prediction of each sample by identifying the dominant class for each one through a majority
voting scheme (see Figure 1).

Let A ∈ Rn×d, be the initial experimental dataset with single-cell RNA-seq expression profiles.
Rows (n) and columns (d) represent the cells (samples) and the genes (features or dimensions),
respectively. Let Atrain

s×d denote the s labeled samples data with d gene expressions used for training
any classifier and Atest

1×d denote the test sample. Note here, that we can use more than one test sample
creating the corresponding matrix.

Initially, the random projected spaces are generated using normally distributed numbers. Let r
be the projected dimensions (r � d) for L independent subspaces. Applying the random projection
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method, we have to multiply L independent times the initial matrix with the random matrix Rd×r.
Instead of executing multiple multiplications, the MRPV framework reduces the execution time and
the complexity of the required calculations. It calculates a single multiplication that projects the initial
data to h dimensions, where h = r × l, while it isolates each r-dimensional space for L times by
indexing the projected space. More specifically, the train data are calculated as:

BRP−train
s×h = Atrain

s×d Rd×h. (1)

The similar framework is also applied in the test phase, where the projected data are calculated as:

BRP−test
1×h = Atest

1×dRd×h (2)

The random matrix Rd×h includes uniformly distributed random numbers in the interval (0, 1).
Note here, that the random projection method offers several alternative strategies for the generated
random matrix with each having its specific advantages. However, this feature is not included in the
MRPV strategy since, as previously mentioned [13,14], it will add further complexity, which is not
necessary on an ensemble framework and for initial data with extremely high dimensionality.
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Figure 1. MRPV framework overview.

The size of the projected space in the random projection method affects the reliability of the
projected space. The appropriate size is defined by the equation [17]:

r = 4
(

ε2/2− ε3/3
)−1

ln(n) (3)

The variable n indicates the sample size while the parameter ε indicates the desired error of the
projected space. The ε = 0.2 is an indicative value for simultaneously reliable projected space and
rapid calculations. As the error ε increases, the size of the dimensions of the projections decreases
(see Figure 2), losing its reliability. In the current study, we show that the MRPV framework can
efficiently operate, bypassing the application of the above equation. Setting a fixed small value for
the size of the dimensions (e.g., 50 dimensions), the MRPV classification performance has a similar
behavior if compared to the MRPV classification performance using the size of the dimensions defined
by the appropriate equation. This feature greatly improves the usability and applicability of MRPV,
given the fact that, following the appropriate size determination (based on Equation (3)) for the
projected subspaces, these remain high as the samples increase (see Figure 2). Through the stable
size of the projected dimensions, we showed that using an ensemble technique by aggregating the
knowledge from multiple projected spaces, as it is not necessary to follow the restrictions of the error,
defined by Equation (3).
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Figure 2. The relation of the appropriate dimensions size for the data projection (y-axis) and the error
value ε based on the Equation (3) (x-axis), using the classical Random Projections method. The green
line indicates the fixed dimensional size of the MRPV framework (50 dimensions) for all data.

The multiple independent random projected spaces are given as inputs in the given base
classifiers. We use two well-established classifiers, the kNN (k-nearest neighbors) and the LDA
(Linear Discriminant Analysis), while we further add the RLDA (Regularized LDA), an option that
allows for LDA implementation using the common full covariance matrix for all data classes, even in
data with extremely high dimensionality. The KNN performs the well-known k-nearest-neighbor
classification model [18]. For L independent projected spaces, the kNN is applied for all m test samples
by exporting the class label of each sample at each space.

The classical LDA, in fact, performs a regularized LDA, where all categories (classes) have the
common covariance matrix Σ̂α = (1− α)Σ̂ + α diag(Σ̂), with Σ̂ being the covariance matrix and α

defining the regularization degree. For LDA in our analysis, we set α = 1, utilizing a diagonal
covariance matrix (the first term of the above equation zero), taking the diagonal elements of Σ̂. Hence,
all categories (classes) utilize the common diagonal covariance matrix Σ̂1 = diag(Σ̂).

This parameter is defined to achieve an applicable implementation in quite high dimensional
data since the entire covariance matrix requires extra heavy computing resources. For this reason,
we proposed the utilization of a regularized LDA version (RLDA) with α = 0, which would otherwise
be prohibitive for any mainstream powerful system. The MRPV capabilities allow for the application
of the RLDA, in which all categories (classes) have the common pooled covariance matrix Σ̂0 = Σ̂.
The very low dimensional projections within the MRPV approach allows for the utilization of this
strategy, even in data with extremely high dimensionality. For more details, see the MRPV pseudocode
below (Algorithm 1). Also, MRPV is available on GitHub in MATLAB implementation (https://github.
com/arisvrahatis/MRPV).

https://github.com/arisvrahatis/MRPV
https://github.com/arisvrahatis/MRPV
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Algorithm 1 MRPV Pseudocode
Input: Data (A), RP spaces number (L), RP spaces dimensions (r), Classifier selection

Output: The class assignment V for each test point

1: function MRPV(Atrain
<s×d>, Atest

<s′×d>, labels<s>, L, r)
2: Generate R<d×(r×L)>

3: Btrain
<s×(r×L)> = Atrain

<s×d> × R<d×(r×L)>

4: Btest
<s′×(r×L)> = Atest

<s′×d> × R<d×(r×L)>

5: for i in 1 : L do
6: for j in 1 : s′ do
7: Ci,j = classi f ier(Btrain

i , Btest
i,j ) % (KNN, LDA, RLDA)

8: Si,j = labelsProbability(Ci,j, labels)
9: end for

10: end for
11: for j in 1 : s′ do
12: Vj = PredominantClass(Sj)

13: end for
14: return V
15: end function

4. Experimental Analysis

4.1. Dataset Description

For evaluation, we utilize six real transcriptomics datasets from single-cell RNA-seq studies
(Table 1). Datasets were obtained from Gene Expression Omnibus (GEO), the widely-used database
repository for high throughput gene expression data, except for the Aztekin dataset (hereafter referred
to as AztekinData) obtained from the ‘’scrna” R Bioconductor package [19]. More specifically, the first
dataset (accession number: GSE103334) has transcriptomic experimental data profiles for 23,951 genes
from 2208 cells, separating in four different time periods [20]. Data came from time-point samples
of the Mus musculus (mmu) organism, during the progression of neurodegeneration, (i) before p25
induction (0 weeks), (ii) 1 week, (iii) 2 weeks, and (iv) 6 weeks after p25 induction. The first three
categories had 576 cell samples and the latter 480. The main scope of the analysis of these expression
profiles by throughput sequencing at single-cell level was the temporal record of microglia activation
in neurodegeneration.

Table 1. Attributes of transcriptomics experimental data.

GEO Dataset Type Dimensions Samples Classes References

GSE103334 scRNA-seq 23,951 2208 4 [20]
GSE86469 scRNA-seq 26,616 638 2 [21]
GSE59739 scRNA-seq 25,333 854 3 [22]
GSE52583 scRNA-seq 23,228 201 4 [23]
GSE118723 scRNA-seq 20,151 7584 6 [24]

AztekinData scRNA-seq 31,535 13,199 5 [25]

The single-cell RNA seq data with accession number GSE86469, include gene expressions of
26,616 genes for 638 cell samples. These are samples from human pancreatic islets obtained from
non-diabetic (ND) and type 2 diabetic (T2D) cadaveric organ donors. Here, the scope is to achieve the
discrimination of ND and T2D cell types. The single-cell RNA seq data with accession numbers
GSE59739 [22] and GSE52583 [23], contain single-cell RNA seq measurements for 25,333 and
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23,228 genes, respectively. The measurements are on 854 and 201 samples, separated at 3 and 4 classes,
respectively. Both sets of data are from mouse models (Mus musculus) as well as coming from
lumbar dorsal root ganglion and distal lung epithelium cells, respectively. Furthermore, we add
two large-scale datasets regarding their sample size to examine the MRPV performance in larger
datasets with a high number of sample sizes. We selected the GSE118723 dataset [24], which measures
20,151 genes for 7584 cell samples to examine the variance QTLs in human-induced pluripotent stem
cells. The AztekinData is the largest database in our analysis and contained 31,535 gene measurements
for 13,199 cell samples of Xenopus tail organism. Both sets of data have multiclass cells samples with 6
and 5, respectively.

4.2. MRPV Performance Evaluation

The performance of the MRPV framework was evaluated against ten classification methods.
We elected to employ popular and well-established tools for classification along with the utilized base
classifiers either combined with regular dimensionality reduction through RP or not. Additionally,
we used two cutting-edge classifiers tailored for scRNA-seq data. Τhe rationale behind the optimal
selection of algorithms was to cover the entire range of various categorization types as well as to have
a fair comparison that can expose whether there are any true benefits in utilizing MRPV against the
basic RP method. In detail, we select the two basic classifiers utilized within MRPV (LDA and KNN),
using the random projection method, a deep learning approach, a bootstrap aggregating (bagging),
a tree-based classifier, and two cutting-edge classifiers tailored for single-cell RNA-seq data. We also
include the traditional KNN and linear discriminant analysis classifiers.

Following this, we provide a brief description of each method along with their parameter selection.
The KNN performs k-nearest-neighbor classification model [18] using the default parameters with
Euclidean as distance measures, as well as the kdtree option as a search method for N = 5 nearest
neighbors. For the classical LDA we apply the strategy which utilizes the common diagonal covariance
matrix for all classes by setting α = 1, while for the LDA, the parameter α was set to zero since we
utilized the common full covariance matrix for all classes. Note here, that the classical LDA was
not applied in the initial original data due to the huge computing resources demands exceeding a
conventional computer infrastructure.

We compared our framework with RP-LDA, RP-KNN and RP-RLDA which perform LDA, KNN,
and RLDA, respectively, on a single projected space, resulting by applying the standard random
projection method. The size of the projected space is defined by Equation (3), using the parameter
ε = 0.2, to obtain a reliable error. Deep Neural Networks are utilized with four neural layers of
100 neurons each, one due to the high-dimensionality of the datasets. DNN was applied with
hyperbolic tangent activation functions for each layer, while the softmax functions utilized the output
layer. The training of the model was based on the ADAM [26] learning algorithm, using the value
0.001 for both β1 and β2 learning rate parameters.

The bagging approach performs an ensemble learning method for classification, using a bagging
approach, which stands for bootstrap aggregation [27]. We selected a bagging technique without the
random selections, which utilizes tree learners. The opposite strategy with random predictor selections
at each split is performed by the Random Forests [28]. The Random Forests classification model was
applied using 100 trees and the parameter m-try was set as the square root of the feature (gene) number
for each set of data. We also applied the scReClassify [29] and scPred [30] with the default parameters
defined by the authors.

Overall, the comparisons were made with: (a) LDA with the random projection method (RP-LDA),
(b) KNN with the random projection method (RP-ΚNN), (c) RLDA with the random projection method
(RP-RLDA), (d) KNN, (e) RLDA, (f) BAGGING, (g) RANDOM-FORESTS, (h) Deep Neural Network
(DeepNN), (i) scReClassify, and (j) scPred.
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Performance was assessed by measuring three indicative classification measures—namely,
accuracy, specificity and F1-score—in order to have a clear view of the strengths and weaknesses of
each method. All executions were made using the 10-fold cross validation process in 100 independent
trials. Parameter setting for all methods besides MRPV was chosen based on a fitting procedure
in order to optimize their performance. Minor variations for the selected values do not affect the
results significantly and thus an extensive analysis is excluded. All algorithms were run with the
corresponding default parameters. However, all algorithms, were rerun with different parameters,
though no significant improvement was detected (Wilcoxon signed-rank test, p-value < 0.05).
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Figure 3. Classification performance of the proposed MRPV framework (MRPV-LDA, MRPV-KNN,
MRPV-RLDA) compared to other ten classification methods for the dataset GSE103334, GSE86469,
GSE59739, GSE52583, GSE118723, and AztekinData. Evaluation testing is made by examining Accuracy.
Boxplots imprint the values via 100 independent executions for each dataset.



Information 2020, 11, 502 9 of 14

Boxplots (see Figures 3–5) depict the comparative results for all methods in all six datasets
(scReClassify and scPred were not applicable to AztekinData, due to the high computational
demands). The results were examined regarding the statistically significant difference among the
MRPV approaches and all other algorithms. We applied the one-sample Kolmogorov–Smirnov test
with p-value < 0.05 since the median differences between pairs of observations between MRPV
frameworks, and each algorithm under investigation, follow non-normal distribution. The MRPV
framework performed better in almost all cases and the difference was statistically significant in most
cases (see Section 5).
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Figure 4. Classification performance of the proposed MRPV framework (MRPV-LDA, MRPV-KNN,
MRPV-RLDA) compared to other ten classification methods for the datasets GSE103334, GSE86469,
GSE59739, GSE52583, GSE118723, and AztekinData. Evaluation testing is made by examining
Specificity. Boxplots imprint the values via 100 independent executions for each dataset.
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Figure 5. Classification performance of the proposed MRPV framework (MRPV-LDA, MRPV-KNN,
MRPV-RLDA) compared to other ten classification methods for the datasets GSE103334, GSE86469,
GSE59739, GSE52583, GSE118723, and AztekinData. Evaluation testing is made by examining F1-score.
Boxplots imprint the values via 100 independent executions for each dataset.

5. Results and Discussion

We observe that all variations of MRPV are competitive against other methods for all datasets,
while all the three MRPV-based algorithms suggest an improvement over the straightforward
application of LDA, KNN, and RLDA in most cases. We interestingly observe that the proposed
ensemble scheme suggests a more valuable integration of Random Projections than that of the basic
RP method.

More specifically, for all three measures (Accuracy, Specificity, and F1-score), the MRPV-KNN
had the best performance on GSE103334 with MRPV-LDA and MRPV-RLDA, overcoming their
relevant methods (RP-LDA and RP-RLDA, respectively) in almost all cases. In all other datasets,
the MRPV-RLDA outperforms all comparative methods with MRPV-LDA and MRPV-RLDA, having
similar behavior as previously noted. In a few cases, we identify differences with no statistical
significance (one-sample Kolmogorov–Smirnov test with p-value < 0.05), such as (i) MRPV-LDA vs.
RP-LDA F1-score, MRPV-RLDA vs. RP-RLDA F1-score on GSE103334, (ii) MRPV-KNN vs. RP-KNN
Accuracy and MRPV-KNN vs. KNN accuracy, specificity values for all MRPV frameworks vs. RP-based
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frameworks on GSE86469, (iii) MRPV-LDA vs. RP-LDA Accuracy, MRPV-KNN vs. RP-KNN Accuracy,
MRPV-LDA vs. RP-LDA specificity and F1-score on GSE52583 dataset.

Note here that the MRPV framework creates projected spaces with only 50 dimensions where the
original datasets have tens of thousands of dimensions, confirming the original hypothesis that high
performance can be achieved even when significantly reducing the original dimensionality. We shown
empirically that the MRPV framework applied with various random projection sizes starting in
ascending order, its accuracy has an upward trajectory from one point onwards (approximately from
50 to 100 dimensions) the accuracy either falls or stabilizes (see Figure 6).
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Figure 6. Error bars with the performance evaluation of the three MRPV-based algorithms accuracy
(y-axis) in terms of the dimensions number selection (x-axis) of the random projection spaces. Starting
from quite a small number of dimensions, we notice that the accuracy performance increases as the
dimensions increase and, after one point (about 30 to 50 dimensions), the accuracy performance
stabilizes. So, it can be concluded that the MRPV model works well in the small dimensions without
having to project the initial data to higher dimensions.

When comparing to the performance of the three well-established classifiers (Bagging,
Random Forests, and Deep Neural Network) coming from diverse backgrounds, we conclude that
the proposed approach still performs better, enhancing its reliability. Additionally, our MRPV-RLDA
framework over-performs the two cutting-edge scRNA-seq-based tools (scReClassify, scPred) in almost
all cases. The stability of the proposed methods is also a matter of interest when comparing to the
other methods that present a wide dispersion.

An important feature of the MRPV framework is its significantly faster execution time compared
to other tools (Table 2). Their execution (MRPV-LDA, MRPV-KNN, MRPV-RLDA) time is of the order
of a few seconds, while the execution times of the Random Forests and Deep Neural Networks are 80
to 100 times longer. The MRPV framework is also 5 to 30 times faster in most cases, as compared to the
RP-based (RP-LDA, RP-KNN, RP-RLDA) and the traditional (LDA, KNN, RLDA) tools. A significant
difference also exists regarding the scReClassify and scPred methods. Τhis confirms the simplicity and
the low computational effort required in random projections. Although in the RP-based algorithms
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one random projection is applied, our model is faster since, based on our assumptions, we perform
projections in extremely small dimensions, where the simple random projection method cannot
guarantee its reliability.

Considering the aforementioned results, we can clearly state that the proposed framework offers
a promising approach in high dimensional data classification, while also suggesting great potential
in minimizing computational complexity for many different classification approaches. Τhe results
show that MRPV is a reliable framework that can efficiently tackle the “curse of dimensionality” aspect
appearing in single-cell RNA-seq.

Table 2. Mean and standard deviation (STD) values of the computational time performance of
MRPV frameworks along with the other ten similar algorithms used as comparative evaluation in
the current work. All algorithms have been executed 100 times independently for all six single-cell
RNA-seq dataset (scReClassify and scPred were not applicable to AztekinData, due to the high
computational demands). It is observed that our framework has the shortest execution times, especially
the MRPV-KNN. Τhis confirms the simplicity and the low computational effort required in random
projections. Although in the RP-based algorithms one random projection is applied, our model is faster
since, based on our assumptions, we perform projections in extremely small dimensions, where the
simple random projection method cannot guarantee its reliability.

GSE103334 GSE52583 GSE59739 GSE86469 GSE118723 AztekinData

MEAN (STD) MEAN (STD) MEAN (STD) MEAN(STD) MEAN (STD) MEAN (STD)

MRPV-LDA 1.2 × 10+00 (0.47) 6.8 × 10−01 (0.01) 8.9 × 10−01 (0.02) 8.0 × 10−01 (0.01) 5.7 × 10+00 (1.13) 1.1 × 10+01 (13.0)

MRPV-KNN 1.3 × 10+00 (0.13) 4.3 × 10−01 (0.01) 7.2 × 10−01 (0.00) 6.7 × 10−01 (0.02) 1.0 × 10+01 (1.10) 2.9 × 10+01 (2.32)

MRPV-RLDA 8.3 × 10−01 (0.46) 6.5 × 10−01 (0.13) 8.1 × 10−01 (0.04) 7.7 × 10−01 (0.03) 6.1 × 10+00 (1.20) 1.1 × 10+01 (3.18)

RP-LDA 3.7 × 10+01 (10.1) 2.1 × 10+00 (0.03) 9.1 × 10+00 (0.1) 6.2 × 10+00 (0.05) 6.8 × 10+01 (5.32) 1.1 × 10+02 (14.9)

RP-KNN 8.3 × 10+00 (3.58) 1.1 × 10+00 (0.02) 3.4 × 10+00 (0.09) 2.8 × 10+00 (0.03) 4.8 × 10+01 (7.12) 1.5 × 10+02 (12.4)

RP-RLDA 3.6 × 10+01 (0.48) 3.3 × 10−01 (0.30) 9.6 × 10+00 (0.29) 5.6 × 10+00 (1.95) 7.5 × 10+01 (15.2) 1.3 × 10+02 (22.4)

KNN 5.9 × 10+01 (17.6) 1.0 × 10+01 (0.01) 1.2 × 10+01 (0.03) 7.8 × 10+01 (0.03) 1.0 × 10+03 (65.2) 2.4 × 10+03 (78.9)

LDA 4.4 × 10+02 (16.2) 6.0 × 10+01 (0.49) 1.9 × 10+01 (1.80) 1.3 × 10+01 (4.68) 6.8 × 10+02 (45.5) 1.7 × 10+03 (55.6)

BAGGING 3.1 × 10+02 (2.18) 3.1 × 10+01 (0.22) 1.2 × 10+02 (0.47) 9.7 × 10+01 (0.19) 4.2 × 10+02 (39.2) 1.5 × 10+03 (95.3)

RF 9.5 × 10+02 (25.2) 2.4 × 10+01 (0.05) 2.2 × 10+02 (1.58) 1.6 × 10+02 (0.43) 1.7 × 10+03 (95.6) 5.4 × 10+03 (25.2)

DeepNN 9.2 × 10+03 (85.5) 5.0 × 10+02 (40.2) 7.6 × 10+02 (47.4) 6.2 × 10+02 (68.8) 6.9 × 10+02 (34.3) 2.2 × 10+03 (31.4)

scReClassify 1.5 × 10+02 (13.5) 1.8 × 10+00 (0.10) 8.1 × 10+00 (1.44) 4.4 × 10+00 (1.18) 3.0 × 10+02 (51.2) Ν/Α

scPred 7.9 × 10+01 (5.15) 6.1 × 10+00 (1.21) 1.3 × 10+01 (2.30) 7.1 × 10+00 (1.48) 1.8 × 10+02 (23.6) Ν/Α

Furthermore, through the experimental analysis in six scRNA-seq data, we provided evidence that
the most critical advantage of MRPV is the dramatic reduction in data dimensionality that allows for
the utilization of computational demanding classifiers that are considered as non-practical in real-life
applications. Note here that the MRPV framework also allows for the application of classification
methods in ultra-high dimensional data, which otherwise would be prohibited (mainly due to memory
limitations). On top of the previous findings [7,13] in this work, we justify the utilization of the
random projection ensembles for the classification framework for biomedical applications, exposing
its advantages over other very popular methods.

6. Conclusions

We dealt with the task of classifying single-cell RNA-seq data, which are characterized by ultra
high dimensionality and, until now, are described by the “small n-large p” terminology. The main
properties of MRPV are its simplicity, its computational speed, its scalability, and its accuracy, even on
ultra-high dimensional data, rendering it as a reliable and robust tool. More specifically, we showed
that the MRPV framework, based on multiple random projections in a lower-dimensional space and
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on ensemble approaches that aim to exploit the different data structures obtained by each random
projected space enhance significantly the classification performance while simultaneously reducing
the computational cost. The diversity imposed by projecting the original high dimensional data in a
very low dimensional random space exposed the potential of improving the performance of several
classifiers while allowing their applicability in otherwise prohibitive tasks. The performance of the
MRPV framework was evaluated in six public real experimental high-throughput single-cell RNA-seq
data with gene expression profiles. The classification results showed the superiority of the method
against other similar or well-known tools. Additionally, we highlighted its scalability, since it efficiently
operates in ultra-low dimensions regardless of the dimension length of the initial data.

Concluding, the behavior of MRPV imposes further theoretical developments towards this direction,
but also practical solutions for classification that can take advantage of its parallel fashion. In addition,
the increasing evolution of single-cell sequencing technologies is constantly creating large-scale data,
thus adapting the MRPV framework to High-Performance Computing implementations which could
offer even more promising results.
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