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Abstract: Accurate temperature prediction plays an important role in the thermal protection of
permanent magnet synchronous motors. A temperature prediction method of permanent magnet
synchronous machines (PMSMs) based on proximal policy optimization is proposed. In the proposed
method, the actor-critic framework of reinforcement learning is introduced to model the effective
temperature prediction mechanism, and the correlations between the input features are then analyzed
to select the appropriate input features. Finally, the simplified proximal policy optimization algorithm
is introduced to optimize the value of the prediction temperature of PMSMs. Experimental results
reveal the high accuracy and reliability of the proposed method compared with an exponential
weighted moving average method (EWMA), a recurrent neural network (RNN), and long short-term
memory (LSTM).

Keywords: permanent magnet synchronous machines (PMSMs); temperature prediction; correlation
analysis; reinforcement learning; proximal policy optimization

1. Introduction

Temperature prediction of permanent magnet synchronous machines (PMSMs) has been a research
focus in the field of motor protection. In recent years, researchers have made many attempts to predict the
temperature of PMSMs [1], since temperature is an important factor for PMSMs to work. Most researchers
have focused on the thermal model of the motor. For example, the temperature equivalent model based
on hardware-in-loop (HIL) was proposed to effectively predict the motor temperature [2], but this
method required high calculation complexity. An equivalent thermal transfer model with two heat
nodes for a permanent magnet synchronous motor was also proposed [3]. The thermal effect of the
current and stator frequency was considered. The predicted results verified the rationality of this
transfer model. Mohamed et al. [4] constructed a Lumped Parameter Thermal Network (LPTN) to
calculate important component temperatures inside PMSMs. The air temperature between permanent
magnets was considered in this model. However, the computational complexity of the model is high.
Wallscheid et al. [5] proposed a dynamic measurement method by introducing the magnetic flux observer
into the time-dependent dispersion model of PMSMs. However, this approach is not universal because
it is strongly correlated to machine speed. Wallscheid et al. [6] examined the prediction performance of
flux observers in PMSMs, and the results illustrated that the worst case of the Euclidean norm is less
than 10 K. Lan et al. [7] established a temperature thermal network with 38 nodes by analyzing the
temperature fields of PMSMs, which accurately described the temperature values of each component
inside the motor. However, the acquisition of overheat spots lacked optimization. Sciascera et al. [8]
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built a variable heat model of an LPTN to improve the prediction accuracy of the traditional LPTN,
which requires low computational complexity. In addition, this model provides an effective fine-tuning
experience of model parameters. Liu et al. [9] investigated the signal injection method for estimating
the temperature of the motor stator windings, but the temperature estimation results under motor
overload were not given. Du et al. [10] established a finite element model of the electromagnetic fields
of the motor using finite element analysis. The model obtained a temperature distribution of major
components inside the motor under a rated working condition by calculating motor loss and a coefficient
of thermal conductivity. In conclusion, the above models aimed to establish the empirical formulas
of motor temperature. However, these processes of modeling design and the factors adopted depend
on prior experience. In this work, temperature prediction is seen as a time series problem, and the
temperature change of motor components can be fitted dynamically with additional degrees of freedom
due to the capability of the dynamic tuning in PPO-RL.

The development of artificial intelligence technology has shown great potential in the field of
temperature prediction. Xu et al. [11] proposed a novel deep-learning-based indoor temperature
prediction method for public buildings, which verified the prediction accuracy in the direction of
indoor temperature change and its disadvantage in the horizontal direction. Liu et al. [12] analyzed
the time dependence of ocean temperatures at multiple depths and proposed a time-dependent ocean
temperature prediction method, and the test results showed a better predictive performance than both
support vector regression (SVR) and a multilayer perceptron regressor (MLPR). Wallschied et al. [13]
verified the feasibility of LSTM on temperature prediction. However, the introduction of memory
blocks in LSTM made the topological relationships complex, thus increasing the computing complexity.

In order to provide an accurate prediction method, we propose a method based on correlation
analysis (CA) and proximal policy optimization (PPO) [14]. It selects the input features by correlation
analysis and optimizes the model training process with a PPO algorithm. The remainder of the paper
is organized as follows: The dataset and the correlation analysis process are described in Section 2.
The rationale of our proposed method is presented in Section 3. The predictive model is validated and
compared with other predictive networks in Section 4. Finally, a conclusion is given in Section 5.

2. Dataset and Correlation Analysis

In order to improve the prediction accuracy, an effective data processing method is proposed in
this paper. The specific process is shown in Figure 1.
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Figure 1. The process of data correlation analysis.
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The benchmark data are firstly sampled, and the correlation analysis is then conducted on the
sampled data using the Pearson correlation coefficient (PCC) and the p-value. After the correlation
analysis, the data features that are significantly negatively correlated with the predicted target are
discarded. Meanwhile, some additional features such as the voltage magnitude us, the current
magnitude is, and the electric apparent power Sel are added to the processed sampled data to enrich
the dataset and improve prediction accuracy.

2.1. Data Description

The benchmark data used in the experiment came from the Kaggle data science competition
platform. The measurement and collection of the data were conducted by the University of Paderborn
in Germany, and the benchmark data were normalized. The definitions of parameters and symbols
of the column labels in the benchmark data are shown in Table 1. ϑsy, ϑst and ϑsw were chosen as
the test objectives for the experiment. The data contain 990,000 pieces. The experiment consisted of
52 measurement sessions, and each measurement session can be distinguished by Sid. All measurement
records were measured at a sampling frequency of 2 Hz on a test bench equipped with a three-phase
permanent magnet synchronous motor.

Table 1. The benchmark data column label.

Parameters Symbols

ambient temperature ϑa
coolant temperature ϑc

voltage d-component ud
voltage q-component uq
current d-component id
current q-component iq

motor speed nmech
torque Tm

Permanent Magnet temperature ϑpm
stator yoke temperature ϑsy
stator tooth temperature ϑst

stator winding temperature ϑsw
unique id Sid

The benchmark data involve the main thermal process of a PMSM. In our work, 30,000 samples
were taken from the benchmark data at random. The experiment selected 300 test samples as the test
set, and the rest of the samples were used as the training set.

2.2. Correlation Analysis

Equipment failure often occurs in the process of continuous data acquisition, which will cause
partial distortion in the benchmark data and become interference factors of the prediction. Therefore,
Pearson correlation coefficient analysis [15] was adopted to observe the correlation between different
features, and the p-value [16] was used to measure the related level.

The general expression of the Pearson correlation coefficient is as follows:

rxy =
cov(x, y)

σxσy
=

E
[
(x− µx)(y− µy)

]
σxσy

(1)

where σx and σy are the standard deviation of variables x and y, respectively. Additionally, cov(x, y)
is the covariance of the two variables, and µx and µy are the average values of variables x and y,
respectively. In general, if the covariance of x and y is larger than 0, the variables x and y are positively
correlated. If the covariance of x and y is equal to 0, the variable x the variable y are independent.
Otherwise, the variable x and the variable y are negatively correlated.
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The correlations between data features are discussed, and the significance level p-value is also
evaluated. It is generally acknowledged that there is a significant difference between the two groups
of data characteristics when the p-value is less than 0.05, and the difference is of particular significance
when the p-value is less than 0.01.

In order to evaluate the correlation between the monitoring target and the benchmark data,
the Pearson correlation values of each feature through the thermal diagram of the sampling data
are analyzed in Figure 2. The values of the correlation coefficients between ϑsy and Tm, the current
d-component id, and the current q-component iq of PMSMs are all negatively correlated. The joint
distribution density diagrams between ϑsy and the above three features are shown in Figure 3.

Figure 2. The feature thermal diagram of sampled data.

(b) (c)(a)

Figure 3. The kernel density estimation of ϑsy.
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The correlation coefficients between ϑst and the voltage d-component ud, the motor Tm, the current
d-component id, and the current q-componentiq are shown in Figure 2, respectively. The values of the
above correlation coefficients are all less than 0. Figure 4 shows the joint distribution of ϑst with the
above features to further show the correlation degree of the features.

(a) (b)

(c) (d)

Figure 4. The kernel density estimation of ϑst.

In the same way, it can be seen in Figure 2 that the correlation coefficients of ϑsw with the voltage
d-component ud and the current d-component id are negative, respectively, so there are negative
correlations between the features. Meanwhile, the joint distribution density diagrams of the target
feature ϑsw are shown in Figure 5.

(a) (b)

Figure 5. The kernel density estimation of ϑsw.
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On the basis of the sampled data set, some additional feature quantities are considered in this
paper. These features include the voltage magnitude us based on their dq-components, the current
magnitude is based on their dq-components, and the electric apparent power Sel , respectively.
The specific calculation methods are defined as follows:

us =
√

u2
d + u2

q (2)

is =
√

i2d + i2q (3)

Sel = us ∗ is (4)

where ud and uq are the components of voltage on d-component and q-component respectively, id and
iq are the components of the current on d-component and q-component, respectively, and ∗ represents
dot product operation.

3. The Proposed Method

3.1. Reinforcement Learning

In order to accurately predict the temperature of the main components of the PMSMs,
the Actor-Critic framework of reinforcement learning (RL) [17] is introduced into the predictive network.
The general structure of the Actor-Critic learning framework is shown in Figure 6.

Environment

actionstate

Nadam

Nadam

Actor Net

Critic Net Feedback

Value Function

Policy

reward

Figure 6. The Actor-Critic learning framework.

The Actor network and the Critic network are the main parts of this framework. The interactive
state values come from the record datasets of PMSMs in the environment, and the dynamic selection
process of state values are the basis of model training.

The target function of actor training can be dynamically adjusted by the feedback function.
Therefore, the feedbacks of the Critic network to the Actor network are particularly important in the
prediction process. In addition, the Nadam algorithm is used in the gradient optimization process.
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3.2. Proximal Policy Optimization

The PPO algorithm is one of the policy gradient methods for RL proposed by OpenAI in 2017,
and this algorithm is often applied in the control process of intelligent agents. The algorithm can
easily achieve adjustments of hyper-parameters during the training of agents. In each iteration, it will
attempt to minimize the objective function and recalculate the new update strategy. The objective
function of the PPO algorithm can be defined by Formula (5):

LCLIP(θ) = Ê[min(rt(θ)Ât, clip(rt(θ), 1− ε, 1 + ε)Ât)] (5)

where ε is a constant, and Ât is the feedback of the Critic network. Furthermore, rt(θ) is the ratio of the
new strategy and the old strategy, and its calculation method is represented by Formula (6):

rt(θ) =
πθ(at|st)

πθold(at|st)
(6)

where πθ(at|st) is the updated new policy, πθold(at|st) is the corresponding old policy, atand st are the
action and state values at time t, respectively.

As shown in Formula (5), the objective function LCLIP(θ) includes two main parts: The first part
is a product of the strategy ratio rt(θ) and the feedback value Ât. The second part is a product about
rt(θ) and the feedback value Ât after clipping in the interval [1− ε, 1 + ε]. Finally, the minimum value
of the two parts can be obtained by Formula (5).

The definition of strategy ratio rt(θ) is given in Formula (7), where outt represents the output
value at time t, and yt represents the real output value. Additionally, the output outt is given by the
Actor network, and the loss function of the critic network is selected as the feedback Ât. The strategy
ratio rt(θ) and Ât are defined as follows:

rt(θ) =
outt

yt
(7)

Ât =
1
N ∑ (outt − yt)

2 (8)

where N denotes the number of all predicted values.

3.3. Model Construction and Prediction

The temperature prediction model of the PMSM is shown in Figure 7. The Actor network and the
Critic network include an input layer and an output layer, respectively, and hi (i = 1, 2, ..., 5) is the
hidden layer.

The definition methods of hidden layers in the model are as follows:

h1 = relu(xt ∗ w1 + b1) (9)

hi = relu(hi−1 ∗ wi + bi) (10)

outt = relu(h5 ∗ wout + bout) (11)

where xt is the input data matrix at time t, and ∗ is an element multiplication sign. wi, bi and hi,
respectively, represent the weight, the bias, and the output of each hidden layer for the network,
(i = 1, 2, ..., 5). The corresponding weights and bias of the network output layer are wout and
bout, respectively, and the final predicted value of the network at time t is outi. Further, θ and θout,
respectively, represent the parameter vectors before and after the policy update.
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Figure 7. A prediction model of motor temperature based on proximal policy optimization-reinforcement
learning (PPO-RL) .

After the completion of data processing and model construction, the loss objective function of the
training model is determined by Formula (5). The Actor network and the Critic network share five
hidden layers in this model, and the numbers of these network neurons are 512, 256, 128, 64, and 32,
respectively. Moreover, the relu function is used as an activation function in each hidden layer.

The model chooses the input sequence with step size 5 as the input data. In the process of iteration
training, the target LCLIP(θ) of model training is calculated according to the Ât value, and rt(θ) is
updated at each step.

In order to accelerate the convergence of the objective function and make the gradient reach
the global minimum more quickly, the Nadam algorithm is used to optimize the training process.
The correction value ĝt of gradient gt is introduced into the Nadam algorithm and compared with
Adam at time t, and the gradient ĝt is defined by Formula (12). In addition, the updated gradient ∆θt is
calculated by Formula (13). Finally, the predicted output values can be obtained by the trained model.

ĝt =
gt

1−∏t
i−1 ui

(12)

∆θt = −η ∗ m̄t√
n̂t + x

(13)

Here, ui is the momentum factor of the first moment estimation at time i, η is the learning rate of
the Nadam algorithm, n̂t is the correction value of the second raw moment estimation of gradient at
time t, and ξ is a positive number close to but not equal to zero.

4. Experiments and Results Analysis

4.1. Experimental Environment and Parameter Definition

The experimental environment in this experiment consisted of an Intel(R) Core(TM) i5-8250U
3.4 GHz quad-core processor with a 16 GB memory. The operating system was 64 bit Windows 10,
the programming language version was Python3.7.5, and the deep learning framework version was
Tensorflow1.13.1. The hyper-parameters considered during the experiment are in Table 2.
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Table 2. Hyper-parameter sets of the optima found in experiments.

Hyper-Parameter Models

architecture RNN LSTM PPO-RL EWMA
hidden layers 2 3 5 -
units per layer [40,20] [100,50,1] [512,256,128,64,32] -

weight normal normal normal -
optimizer adam rmsprop nadam -
learn rate 0.01 0.01 [2.10−5, 1.10−5] -

gaussian noise 1.10−3 1.10−3 1.10−3 1.10−3

epsilon(ε) - 1.10−6 0.02 -

In addition to the types of parameters in the table that are self-explanatory, some of the
hyper-parameters not specifically mentioned should be interpreted as follows: When initializing
the weights of the prediction network, the simplest method would be to assign random values from
the interval [−1, 1]. In addition, more complex and efficient initializing schemes of weights can be
considered, such as unit normal distribution or uniform distribution.

4.2. Model Evaluation

The goal of this paper is to predict the temperature of the PMSMs at the next moment. Therefore,
the most effective evaluation methods for the above PMSM temperature prediction are the root mean
square error (RMSE) [18] and the mean absolute error (MAE) [19]. As shown in Equations (14) and
(15), the RMSE and MAE are calculated as follows:

RMSE=

√
1
N ∑N−1

j=0 (Rj − Pj)
2 (14)

MAE =
1
N ∑N−1

i=0 |Ri − Pi| (15)

where Rj represents the measured temperature of the target, Pj represents the predicted temperature
of the target, and N denotes the number of test data.

In order to comprehensively evaluate the prediction performance of different methods,
the Euclidean norm L2 [20] and worst-case error L∞ [21] are introduced to measure the approximation
degree of the prediction target. The specific evaluation indexes are defined as follows:

L2=

√
∑N−1

j=0 (Rj − Pj)
2 (16)

L∞ = max
i

∑N−1
j=0

∣∣eij
∣∣ (17)

where Rj, Pj and N represents the same elements as in RMSE, and
∣∣eij
∣∣ indicates the sum of absolute

values for all error in row i.

4.3. Experimental Results and Analysis

In order to evaluate the overall performance of our proposal and the comparative methods on
the sampled dataset, the trend prediction results for ϑsy, ϑst and ϑsw are demonstrated, respectively.
As shown in Figures 8–10, the prediction curves that we proposed fit the real curves in the prediction
period best. Although the curves of LSTM and the RNN conformed to the real target curves at first,
they largely deviate at the end. Moreover, the fitted curves given by the EWMA method have a large
delay characteristic. The x-coordinates of the curve represent the prediction period of the test data,
and the y-coordinates are the prediction targets in Figures 8–10.
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Figure 8. Fit curve of stator yoke temperature.

Figure 9. Fit curve of stator tooth temperature.

Figure 10. Fit curve of stator winding temperature.

The relating evaluation indicators for ϑsy, ϑst and ϑsw are provided on Table 3, Table 5 and Table 7
respectively, including RMSE, MAE, Euclidean norm L2 and Infinite norm L∞.

The quantitative evaluation indicators of the temperature prediction of ϑsy with four prediction
methods are given in Table 3. According to Table 3, the prediction error values of the prediction
model proposed in this paper are the lowest compared with the other three methods. In the optimal
case, the RMSE value and the L2 of PPO-RL decreased by 0.1540 and 2.6624, compared with the
LSTM network.
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Table 3. Evaluation results for different predictive methods for ϑsy.

Methods RMSE MAE L2 L∞

RNN 0.1867 0.1480 3.2288 44.2432
LSTM 0.1732 0.1570 2.9943 46.9501

PPO-RL 0.2293 0.2145 3.9644 64.1299
EWMA 0.0753 0.0612 1.3020 18.3111

In order to compare the computational complexity of the four methods, the calculation time of
each method on the training set and test set was given after 30 iterations. It can be seen in Table 4 that
the computational complexity of the PPO-RL is relatively high for ϑsy on the training set. By contrast,
it shows a low complexity for ϑsy on the test set, which is 0.38 min lower than that of the LSTM.

Table 4. Computing time analysis of train learning and test learning for ϑsy.

EWMA RNN LSTM PPO-RL

train learning (min) - 725.28 269.74 827.56
test learning (min) 0.32 0.41 0.62 0.24

The quantitative evaluation indicators of temperature prediction of stator tooth with four
prediction methods are given in Table 5. As shown, the PPO-RL method proposed in this paper
has achieved an excellent performance. The RMSE value and MAE value of PPO-RL decreased by
0.0117 and 0.0424, respectively, and its Euclidean norm L2 reached the minimum value.

Table 5. Evaluation results for different predictive methods for ϑst.

Methods RMSE MAE L2 L∞

RNN 0.3630 0.2843 6.2768 85.0010
LSTM 0.2674 0.2222 4.6240 66.4279

PPO-RL 0.1277 0.1097 2.2075 32.8097
EWMA 0.1160 0.0673 2.0057 20.1257

As can be seen in Table 6, LSTM has the lowest computational complexity for ϑst on the training set,
while compared with LSTM, the RNN, and EWMA, PPO-RL has the lowest computational complexity
of ϑst on the test set.

Table 6. Computing time analysis of train learning and test learning for ϑst.

EWMA RNN LSTM PPO-RL

train learning (min) - 779.93 248.00 830.47
test learning (min) 0.36 0.39 0.74 0.19

The quantitative evaluation indicators of temperature prediction of ϑsw with four prediction
methods are given in Table 7. It can be seen in the table that the PPO-RL model has a lower prediction
error and can obtain a higher prediction accuracy. It is worth noting that the LSTM network has a
lower error than the RNN network and the EWMA method in the prediction experiment of the ϑst.
The errors in the prediction of the ϑsy and ϑsw are high.

Table 8 shows the computing time analysis of the four methods on the training set and test set for
ϑsw. The PPO-RL shows the optimal computational complexity on the test set for ϑsw, while the LSTM
has the greatest computational complexity on the test set, which is 0.79 min higher than PPO-RL.
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Table 7. Evaluation results for different predictive methods for ϑsw.

Methods RMSE MAE L2 L∞

RNN 0.2929 0.2348 5.0639 70.2100
LSTM 0.1293 0.1085 2.2364 32.4482

PPO-RL 0.1997 0.1545 3.4537 46.1984
EWMA 0.1006 0.0637 1.7404 19.0599

Table 8. Computing time analysis of train learning and test learning for ϑst.

EWMA RNN LSTM PPO-RL

train learning (min) - 706.23 234.53 831.98
test learning (min) 0.32 0.25 1.00 0.21

5. Conclusions

This paper systematically elaborates on the research status and shortcomings of traditional
thermal network and machine learning methods on PMSM temperature prediction. Based on the
problems found in the literature review, a temperature prediction method of PMSM based on proximal
optimization is proposed. This method can obtain a better performance by adjusting the network
structure and minimizing the objective function of PPO.

The prediction performance of the proposed method as well as three other classical machine
learning networks were explored to validate the applicability and validity of this method. The results
further show that the performance of an LSTM neural network is uncertain with regard to the
test samples, which increases the difficulty of solving the global optimal values in the training
process. In future research work, the improvement of the real-time performance of this method
should be considered.
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