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Abstract: We propose a novel end-to-end image colorization framework which integrates attention
mechanism and a learnable adaptive normalization function. In contrast to previous colorization
methods that directly generate the whole image, we believe that the color of the significant area
determines the quality of the colorized image. The attention mechanism uses the attention map
which is obtained by the auxiliary classifier to guide our framework to produce more subtle content
and visually pleasing color in salient visual regions. Furthermore, we apply Adaptive Group Instance
Normalization (AGIN) function to promote our framework to generate vivid colorized images flexibly,
under the circumstance that we consider colorization as a particular style transfer task. Experiments
show that our model is superior to previous the state-of-the-art models in coloring foreground objects.

Keywords: colorization; attention mechanism; normalization

1. Introduction

Colorization is a method of propagating color to a grayscale image, and the colorized image
should be reasonable in content and visually comfortable. This problem is highly ill-posed and
dramatically ambiguous. Under normal circumstances, we can easily draw simple conclusions from
the semantics of the scenes and the texture of the objects: the sky and the ocean are blue, and the
grass and forests are green. However, for intricacy artifacts, it is difficult to reproduce their true color.
Moreover, the huge workload of pure hand-painting has discouraged dedicated artists, not to mention
the ordinary users. To solve these problems, an increasing number of researchers have begun to
develop automatic coloring methods.

In this paper, we propose a novel end-to-end image colorization framework which integrates
attention mechanism and an adaptive normalization function. Previous learning-based colorization
methods generate the entire image directly, ignoring the attention mechanism in human perception.
Our framework colors image from grayscale domain with the guidance of the attention map which is
obtained by the encoder feature map and importance weights acquired from the auxiliary classifier.
Both generator and discriminator are affiliated with attention maps to focus on the importance salient
region. The attention map facilitates the color propagation in the generator, while optimizes the
discriminator in detail by distinguishing the difference between colorized image and ground-truth
images from color domain.

We consider colorization as a particular style transfer task where color information rather than
a certain style is transferred to the image from grayscale domain. Thus, multiple normalization
functions play a significant role in producing vivid colorized images. Inspired by the Adaptive
Layer-Instance Normalization (AdaLIN) [1], we present the Adaptive Group-Instance Normalization
(AGIN). The AGIN function promotes attention mechanism to guide our model to produce visually
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appealing color flexibly and freely. Specifically, the parameters in AGIN is trained to learn the
appropriate weights of Group Normalization (GN) [2] and Instance Normalization (IN) [3], where they
perform well in the small batch size work and the individual picture work, respectively.

Our main contributions in this paper are as follows:

• We proposed a novel end-to-end framework for colorization with attention mechanism and AGIN
which is a learnable normalization function.

• Our framework is guided by attention maps produced by the auxiliary classifier to know where
the salient area is and to give more delicate color.

• AGIN is a learnable normalization function which helps our framework generate reasonable color
flexibly and freely without transforming the network.

2. Related Works

2.1. Networks

The early color networks were very simple. For example, Koleini et al. [4] trained Artificial Neural
Networks(ANN) by matching the pixels of gray image and color image, and Cheng et al. [5] first applied
Convolutional Neural Networks (CNN) to the colorization of grayscale images. Putri et al. [6] inverted
sketches into photos by predicting colors based on Deep CNN. In addition, Vitynskyi et al. [7] proposed
a promising approach based on the neural-like structure of the Successive Geometric Transformations
Model(SGTM), which improved the accuracy of image classification and regression methods. However,
this kind of network has not been applied in the field of image translation.

Generative Adversarial Networks(GAN) can be an excellent solution for many ill-posed image
processing problem and already have multiple remarkable achievements, such as colorization,
image inpainting, super-resolution, style transfer, and so on. In pursuit of higher quality images,
various novel GAN are beginning to prevail. DCGAN [8] uses CNN to implement generator and
discriminator and replaces the pooling layer with strided convolutions. Although CNN and GAN are
successfully combined, GAN is less robust. Isola et al. [9] applied Conditional GAN in image-to-image
translation task and achieved wonderful results even with highly complex structure. Although GAN
are growing rapidly, the inside of the generator is still as confusing as the black box. StyleGAN [10]
does a good job in this respect by passing the latent code through non-linear mapping and affine
transformation, and then through adaptive instance normalization in each convolutional layer control
generator. CycleGAN [11] differs from the three GAN mentioned above in that it can handle unpaired
data, which means that it pays more attention to the migration of features between images and images.
Moreover, cycle consistency loss can avoid the contradiction between generators.

2.2. Colorization

The scribble-based colorization methods diffuse the user’s color hints (such as color points, strokes,
and blocks) to the entire grayscale image, while the color propagation is based on low-scale features.
Levin et al. [12] and Zhang et al. [13] proposed the scribble-based methods diffusing the color of the
strokes prompted by the user to the entire image. Sangkloy’s method [14] allows the user to control
the generation of color images through sketches and sparse strokes. Levin et al. [12] first proposed that
adjacent pixels with similar luminance also have similar colors. According to this theory, boundary
information is not even required from a user’s sparse simple stroke to a complex full color image.
More advanced work extend from the luminance information to the textures, and solve color bleeding
with edge guidance. The system developed by Zhang et al. [13] can fuse user’s sparse low-level
stroke information and high-level semantic information to color the grayscale image. Although all the
above methods relieve the user’s burden to a certain extent, they still need abundance or less manual
intervention. Moreover, the rationality of image colors depends to a large extent on the user’s strokes,
which means that the image quality is constrained by the user’s professionalism and rich experience.
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Therefore, exemplar-based colorization which is one of fully automatic methods is prevailing to reduce
the burden on users.

The exemplar-based colorization methods provide a similar color reference map to the target
grayscale image for more direct coloring. Welsh et al. [15] focus on the global information of the
image, which colors the target image by matching the brightness information between the reference
image and each pixel of the target image. Tai et al. [16] paid attention to the local information of
the image and segmented the image with soft boundaries to achieve color transfer and propagation.
However, for substantial content regions, it is difficult to obtain low-level features by these methods.
The system designed by He et al. [17,18] can recommend appropriate references based on luminance
and semantic information, reducing the steps of manually screening, then achieving full-automatic
coloring. Yoo et al. [19] use small-scale data to produce high quality images with a colorization model
which has memory components. The above methods all suffered from the same problem that the
reference does not exactly match all brightness information in source domain. Then, how to select
an applicable reference becomes a challenge. Hence, the learning-based method learns color transfer
pattern from large-scale data and applies different loss functions to restrain the quality of the generated
color images.

The learning-based colorization methods obtain networks by training on large-scale data,
and networks can automatically generate various results without user intervention. Almost the
same period, Larsson et al. [20]; Iizuka et al. [21]; Zhang et al. [22] proposed similar methods with
different loss functions based on CNN. Larsson and Zhang applied classification loss and Iizuka
applied L2 regression loss. Isola et al. [9] believe that L1 loss can reduce image blur, so the combination
of L1 loss and GAN loss is applied. To produce more diverse colorization results, Messaoud et al. [23]
established a conditional random field, and Cao et al. [24] developed a fully convolutional generator
with multi-layer noise. Zhao et al. [25] exploit pixel-level semantic information to guide the generator.

2.3. Class Activation Mapping

Zhou et al. [26] pioneered a class activation mapping, which uses global average pooling to obtain
the weights of each convolutional layer and multiply the weighted sum by each feature map. We can
input an image of any size, as long as it is simply upsampled to the source image size, salient area of
the image will be showed. Grad-CAM [27] is an improvement based on CAM which uses the global
average of the gradient to calculate weights, and no need to change the network structure.

2.4. Normalization

We consider colorization as the transfer of color features to the target grayscale image, which is
the same as the style transfer. At the same time, the normalization function used in style transfer
can also be used in colorization through adjustment. Although Batch Normalization (BN) [28]
has made good achievements, a large number of improvement methods are emerging, such as:
Layer Normalization [29], GN [2], etc. BN shows robustness in a wide range of batch sizes, even when
it is small. In [3], because its results depend on a certain image instance, they achieve remarkable
results in style transfer. To have a better image effect, a composite method such as Batch-Instance
Normalization(BIN) [30], Adaptive Instance Normalization (AdaIN) [31], and Conditional Instance
Normalization (CIN) [32] is often used instead of using IN alone. CIN improves the layer affine
parameters of IN. By using the same network parameters, different style effects can be obtained.
BIN can selectively normalize the style. AdaIN generates an image of any given type by using adaptive
affine parameters, which functions as an exchange style.

3. Network

For the existing grayscale image domain Xg and color image domain Xc, our purpose is to train
a mapping Gg→c that can generate Xc domain images from the Xg domain images. Our framework
comprises two generators (Gg, Gc) and two discriminators (Dg, Dc), which both incorporate attention
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mechanism. The framework structure is based on CycleGAN, so only Gg and Dc in the forward cycle
are explained here (see Figure 1). The reverse cycle is consistent with its principle. To distinguish the
input of the forward cycle is represented by x and the input of the reverse cycle is represented by y.

Figure 1. The architecture of our framework, and the details are covered in Section 3.1.

3.1. Model

3.1.1. Generator

Let x ∈ {Xg, Xc}, and Gg(x) represents the output of an image from the gray image domain
to the color image domain. Gg is generator which consists of an encoder Eg, a decoder Dc and an
auxiliary classifier Ag, where Eg(x) is the activation map of encoder, Ei

g(x) is the i-th activation map,

and E
i(a,b)
g (x) is the value at (a, b). Ag(x) represents the degree of correspondence between x and the

image in the Xg domain. The auxiliary classifier of CAM [26] uses global average pooling to learn the
importance weights of the i-th activation map. We exploit the combination of Global Average Pooling
(GAP) and Median Pooling (MP) to learn the edge feature better, and the importance weights of the i-th
activation map is Wi

g. Therefore, Ag(x) = ∑n
i=1 wi

g ∑a,b E(a,b)
g (x). A set of Xg domain-specific attention

feature map Mg(x) can be generated by the importance weights and the previous convolutional layers,
where Mg(x) = {Wi

g(x) ∗ Ei
g(x)|1 ≤ i ≤ n}, and n is the amount of encoder activation maps. Inspired

by AdaLIN [1], We integrate the residual blocks with AGIN which is a fusion of GN [2] and IN [3].

AGIN(M, β, γ) = γ · (ρ ·mG + (1− ρ) ·mI) + β, (1)

mG = γ

(
M− µG
σG + ε

)
+ β, mI = γ

(
M− µI
σI + ε

)
+ β, (2)

ρ← clip[0,1](ρ− τ∆ρ) (3)

where µG, µI and σG, σI are the mean of x on group scale, channel scale and standard deviation
respectively. β and γ are affine transformation parameters with predictions generated by fully
connected layer. τ is learning rate. ρ ∈ [0, 1], where ρ is restricted by ∆ρ which is a dynamically
computed parameter vector(e.g., the gradient). The value of ρ represents the choice of normalization
method. If the value approaches 0, it means that this task is more suitable for IN, and if the value
approaches 1, it means that GN is more important for this task.
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3.1.2. Discriminator

Gg(Xg) is a domain which contains generated fake color images. Let x ∈ {Xg, Gg(Xg)} represent
x from the color domain and the fake color domain. Our discriminator D̂c is comprised of an encoder
Êc, a classifier Ĉc and an auxiliary classifier Âc. With a input x, we acquire from the encoder with
feature maps Êc(x) which can be used to obtain the importance weights Ŵc. The attention feature
maps is calculated using M̂c(x) = {Ŵi

c(x)Êi
c(x)|1 ≤ i ≤ n}, and exploited by D̂c. Êc is trained by Âc

which along with D̂c are trained to discriminate where x belongs to, Xg or Gg(Xg).

3.2. Loss

The full loss function of our framework is composed of four parts.

3.2.1. Adversarial Loss

Both forward mapping Gg and reverse mapping Gc apply adversarial losses:

Ladv,g(G, D̂c, X, Y) = Ey∼Xc [(D̂c(y))2]

+Ex∼Xg [((1− D̂c(Gg(x)))2]
(4)

where Gg aims to generate fake images Gg(x) to fool D̂c, and D̂c tries to distinguish whether the
generated images are from domain Xg or Xc. Concisely, function minGg maxD̂c

Ladv,Gg(Gg, D̂c, X, Y)
represents Gg tries to minimize this function, on the contrary, D̂c needs to maximize it. Similarly,
the function of revers mapping apply the minGc maxD̂g

Ladv,Gc(Gc, D̂g, Y, X).

3.2.2. Cycle Consistency Loss

To avoid the color of all generated images from Xg tending to one image in the Xc and each image
generated by Gg can also be restored from Gc to x, We introduce cycle consistency loss:

Lcycle(Gg, Gc) = Ex∼Xg(x)[‖Gc(Gg(x))− x‖1]

+Ey∼Xc(y)[‖Gg(Gc(y))− y‖1]
(5)

3.2.3. Content Loss

With the purpose of ensuring the input and output are similar in content, we apply content loss
to restrain generators.

LContent(Gg) = Ex∼Xc [|x− Gg(x)|1] (6)

3.2.4. CAM Loss

For x ∈ {Xg, Xc} we trained Gg and Dc with the parameters inferred from auxiliary classifiers Ag

and Âc. With CAM losses:
Lcam,Gg(Ag) = −(Ex∼Xg [log(Ag(x))

+Ex∼Xc [log(1− Ag(x)]
(7)

Gg can be aware of where improvement is needed to generate images more similar to the images in Xc.

Lcam,D̂c
(Âc) = Ex∼Xc [(Âc(x))2]

+Ex∼Xg [(1− Âc(Gg(x)))2]
(8)

Dc gets to know where to identify details that can distinguish the difference between two
domain images.
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3.2.5. Full Function

Our overall loss function is:

min
Gg ,Gc ,Ag ,Ac

max
Dg ,Dc ,Âg ,Âg

λ1Ladv + λ2Lcycle

+ λ3Lcontent + λ4Lcam

(9)

where λ1 = 1, λ2 = 9, λ3 = 9, λ4 = 999.

4. Implementation

4.1. Architecture

Our generator is composed of an encoder, a decoder, and an auxiliary classifier. The encoder
consists of two convolutional layers of down-sampling with the stride size of two and four residual
blocks. The decoder consists of two up-sampling convolutional layers with the stride size of one
and four adaptive residual blocks which is equipped with AGIN, unlike in the decoder where only
instance normalization is used. We use two scales of PatchGAN [9] in the discriminator network for
identification, in which the size of the local patch size is 70× 70 and the size of the global patch size is
286× 286. In discriminator, we use spectral normalization. The ReLUs used in the generator are not
leaky, while ReLUs in the discriminator are leaky, with a slope of 0.2.

4.2. Training

To expand the training data, we first resized input images with the size of 256× 256 to 286× 286,
and then randomly cropped back to the size of 256× 256. The batch size in experiment is set to
one. We applied Adam [33] in training with a learning rate of 0.0002 and momentum parameters
β1 = 0.5, β2 = 0.999.

5. Experiments

5.1. Dataset

We train networks on COCO [34] and VisualGenome [35]. For the training, all images are resized
to 256× 256. In addition, all grayscale images are obtained by grayscale conversion of color images.

5.2. Comparisons with State-of-the-Art

We first get the results of the proposed model (see Figure 2), and also conduct ablation
experiments on attention mechanism to prove its validity. We compare our model with the colorization
state-of-the-art(Zhang et al. [22]; Larsson et al. [20]; Iizuka et al. [21]). The colorization results are
shown in Figure 3. From the overall chrominance, the results of our model are more realistic and
convincing (row 1, 3). Our model is also superior in terms of detail coloring (row 2, 4). Also, Our model
can color foreground objects correctly while carefully handling edge problems (5, 6). In addition,
we compare the performance of our model with that of other outstanding image translation models
(see Figure 4). Furthermore, the qualitative and quantitative evaluations are also used to evaluate the
quality of generated images.
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Figure 2. Colorized results and their visualization of the attention maps: (a) Ground truth, (b) Targets,
(c) Attention maps, (d) Our results.

Figure 3. Comparison on different colorization methods: (a) Ground truth, (b) Targets,
(c) Zhang et al. [22], (d) Larsson et al. [20], (e) Iizuka et al. [21], (f) Ours.
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Figure 4. Comparison on different images translation methods: (a) Ground truth, (b) Targets,
(c) CycleGAN, (d) Pix2Pix, (e) Ours.

5.3. CAM Ablation Experiment

To prove the effectiveness of attention mechanism, we conducted CAM ablation experiment.
We can find from the CAM ablation experiment results (see Figure 5) that color bleeding problem
(row d, columns 1, 3, 4, 5, 6) and color failure caused by blurring boundaries (row d, columns 2, 7) are
common in the results without CAM. The addition of CAM can make the model pay more attention to
the key areas when coloring and deal with the boundary more carefully. The colorized results with
CAM is shown in Figure 5e which confirms that attention mechanism plays a positive role in the color
bleeding problem of colorization.

Figure 5. Colorized results on the CAM ablation experiment: (a) Ground truth, (b) Targets, (c) Attention
maps, (d) Our results without CAM, (e) Our results with CAM.
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5.4. AGIN Ablation Experiment

We consider colorization as a particular style transfer task, i.e., transferring color information
rather than a specific style. We use AGIN to combine the advantages of GN and IN for better color
transferring. As we introduced in Section 3.1, the value of ρ is learnable. When the value of ρ is learn
to approach 0, it means that the normalization layers tend to adopt IN. When the value of ρ is learn
to approach 1, it means that the normalization layers tend to adopt GN. Hence, we conducted AGIN
ablation experiment to confirm that the AGIN used in generator is beneficial to produce vivid color.
GN computes the group-wise features, so unreasonable colors may appear in the generated image
(see Figure 6, row c). IN calculates the channel-wise features, too many of them are retained, so that
the overall chrominance of the colorized image is dark and the contrast is not enough (see Figure 6,
row d). Therefore, we believe that AGIN can combine the advantages of GN and IN to allocate the
weight adaptively, which can make colorized images more visually pleasing.

Figure 6. Colorized results on the CAM ablation experiment: (a) Ground truth, (b) Targets, (c) Results
using GN only, (d) Results using IN only, (e) Results using AGIN.

5.5. Qualitative and Quantitative Evaluations

To evaluate the quality of the colorized images, we conducted a preference study.
197 observers(including researchers and people without any colorization knowledge) are asked to
select the best colorized image from images generated by different methods. As can be seen from
Table 1, the results of our method were approved by the majority of users. Table 2 also shows that our
method can produce higher quality images than other methods.

To be visually pleasing, we also evaluated the naturalness of the colorized images. We compare
our model with the colorization state-of-the-art (Zhang et al. [22]; Larsson et al. [20]; Iizuka et al. [21]).
15 observers are randomly shown 500 images (ground truth images, and colorized images generated
by our method and the state-of-the-art methods, 100 images each) one at a time, and asked to judge
the image is natural to themselves or not. We let observers intuitively determine whether the image is
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natural. Similarly, we compare the naturalness of our method with that of image translation. Table 3
shows that 93.21% of colorized images generated by our method are considered as natural, which bears
out our model is able to generate natural and visually pleasing color images.

Table 1. Qualitative score on colorized results.

Method
Dataset COCO VisualGenome Landscape

Zhang et al. [22] 15.74% 13.20% 10.15%
Larsson et al. [20] 8.12% 4.06% 5.58%
Iizuka et al. [21] 7.11% 9.64% 7.61%

Ours 69.04% 73.10% 77.65%

Table 2. Qualitative score compared with image translation methods.

Method
Dataset COCO VisualGenome Landscape

CycleGAN 16.75% 14.72% 11.68%
DCGAN 10.65% 10.15% 10.66%
Pix2Pix 8.62% 7.11% 7.11%

Ours 63.95% 68.02% 70.56%

Table 3. Naturalness evaluation.

Method Naturalness (Mean)

Zhang et al. [22] 87.53%
Larsson et al. [20] 85.58%
Iizuka et al. [21] 89.13%
CycleGAN 79.46%
DCGAN 75.71%
Pix2Pix 71.24%
Ours 93.21%
Ground truth 98.86%

Evaluating the results of colorization methods is a very subjective challenge, and both quantitative
and qualitative evaluations are difficult. As for qualitative evaluation, it is very difficult to make
qualitative analysis on such a highly ill-posed problem as colorization. The peak signal-to-noise
ratio(PSNR) is widely used in the field of image processing, and many colorization methods
(Larsson et al. [20]; He et al. [17]) also use PSNR to evaluate image quality The comparison results are
shown in Table 4. Our method has a higher PSNR than other methods, which proves that our method
can produce more realistic and higher-quality images.

Table 4. Quantitative evaluation.

Method PSNR (dB)

Zhang et al. [22] 22.90
Larsson et al. [20] 24.25
Iizuka et al. [21] 23.86
Ours 24.43
Ground truth NA

6. Limitations and Discussion

Colorization is a highly ill-posed and ambiguous problem. We can easily infer the colors of
the oceans and forests, but there is often no unique solution to the colors of the clothes people wear.
In addition, the limitation of our method is that we can misjudge objects (see Figure 7, row 1, the land
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was wrongly colored green) and color the artifacts incorrectly (see Figure 7, row 2, the kite was
incorrectly colored).

Figure 7. Failure cases: (a) Ground truth, (b) Targets, (c) Our results.

Learning-based methods are data-driven. As long as the dataset is large enough and the content
is rich enough, the better the colorized image quality is theoretically. At the same time, the same object
will present different colors in different environments, weather and seasons, i.e., changeable lighting
conditions also bring challenges to colorization. Meanwhile, to make the colors of the artifacts in the
dataset representative and universal may still need to be manually labeled. However, the possibility of
semantic colorization is not explored in this paper.

7. Conclusions

In this paper, we proposed a novel end-to-end colorization framework that integrates attention
mechanism and AGIN which is a leranable adaptive normalization function. Attention maps produced
by auxiliary classifier serve as a guide for the generator to focus on details that are easily overlooked.
The addition of attention mechanism solves the problem of color bleeding well. Furthermore,
AGIN plays an integral role in flexibly and freely producing vivid colors when the dataset contains
images with complex content and diverse scenes. Mass experimental results verify that our framework
can transfer reasonable and visually pleasing color to black and white images. In addition, our method
is superior to other state-of-the-art GAN-based colorization methods.

In the future research, from the perspective of algorithm, the network structure can continue to be
optimized to reduce the model training time, and the video colorization algorithm can also be taken
into consideration. From the perspective of dataset, a new dataset can be built to train the network,
which can be applied in the colorization of legacy photos and old movies.
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