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Abstract: Due to changes in illumination, adverse weather conditions, and interference from signs 

similar to real traffic signs, the false detection of traffic signs is possible. Nevertheless, in order to 

improve the detection effect of small targets, baseline SSD (single shot multibox detector) adopts a 

multi-scale feature detection method to improve the detection effect to some extent. The detection 

effect of small targets is improved, but the number of calculations needed for the baseline SSD 

network is large. To this end, we propose a lightweight SSD network algorithm. This method uses 

some 1 × 1 convolution kernels to replace some of the 3 × 3 convolution kernels in the baseline 

network and deletes some convolutional layers to reduce the calculation load of the baseline SSD 

network. Then the color detection algorithm based on the phase difference method and the 

connected component calculation are used to further filter the detection results, and finally, the data 

enhancement strategy based on the image appearance transformation is used to improve the balance 

of the dataset. The experimental results show that the proposed method is 3% more accurate than 

the baseline SSD network, and more importantly, the detection speed is also increased by 1.2 times. 

Keywords: traffic sign detection; lightweight SSD network; color detection; connected component 

calculation 

 

1. Introduction 

The detection and recognition of traffic signs are major research areas of unmanned driving 

technology. They provide effective information for safe driving and navigation, and play a vital role 

in regulating driver behavior, ensuring smooth traffic and safe travelling [1]. However, the actual 

traffic conditions are complicated due to changes in illumination, adverse weather conditions, or 

similar false indications, so the research on traffic sign detection still faces huge challenges [2]. Since 

the warning, mandatory, and prohibitive traffic signs are colorful triangles, circles, and rectangles, 

traditional methods generally extract image features by segmenting areas of interest, and by using 

single or several classification operators to identify targets. Ayoub et al. [3] proposed a three-stage 

real-time traffic sign detection and recognition system based on random forest, and Gülcan et al. [4] 

put forward a traffic sign detection algorithm based on color and shape. In recent years, as methods 

based on deep learning have become increasingly popular in the field of traffic sign detection, they 

have broken the constraints of image semantic expression and are widely used in the detection and 

recognition of traffic signs. Algorithms based on improved network structure [5–7] have increased 

the detection accuracy of traffic signs, methods based on image segmentation [8,9] have realized the 

detection of traffic signs in complex environments, and the detection method based on attention 

mechanism [10,11] extracts the area of interest from the input image through the attention module, 

in order to refine the feature extraction under the complex background. Zhang and Song [12,13] 
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designed a lightweight network based on model compression, which reduced the calculation of 

network parameters to a certain extent, and realized the rapid detection of traffic signs. These 

methods have improved the detection accuracy of traffic signs, and reduced false detections to some 

extent. However, no false detection filtering mechanism is provided, and deep neural networks are 

time-consuming and computationally intensive to use on mobile platforms. Inspired by these traffic 

sign detection methods, in this paper, a lightweight and high-precision detection scheme is proposed, 

which is based on the baseline SSD network structure combined with a color detection algorithm. 

Experiments show that our scheme can effectively improve the detection speed and accuracy. The 

main contributions of this paper are summarized as follows: 

1. Using the TT100K dataset [14] to complete the lightweight SSD model training, this model 

detects the traffic signs that are presented in the image and pinpoints their locations in the image 

and assigns them to the correct traffic categories. 

2. Cutting and adjusting the size of the alternative area of the traffic sign in the input image based 

on these coordinates as the input image for the next color detection. 

3. Converting the image from the RGB (red, green, blue) color space to the HSV (hue, saturation, 

value) space, and using the color detection algorithm based on the phase difference method to 

conduct color detection on the obtained image and connecting to the connected components to 

generate a binary image of the corresponding color. 

4. Calculating the connected component of the binary image obtained in the previous step, and 

filtering the qualified detection results according to the maximum threshold of the connected 

component area. 

The rest of this paper is organized as follows. Section 2 introduces the related work of this subject 

and analyzes some existing traffic sign detection schemes. Section 3 mainly introduces the improved 

lightweight SSD traffic sign detection algorithm and the design and implementation of the algorithm 

in detail. In Section 4, we evaluate the performance through experiments. Finally, conclusions are 

drawn in Section 5. 

2. Related Work 

This section reviews the several existing types of traffic sign detection algorithms. They can be 

roughly divided into the traditional traffic sign detection algorithms, CNN-based (convolutional 

neural networks) traffic sign detection algorithms, and attention mechanism-based traffic sign 

detection algorithms. 

2.1. Traditional Traffic Sign Detection Algorithm 

The traditional traffic sign detection algorithms mainly extract image features based on the 

colors and shapes of traffic signs, combined with corresponding image processing techniques, and 

then recognizes traffic signs. Ayoub et al. [3] proposed a three-stage real-time traffic sign detection 

and recognition system based on random forest. The first stage of the system divides the image into 

areas of interest based on color information; the second stage uses the invariant geometric moment 

to detect circles, triangles, and rectangles; and the third stage uses a random forest classifier to 

combine HOG (histograms of oriented gradients) features with LSS (local self-similarity) features to 

identify the detected shapes. Gülcan et al. [4] put forward a traffic sign detection algorithm based on 

color and shape. This method comprehensively considers the color information and geometric 

characteristics of traffic signs in the feature extraction stage, uses RGB color space and connected 

components for shape recognition, removes the graphics without traffic signs in the image, and keeps 

the remaining traffic sign areas. Le et al. [15] proposed a new method of color detection and 

segmentation based on SVM (support vector machine), which is used to retrieve alternative areas of 

traffic signs in real-time, uses pixel blocks instead of taking each pixel as the input vector of SVM for 

color classification, and combines the Hough transform and contour detection to detect circles and 

triangles to verify the alternative areas. Chen et al. [16] combined the AdaBoost algorithm with SVR 

(support vector regression) and proposed a saliency estimation method based on the color, shape, 
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and spatial information of traffic signs. Although the detection speed of the above algorithms is 

relatively fast, it is not universal, as the feature expression is one-sided and single. In the case of a 

complex background or many interference objects, or if the sign itself is twisted and damaged, the 

false detection rate and omission rate could get extremely high. 

2.2. CNN-Based Traffic Sign Detection Algorithm 

The traffic sign detection technology based on deep learning has been widely used due to its 

excellent performance. A traffic sign detection method based on a convolutional neural network is 

often an improvement on the existing general target detection network. Zhang et al. [17] proposed 

an end-to-end convolutional network based on YOLOv2, using multiple 1 × 1 convolutional layers in 

the middle layer of the network while decreasing the top convolutional layer to reduce computational 

complexity. Meanwhile, to effectively detect small traffic signs, the input images are divided into 

dense grids to obtain a finer feature map. Lee et al. [9] formulated the boundary estimation of traffic 

signs as a two-dimensional pose and shape category prediction problem, which was effectively 

solved by a single CNN. Specifically, the target sign was estimated by projecting the boundary of the 

corresponding template sign image into the input image plane. The boundary estimation problem is 

formulated as a CNN-based pose and shape prediction task. Ibrahem et al. [18] proposed a multi-

purpose single convolutional neural network structure based on weak supervision, using 

MobileNetv2 as the basic network. In addition to being used as a classification network, this network 

was also adopted as a region proposal network. Nguyen et al. [19] used a lightweight and efficient 

network structure as the basic network to improve the speed of inference. Besides, to improve the 

performance of small traffic sign detection, a deconvolution module was used to aggregate low-level 

feature maps with high-level feature maps, to generate an enhanced feature map, and then the two 

improved region proposal networks were used to generate alternative frames from the highest-level 

feature map and the enhanced feature map. Zhang et al. [20] proposed a detection algorithm called 

MSA_YOlOv3, introducing a multi-scale spatial pyramid pool block in the Darknet53 network, which 

enabled the network to learn object features more comprehensively, provided a bottom-up 

enhancement path to strengthen the feature pyramid in YOLOv3, and effectively used the fine-

grained features of the bottom layer to achieve precise target positioning. The above algorithm 

demonstrates improvement based on the existing target detection network and makes the high-

precision recognition of traffic signs possible, but MSA_YOlOv3 et al. pursued target detection 

accuracy while neglecting the delay problem caused by the network calculation. 

2.3. Traffic Sign Detection Algorithm Based on the Attention Mechanism 

The method based on the attention mechanism can emphasize important information while 

ignoring unimportant information. Mnih et al. [21] proposed a new recurrent neural network model 

that can extract information from an image or video by adaptively selecting a series of areas or 

positions, and only conducting high-resolution processing on the selected areas. Yuan et al. [11] 

proposed a multi-resolution feature fusion network structure that uses a densely connected 

deconvolution layer with jump connections, which is conducive to the extraction of small target 

features, and traffic sign detection is classified as a space sequence and dealt with as a regression task, 

and a vertical spatial sequence attention module is proposed to obtain more contextual information, 

thereby realizing better detection. Tian et al. [22] proposed a new cyclic attention-based traffic sign 

detection method for multi-scale analysis and utilization of local context in images. Kastner et al. [23] 

used the attention mechanism to export potential alternative traffic sign areas, and then used a set of 

weak classifiers similarly to Viola and Jones to calculate the probability value of each area. Zhang et 

al. [2] proposed a cascaded R-CNN algorithm to obtain multi-scale features in the image pyramid. 

Except for the first layer, each layer of the cascaded network incorporates the export boundary box 

of the previous layer. To carry out joint training, the weighted multi-scale features are obtained 

through dot product and softmax, and the characteristics of traffic signs are highlighted by refined 

features to improve the accuracy of traffic sign detection. Zhang et al. [24] proposed a new end-to-

end architecture to improve small target detection by combining Faster R-CNN with an attention 
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mechanism, and by explicitly modeling the interdependence between channel features. The attention 

mechanism is used to enhance the feature response. Finally, the attention mechanism is used to select 

the discriminative features to generate boundary box regression and traffic sign classification. The 

above algorithm uses the attention mechanism to strengthen the local feature information, avoids the 

number of calculations caused by convolving the global information of the big image, and improves 

the detection performance of traffic signs. However, it does not conduct effective feature filtering on 

the results. 

3. Proposed Method 

The traffic sign detection algorithm proposed in this paper first uses a lightweight SSD network 

to detect traffic signs; it then obtains the coordinates of the alternative area based on the detection 

results, and intercepts the alternative area; Secondly, it uses the color detection algorithm based on 

the phase difference method to obtain the binary image of the corresponding alternative area. Finally, 

the connected component is calculated based on the obtained binary image and the calculation results 

are filtered. The specific flow of the algorithm is shown in Figure 1. 
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False 
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Figure 1. Flow chart of lightweight SSD-based traffic sign detection. 

Firstly, the TT100K dataset is used to complete the lightweight SSD neural network model 

training, the traffic signs in the image are detected, and the locations of the traffic signs in the image 

and the categories of traffic sign are marked. The detection result obtained from this step is 

temporarily marked as an alternative area for traffic signs. 

Secondly, the specific coordinates of the alternative area of the traffic sign are obtained based on 

the detection result of the input image in the previous step; then these coordinates are used to crop 

the alternative area of the traffic sign in the input image; and the image size is adjusted to 240 × 240 

as the input for the next step of color detection in an image. 

Thirdly, the color detection algorithm is used based on the phase difference method to detect 

the color of the image cropped in the previous step. Due to the particularity of the colors of Chinese 

traffic signs, this paper only detects yellow, red, and blue in the cropped image. In addition, because 

the color of a traffic sign is affected by factors such as light, newness, wear and tear, etc., this paper 

uses Python’s color function library Colorific to calculate the yellow, red, and blue RGB color space 

values of traffic signs and conduct statistical analysis. Then the color space ranges of yellow, red, and 

blue in traffic signs are appropriately expanded. After conducting the above operations on the 

cropped image in the previous step, the binary image of the corresponding color is obtained. 

Finally, the connected component is calculated on the binary image obtained in the previous 

step. The calculation result may include the areas of multiple connected components; therefore, this 

paper only selects the area of the largest connected component as the calculation result, and judges 

whether the area of the largest connected component has reached the fixed threshold. If it is greater 

than or equal to the threshold set in this paper, it can be judged that the detection result is correct. 

Otherwise, the detection result is false, namely, a traffic sign misdetection. 

  



Information 2020, 11, 475 5 of 16 

 

3.1. Lightweight SSD Network Structure 

As the distance between the vehicle and the traffic sign changes constantly during driving, the 

size of the traffic sign captured by the camera is also constantly changing. The architecture of the 

baseline SSD model [25] is shown in Figure 2. The main body of the network is composed of a basic 

network and an additional feature network. Its biggest feature is the use of a multi-scale feature map 

for detection to adapt to the detection of objects of different sizes, which can meet the requirements 

of detecting targets of different scales during driving. Baseline SSD uses VGG-16 as the basic network, 

and the input is a 300 × 300 pixel image. The 5 maximum pooling layers separate the basic network 

VGG-16 into 6 modules, and each of the first 5 modules contains 2, 2, 3, 3, and 3 convolutional layers. 

The sixth module has two layers of convolution, which respectively convert the fully connected layers 

FC6 and FC7 of VGG-16 into 3 × 3 convolution layers Conv6 and 1 × 1 convolution layers Conv7, and 

also change the pooling layer pool5 from the original 2 × 2 to 3 × 3, with the step size changing from 

2 to 1. Furthermore, five additional stacked convolution modules are added, each of which has 2 

layers of convolution. The 6 layers of Conv4_3, Conv7, Conv8_2, Conv9_2, Conv10_2, and Conv11_2 

are taken and 6 layers of feature layers with different scales are used for target classification detection 

and position regression. 

 

Figure 2. Baseline SSD network structure. 

The lightweight SSD network structure proposed in this paper is based on the improvement of 

the baseline SSD network structure and is mainly aimed at improving the basic network structure 

VGG-16. Although the structure of VGG-16 is simple, the weight parameters contained in the 

network are relatively large, and it is difficult to adjust the parameters in the process of network 

training. The numbers of convolutional layers included in the first 5 parts of the network are 2, 2, 3, 

3, and 3—that is, in the convolutional layers 1–13, the numbers of convolutional channels included 

are 64, 128, 256, 512, and 512 respectively. The size of each of the first 13 convolutional layer 

convolution kernels is 3 × 3, the product spans are all 1, the pooling window of the largest pooling 

layer is 2 × 2, and the step size is 2. The number of parameters of the baseline SSD is 22,935,232, and 

the number of parameters of the modified SSD is 7,036,768, and the network parameters of the 

baseline SSD are reduced by 3.3 times. Therefore, this paper replaces some of the 3 × 3 convolution 

kernels with some of the 1 × 1 convolution kernels in the baseline network to downgrade the 

dimensionality of the channel and delete part of the convolution layer. The improved network 

structure is shown in Figure 3. It shows that by reducing the number of channels and convolutional 

layers in the basic network part of the baseline SSD, the detection speed of the baseline SSD network 

model for traffic signs is improved and the real-time requirements are realized. 
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Figure 3. Lightweight SSD network structure. 

3.2. Color Detection Algorithm Based on the Phase Difference Method 

Due to the uneven distribution of the number of traffic sign image categories in the dataset, the 

traffic sign detection algorithm proposed in this paper only detects prohibition signs, warning signs, 

and mandatory signs. The main traffic signs included are shown in Figure 4. Yellow corresponds to 

warning signs, red corresponds to prohibition signs, and blue corresponds to mandatory signs. Due 

to the particularity of the main colors of the three types of traffic signs, prohibitions, warnings, and 

instructions, the color detection algorithm in this paper mainly focuses on yellow, red, and blue. 

 

Figure 4. The signs in the yellow, red, and blue boxes are warning, prohibition, and mandatory signs 

respectively. 

The color models that are widely used in computer systems mainly include RGB and HSV. Since 

the HSV color space can better reflect the specific color information of the image compared to the 

RGB color space, such as the brightness, tone, and vividness of the color, it can facilitate the contrast 

between different colors. Therefore, the crop method in the Pillow image processing library of Python 

to crop the input image based on the detected coordinates of the alternative traffic sign area is used 

in this paper; the cropped image is resized to 240 × 240; then the color space of the obtained alternative 

traffic sign area is converted from RGB model to the HSV model [26]; finally, color detection is 

conducted. 

According to the principle of three primary colors, R , G , and B  are set to the red, green, and 

blue coordinates of a certain color respectively, and their values are real numbers between 0 and 255; 

max is set as the maximum value in r, g , and b , min  as the minimum value, and the space 

conversion from RGB to HSV is shown in Equation (1). 
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In Equation (1), max( , , ) min( , , )r g b r g b  , r, g , and b  represent the three color values of 

the RGB color model respectively, and their values are real numbers between 0 and 1.  h , s, and v 
represent the values of the three basic elements of hue, saturation, and brightness of the HSV color 

model respectively. 

Since the color of traffic signs is affected by factors such as light, newness, and wear and tear, 

the color value to be detected fluctuates in a certain range. Therefore, when the color detection of the 

alternative traffic sign area obtained by cropping is conducted, the set color space ranges of yellow, 

red, and blue are highly effective and reliable. We use the open-source color detection library 

Colorific to calculate the RGB color space values of the three types of traffic signs in the TT100K 

dataset and conducted statistical analysis. Among them, some warning signs containing the main 

color RGB value detection results are shown in Figure 5a; some prohibition signs containing the main 

color RGB value detection results are shown in Figure 5b; some mandatory signs containing the main 

color RGB value detection results are shown in Figure 5c. 

 

(a) RGB detection value of warning signs 

 
(b) RGB detection value of prohibition signs 

 
(c) RGB detection value of mandatory signs 

Figure 5. RGB detection results of three types of traffic signs. 

After obtaining the RGB information of warning, prohibition, and mandatory traffic signs, 

Equation (1) is used to convert the color space model of the image to an HSV model to summarize 

and analyze the main color space ranges of warning, prohibition, and mandatory traffic signs in the 
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HSV color space. The three types of traffic signs in this paper have three main colors; according to 

the experimental data’s statistics, their ranges of HSV color space are shown in Table 1. 

Table 1. HSV spatial threshold ranges of the corresponding three colors. 

Color H S V 

Yellow 0.06 0.19h   0.17 1.0s   0.19 1.0v   

Red 0.0 0.04 | 0.87 1.0h h     0.17 1.0s   0.19 1.0v   

Blue 0.56 0.7h   0.17 1.0s   0.19 1.0v   

After obtaining the main colors of the three types of traffic signs, namely, the HSV color space 

ranges of yellow, red and blue, the phase difference method based on the OpenCV to conduct color 

detection on the alternative area of cropped traffic signs is used in this paper. The color detection 

algorithm flow based on the phase difference method is shown in Figure 6. The flow can be 

summarized as follows: 

Input image

Color space
from RGB 

models to HSV 
models

Histogram 
equalization of 

images

Color detection 
based on phase 

difference 
method

De-noise and 
connect 

connected 
component

Export a binary 
image of a 

specified color

 

Figure 6. Flow chart of color detection based on the phase difference method. 

Firstly, Equation (1) is used to convert the color space of the input image from the RGB model 

to the HSV model, which can facilitate the equalization of the histogram of the image. 

Secondly, the phase difference method is used to detect the color of the image. The basic idea of 

the phase difference method is to set the HSV value of a pixel in the standard color library as ( , , )h s v
. After the color detection is conducted on the cropped traffic sign image, the HSV value of a certain 

pixel in the image will be obtained and denoted as ( ', ', ')h s v , and the difference between the two is 

denoted as D, and the value of D is shown in Equation (2): 

- ' ( - ') ( - ')D h h s s v v  （ ）  (2)

If the absolute value of the difference between h  and 'h  is less than or equal to D, the absolute 

value of the difference between s and 's  is less than or equal to D, the absolute value of the 

difference between v  and 'v  is less than or equal to D, and the condition in Equation (3) is 

satisfied, then the HSV value of the pixel can be considered to be the same as that in the standard 

color library—that is, the colors of the two match each other. 

 '   

 '   

 '   

h h D

s s D

v v D

 

 

 

 
(3)

The advantage of color detection based on the phase difference method is that the number of 

calculations is small, and the color range is a cube with , ,h s v（ ） as the center. 

Finally, when the color to be detected is correctly detected, the pixel will be marked as white, 

and the other colors will be marked as black, and finally, a binary image with only black and white 

colors is exported. In order to avoid the influence of noise in some images, it is necessary to connect 

the nearby white pixel areas based on distance threshold, and finally, to export a binary image of a 

specified color. 

The color detection algorithm based on the phase difference method was used to detect the 

colors of warning signs, prohibition signs, and mandatory signs respectively. The results are shown 

in Figure 7. 
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Original Result Original Result Original Result

Effect picture of warning sign 
color detection

Effect picture of prohibition sign 
color detection

Effect picture of indicator sign 
color detection  

Figure 7. Color detection effect diagram. 

3.3. Connected Component Calculation Based on the Two-Pass Algorithm 

After the color detection of the alternative traffic sign area is obtained by cropping, the binary 

image of the alternative area will be obtained. However, due to the influence of image noise, there 

are connected components with different detected color areas in the binary image, so it is necessary 

to set a certain threshold for the area of the connected component to determine whether the connected 

component of the detected color is the connected component of the traffic sign color or the connected 

component of noise in the image. In this paper, the number of pixels in the connected component of 

the binary image is counted experimentally, and the experimental effect of marking the connected 

component is shown in Figure 8. In addition, according to the characteristics of the color distribution 

of traffic signs, the number of pixels in the red connected component is relatively small; therefore, 

this paper provides the minimum threshold of the area of the connected component based on the 

number of pixels in the red connected component, which means that the detected results lower than 

this threshold will be judged as a false detection. 

B
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n
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Figure 8. Statistical graph of connected components in binary images. 

The smallest unit of an image is a pixel. There are two commonly used methods to describe the 

adjacency relationship of each pixel: the four-neighboring method and the eight-neighboring method. 

The four-neighboring method is to select the pixels on the left, right, top, and bottom of the current 

pixel as adjacent pixels, and the eight-neighboring method is to select the pixels on the left, right, top, 

and bottom, and diagonal lines of the current pixel as adjacent pixels. 
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Algorithm 1: Two-Pass algorithm based on the four-neighboring method. 

Input: 

Binary image 

Output: 

Connected component grouping 

1： Initialization: Initialize all label values to 1 

2： for each ,p m n（ ） do 

3： if , 1p m n （ ）  then 

4： if the pixel values in ,p m n（ ） are all 0 then 

5： Set the label value assigned to ,p m n（ ） as l, and add 1 to the number of pixels 

contained in the connected component 

6： else 

7： Set the label value of ,p m n（ ）as the smallest label value of adjacent pixels 

8： end if 

9： end if 

10： end for 

11： for each ,p m n（ ） do 

12： if , 1p m n （ ）  then 

13： Modify the label value of ,p m n（ ） to be the smallest label value that belongs to the 

same relationship 

14： end if 

15： end for 

Since the calculation of the connected component based on the eight-neighboring method may 

contain more connected components of image noise, this paper uses the two-pass algorithm based 

on the four-neighboring method to calculate the connected components in the binary image [27]. The 

basic idea is that a label is assigned to each pixel position in the first scan. During the scanning 

process, the pixel set in the same connected component may be given one or more different labels. 

These different labels of the same connected component are connected, and their connectivity is 

recorded during this process; the second scan is to unify the different label values in each connected 

component according to the connectivity of all the labels recorded in the first scan. The pseudo-code 

of the two-pass algorithm is shown in Algorithm 1, where ,p m n（ ） represents the current pixel. 

Based on the statistical data of calculating connected components, this paper sets the threshold 

of the number of pixels of the specified color contained in the connected component in the binary 

image to 200. Firstly, the specified color detection is conducted on the cropped alternative area of the 

traffic sign, and the obtained binary image is used as the input of the algorithm for calculating the 

connected component. According to the characteristics of the color distribution of traffic signs, the 

connected component of the specified color contains the largest number of pixels in blue, followed 
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by yellow and red. If the connected component with a smaller number of pixels in the three colors is 

judged first, the number of pixels included tends to be less than the set threshold, which will cause 

the color that may be upwards of the threshold to fail to be judged. Therefore, our method 

sequentially judges whether there are blue, yellow, and red pixel-connected components in the binary 

image, and sequentially determines whether the number of pixels contained in the connected 

component is above the set threshold. If it is, it can be determined that the detection result of the 

traffic sign is correct. Otherwise, the detection result of the traffic sign based on the lightweight SSD 

is false. The specific process is shown in Figure 9. 

 

Figure 9. Flow chart of connected component detection based on the two-pass algorithm. 

4. Experiment 

4.1. Datasets and Setting 

We used the TT100K traffic sign dataset, which contains 100,000 traffic sign images in real scenes, 

covering 151 different types of traffic signs. Due to the uneven distribution of the number of traffic 

sign instances in different categories, this led to insufficient training of the network model. Therefore, 

we selected 45 types of traffic signs with more than 100 instances in TT100K, and then usedv a data 

enhancement strategy based on image appearance transformation to enhance these 45 types of traffic 

signs based on the original dataset. Considering that the detection and recognition of traffic signs will 

be seriously affected by illumination, this paper provides a data enhancement strategy based on 

image appearance transformation. By changing the appearance of the image, the brightness of the 

image can be changed, which can better simulate the impact on traffic signs in the day and night. 

Appearance transformation mainly refers to the change of image brightness and the level of 

image contrast. Image brightness adjustment is to increase or decrease the overall intensity of image 

pixels. Contrast adjustment is to reduce the intensity of pixels in dark areas of the image and raise 

the pixel intensity in bright areas to achieve display accuracy in a certain area. The contrast and 

brightness of the image can be calculated using Equation (4): 

( , ) ( , )G x y T x y    (4)



Information 2020, 11, 475 12 of 16 

 

In Equation (4), 0   is the gain which controls the brightness,  is the offset value which 

controls the contrast of the image, ( , )T x y  is the channel value of the original image in the x  row 

and y  column pixels, and ( , )Gx y  is the channel value of the target image in the x  row and y  

column pixels. 

The data enhancement strategy based on image appearance transformation in this paper is to 

randomly select a traffic sign from the traffic sign standard template library, transform its appearance 

first, add Gaussian noise, and finally mix the transformed traffic sign with a random background 

image. The specific experimental effect diagram is shown in Figure 10. 

Original 
Appearance 

transformation

Image synthesis

Adding 
Gaussian noise

Background

 

Figure 10. Data enhancement strategy. 

In terms of the experimental environment used in this study, the hardware configuration was 

an i7-8700 processor, 32 GB memory, and a GTX 1060 graphics card, and the software environment 

was ubuntu 16.04, python3.5, Colorific 0.3.0, OpenCV 3.2, and TensorFlow. 

The loss function adopted included position loss and confidence loss, as shown in Equation (5). 

In the process of training the network, the value of the loss function can be reduced to improve the 

accuracy of the network’s prediction of traffic sign categories, and the prediction reliability of traffic 

sign location. 

1
( , , , ) ( ( , ) ( , , ))conf locL z c k t L z c L z k t

N
   (5)

In Equation (5), ( , )confL z c  is the confidence loss, using the softmax cross-entropy loss function 

[28]; N  is the number of default boxes; z  is the predicted value; ( , , )locL z k t  represents the position 

loss, using the smooth-L1 loss function; t  is the true target box; k  represents the alternative 

prediction target box; c  indicates the predicted confidence value of the target in the alternative 

frame;   is the weight parameter of position loss and confidence loss, which is set as 1 in this paper. 

In addition, we used the migration learning training method to train the network model. First, 

the basic network part of the lightweight SSD network on the TT100K dataset was trained, and then 

the trained network parameters as the pre-training parameters of the entire network were set. Then, 

the entire network on the TT100K dataset was trained, which can speed up the convergence of the 

entire network and improve the model training effect. The number of traffic sign pictures for training 

was 6105, and the number of traffic sign pictures for testing was 3071. In the basic network training 

process, the learning rate is trained using polynomial decay. The initial value of the learning rate of 

the model was set as 0.001. After each iteration of the total 5000, the learning rate was multiplied by 

0.1, and the momentum coefficient was set as 0.9, batch size was 64, subdivisions 16, and epochs 30. 

The overall training optimizer used the SGD algorithm. 

  



Information 2020, 11, 475 13 of 16 

 

4.2. Experimental Results and Analysis 

Our model training was conducted in two steps, and the loss change curve during network 

training is shown in Figure 11. Figure 11a shows the change of the basic network loss. The network 

was close to convergence when it iterated about 20,000 times. Transfer learning was adopted to train 

our model on the TT100K dataset; the loss change is shown in Figure 11b. The model was close to 

convergence at about 5000 iterations, and the model convergence speed is significantly faster. 

  
(a) Loss change curve of basic network (b) Loss change curve of the overall model 

Figure 11. Change curve of iterative loss value of lightweight SSD network. 

This paper uses two types of model evaluation: precision and recall. The precision is the ratio of 

the number of samples that are tested correctly to the total number of samples that are predicted to 

be positive. The calculation is as follows: 

Precision
TP

TP FP



 (6)

The recall is the proportion of the number of samples that are tested correctly to the total number 

of samples that are positive in the real situation. The calculation is as follows: 

Recall
TP

TP FN



 (7)

In Equations (6) and (7), the test sets contain positive samples and negative samples: TP  (true 

positives) is the number of positive samples that are correctly predicted as positive samples, FP

(false positives) is the number of negative samples incorrectly predicted as positive samples, and 

FN  (false negatives) is the number of positive samples incorrectly predicted as negative samples 

[29]. 

Next, we analyze the precision and recall of the three types of traffic signs, warning signs, 

prohibition signs, and mandatory signs in the experiment. Table 2 shows the AP and recall of 

different network models, where mAP is the abbreviation of mean average precision, and mR is the 

abbreviation of mean recall.  
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Table 2. Results of comparative experiments between the models. 

Network 

model 

AP Recall 

FPS warning 

signs 

prohibition 

signs 

mandatory 

signs 
mAP 

warning 

signs 

prohibition 

signs 

mandatory 

signs 
mR 

Lightweight SSD 0.68 0.72 0.73 0.71 0.74 0.76 0.77 0.76 32 

PVANet [30] 0.67 0.74 0.72 0.71 0.76 0.78 0.83 0.78 27 

MSA_YOLOv3 

[20] 
0.84 0.86 0.88 0.86 0.80 0.81 0.92 0.84 9 

CMA  

R-CNN [2] 
- - - 0.98 - - - 0.90 3 

TSD Net [31] 0.52 0.44 0.61 0.52 - - - 0.65 60 

Faster-RCNN [14] 0.55 0.57 0.47 0.53 0.54 0.56 0.58 0.56 7 

CAB-s Net [32]  0.87 0.88 0.91 0.89 - - - - 27 

Baseline SSD 0.70 0.72 0.74 0.72 0.81 0.80 0.82 0.81 24 

Ours 0.73 0.78 0.74 0.75 0.80 0.84 0.82 0.82 29 

Note: “-“ means no data in reference papers. 

The experimental results show that our method improves the mR by 1% compared with the 

baseline SSD network and 6% compared with the lightweight SSD. In terms of detection accuracy, 

our method is more accurate in testing than the baseline SSD network in traffic signs. It can be seen 

from the experimental results that the method proposed in this paper improves the mAP and mR of 

the baseline SSD network. Since the mAP of the lightweight SSD network for traffic sign detection is 

lower than that of the baseline SSD network, and the lightweight SSD is used to improve the detection 

speed of the baseline SSD network, this paper also analyzes the performance of each model through 

experiments. The FPS (frames per second) comparison experiment results of each model are shown 

in Table 2. The experimental results show that the detection speed of the lightweight SSD network 

model for traffic sign detection is 1.3 times that of the baseline SSD network model, and the FPS 

reaches 32. The detection speed of our method is 1.2 times that of the baseline SSD, and the FPS also 

reaches 29. At the same time, in order to verify the effectiveness of our method, the proposed method 

is also compared with other models in this paper. Compared to PVANet [30], the mAP and mR of 

our method are improved by 4%, and the FPS aspects. Additionally, in comparison with faster-RCNN 

[14], our method offers significant improvements in detection accuracy and speed. As far as mAP, 

our method is not as good as CAB-s Net [32], but the FPS of our method is improved by 7%. In terms 

of mAP and mR, there is a gap between our method and two other methods called MSA_YOLOv3 

[20] and CMA R-CNN [2], but our method has a significant advantage in FPS. In MSA_YOLOv3, the 

FPS is only 9. Besides, the FPS is only 3 in CMA R-CNN. Based on FPS, the gap between our method 

and TSD Net [31]is large, but our method improved 23% on mAP and 17% on mR. Therefore, our 

method has obviously advantages on mAP and mR. From this, it can be seen that the proposed 

method meets the requirements of actual traffic sign detection scenarios in terms of detection speed 

and accuracy. 

5. Conclusions 

Aiming at the problem of the misdetection of traffic signs in complex environments, in this 

paper, we propose a lightweight SSD network algorithm that reduces the amount of calculations for 

the baseline SSD network and the weight of the baseline SSD network. In addition, to improve the 

accuracy of the lightweight SSD network for traffic sign detection, this paper also combines the color 

detection algorithm and the connected component calculation algorithm. First, a lightweight SSD 

network is used to detect and recognize traffic signs, and then color detection algorithm and 

computation connected component algorithm are used to further filter the detection results. 

Experimental results show that the algorithm proposed in this paper has improved the detection 

speed and accuracy of the baseline SSD network. Besides, compared with mainstream methods, our 

method is more suitable for real-world scenarios of traffic sign detection. Finally, given the wide 

variety of traffic signs and the uneven number of images of each type of traffic sign in the dataset, a 
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data enhancement strategy based on image appearance transformation is provided and was used to 

expand the traffic signs images in the dataset, offering sufficient data for the training of the network 

model. 
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