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Abstract: In this research study, we investigate the ability of deep learning neural networks to 

provide a mapping between features of a parallel distributed discrete-event simulation (PDDES) 

system (software and hardware) to a time synchronization scheme to optimize speedup 

performance. We use deep belief networks (DBNs). DBNs, which due to their multiple layers with 

feature detectors at the lower layers and a supervised scheme at the higher layers, can provide 

nonlinear mappings. The mapping mechanism works by considering simulation constructs, 

hardware, and software intricacies such as simulation objects, concurrency, iterations, routines, and 

messaging rates with a particular importance level based on a cognitive approach. The result of the 

mapping is a synchronization scheme such as breathing time buckets, breathing time warp, and 

time warp to optimize speedup. The simulation-optimization technique outlined in this research 

study is unique. This new methodology could be realized within the current parallel and distributed 

simulation modeling systems to enhance performance. 

Keywords: parallel distributed discrete-event simulation; deep learning; deep belief networks; 

breathing time buckets; breathing time warp; time warp 

 

1. Introduction and Background 

A fundamental paradigm in simulation is discrete-event simulation (DES) [1]. DES is 

characteristically involved with the modeling simulation of systems as a succession of events in a 

discrete fashion. These events arise at specific times and have the potential to change the state of the 

system. The execution of a single DES program on parallel and distributed computational systems is 

called parallel and distributed discrete-event simulation (PDDES) [2]. These systems can have 

characteristics from the high-performance computing systems and the hardware multi-threaded 

systems. These systems include schemes that communicate through shared memory modules. They 

also can include a more loosely coupled system where each processor has its local memory and a 

communication scheme based on messages. In addition, new initiatives, especially on platforms such 

as cloud-based virtualized arrangements and Internet-scale settings, can make PDDES more viable, 

easy to use, and cost-effective [3–12]. 

The widely used simulation schemes with distribution and parallelism at the event level aim to 

divide the global simulation tasks into a set of logical processes (LP) with communication capacities. 

These strategies exploit the inherent parallelism between the respective components of the problem 

with the concurrent execution of these LPs. This arrangement results in a simulation due to the 

collaboration between the set of LPs [13]. 
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The simulations of systems with LPs have an architecture based on sets of LPs. The design of 

this arrangement of LPs to execute events synchronously or asynchronously in parallel has to have a 

communication system not only to exchange data but also to synchronize activities. Each LP is 

assigned to a specific region of the model to be simulated. The simulation engines can operate in an 

event-driven fashion and execute local events and the respective subset of state variables (and 

generate remote events—i.e., events in other LPs). 

PDDES systems use synchronization techniques that fall “into two main categories: conservative 

approaches that avoid violating the constraint of local causality, and optimistic approaches that allow 

violations to occur but provide a mechanism” for recovery called rollback [14]. Rollback involves 

undoing incorrect modifications. The most effective implementation of the PDDES approach is the 

optimistic algorithm [15]. It is widely used for simulations in logistics, missile defense, and 

computational physics [16]. In this paper, we investigate the ability of deep learning neural networks 

to provide a mapping between features of a PDDES (software and hardware) to an optimistic time 

synchronization scheme to optimize speedup performance. We will explain the different 

synchronization techniques that this research implements below. 

1.1. Conservative and Optimistic Schemes 

Simulation objects must interact in a particular fashion to accomplish an efficient parallel and 

distributed execution with perfect integrity. Several innovative techniques have been developed to 

solve this challenging problem from conservative and optimistic viewpoints [2]. 

1.1.1. Conservative Viewpoint 

The conservative viewpoint executes events for simulation objects (SOs) once it can be assured 

that an SO will get no other event with an earlier timestamp. Conservative approaches restrict how 

SOs may interact. SOs can only interact with other SOs as specified by connectivity rules established 

during the simulation’s initialization. 

The most general approach in the conservative domain is fixed time buckets [2]. Fixed time 

buckets (Figure 1) permit events to be scheduled and executed asynchronously by allowing an SO to 

schedule events in other simulation objects. This process only occurs tighter in time than the global 

lookahead (L) of the simulation. For instance, if an SO is at time TA, then the speediest it can book an 

event for another SO is at TA + LA (Figure 1), where LA is the respective lookahead of the simulation. 

 

Figure 1. Fixed time buckets allow events to be scheduled and processed asynchronously using the 

concept of a global lookahead. 

1.1.2. Optimistic Viewpoint 

The optimistic viewpoint uses a unique approach for attaining parallelism by determinedly 

executing events but sometimes without considering causal accuracy. Rollback is employed to 

invalidate events that might have been executed when straggler event messages are accepted from 

other elements of the simulation system. Therefore, events are executed optimistically without the 

anticipation of rollback. This optimistic viewpoint has no limitations on how SOs intermingle; 

however, the disadvantage is that simulations must be built in a rollbackable style.  
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There are several schemes developed to implement an optimistic viewpoint. The most utilized 

ones are time warp (TW), breathing time buckets (BTB), and breathing time warp (BTW) [2,17–19]. 

Time Warp (TW) 

The TW event management delivers a well-organized rollback procedure for each simulation 

object (SO). Each SO has a simulation clock that advances with the timestamp of its executed events. 

When a SO receives a straggler event, it rolls the SO back. The SO is rolled back until its last executed 

event before executing more events. If an event was rolled back, it needs to be reprocessed to continue 

the simulation.  

TW only rollbacks the affected events when the SO receives a straggler message. The control 

structure must retract the events that were scheduled by rollbacked events. Each event must maintain 

a record of its created events until the event is consigned. Antimessages is the name given to messages 

used to withdraw wrongly scheduled event messages [2].  

A fundamental concept in optimistic time management is the global virtual time (GVT). GVT 

approves when an event can be committed. Events with timestamps less than GVT are considered 

appropriately processed and will not be rolled back. The objective is to revise GVT across the 

simulation as frequently as possible without affecting the efficacy of the simulation due to extreme 

levels of synchronization. The best performance is on authentic parallel machines with shared 

memory and high-speed connections (Figure 2).  

 

Figure 2. The implementation of rollback produced by straggler messages and antimessages in time 

warp (TW). 

When a SO gets a straggler, message triggers rollbacks. TW rolls back each null event and deals 

with the straggler event. When an event is rolled back, this can cause antimessages to be generated 

for other events, which leads to more rollbacks and antimessages.  

Breathing Time Buckets (BTB) 

TW and fixed time buckets contribute to BTB [2]. The messages created while executing events 

are not sent pending, acknowledging that the event creating the messages will not be included in the 

rollback process. BTB is a mix, as explained below: 



Information 2020, 11, 467 4 of 21 

 

 BTB is TW without the scheme of using antimessages. 

 BTB deals with events in the same style as fixed time buckets. The difference is that the size of 

the cycles is not predetermined. 

The concept of the event horizon is essential in BTB [17–20]. The event horizon is defined as the 

specific time where events created turn back. All new events created at the last bucket are organized 

and combined into the event queue at the event horizon (Figure 3). This process is fundamental to 

exploit. The calculation of the global event horizon is essential to avoid problems with other SOs. The 

nodes are prepared to synchronize when they have executed events up to their local event horizon. 

Next, we can calculate GVT as the minimum local event horizon from all the nodes and commit 

events with timestamps less than or equal to GVT. 

 

Figure 3. The event horizon for a single node and the insertion of events on the list. 

A probable difficulty is that a number of nodes may have executed events that went further than 

GVT. Rollback, in this particular case, comprises removing messages that were produced but not sent 

by the specific event and subsequently returning the SO to the state before the event modified it.  

Breathing Time Warp (BTW) 

Breathing time warp is another optimistic hybrid scheme [17–20]. BTW attempts to fix the 

drawbacks with BTB and TW. TW has the possible problem of antimessage explosions and the 

corresponding increase in rollbacks. BTB has the possibility of a higher occurrence of 

synchronizations and reduced parallelism. 

When events are close to the current GVT, cascading antimessage explosion can occur. The cause 

of this explosion is that events being executed far ahead in the simulation time of the rest will 

probably be rolled back. A potential solution is for those runaway events not to send their messages 

right away. Furthermore, using TW as the first step and then using BTB later reduces the occurrence 

of synchronizations and widens the bucket. The cycle is described below in five nodes (Figure 4): 

1. TW phase: This phase starts with TW. There is a crucial flow parameter to fine-tune called Nrisk. 

“Nrisk is the number of events processed beyond GVT by each node” (locally) “that are allowed 

to send their messages with risk” [21].  

2. BTB phase: At the end of the TW phase, messages are held back, and the BTB phase starts 

execution. 

3. Computing GVT: At the end of the BTB phase, computing GVT is performed. There are two 

other crucial flow parameters to fine-tune called Ngvt and Nopt. “Ngvt is the number of messages 

received by each node before requesting a GVT update” [21]. On the other hand, “Nopt is the 

number of events allowed to be processed on each node beyond GVT” [21]. Therefore, Ngvt and 

Nopt control when GVT is calculated.  

4. Committed Events: The events that are executed before GVT is committed. 
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Figure 4. Example of the breathing time warp (BTW) event-processing cycle with a TW phase, a 

breathing time buckets (BTB) phase, computing of global virtual time (GVT), and the corresponding 

commitment of events in five nodes. 

1.2. Problem Statement 

Discrete-event simulation on parallel and distributed processors is very different from the single 

processor scheme, as realized in the traditional and commercial programs. As explained above, 

techniques such as BTB, BTW, and TW have been developed to implement optimistic time 

synchronization schemes, each with its respective strengths and weaknesses in PDDES [2]. However, 

there is no mechanism or efficient rules to decide a priori the best approach at a given simulation 

problem with the respective hardware, software, and network infrastructure in order to optimize a 

desired performance measure. Therefore, we introduce deep belief networks (DBNs) as a mechanism 

to decide a priori the best approach in Section 2. Section 3 describes the validation and variations of 

the DBN implementation built for this research. Section 4 illustrates the selection of the PDDES 

environment (WarpIV). Section 5 introduced programming in WarpIV using a case study and 

speedup (with its relationship to wall-clock time for these preliminary studies—other performance 

measures are possible, but this study just places emphasis on wall-clock time). Section 6 introduces 

the measure of complexity utilized to characterize a simulation computer program. The results of the 

DBN to map a PDDES environment to a synchronization scheme is explained in Section 7. Finally, 

we provide conclusions and further research in Section 8. 

2. Deep Belief Networks 

Hinton and Salakhutdinov [22] began deep learning in 2006 and contributed to a new movement 

in neural networks. Deep learning is self-learning by constructing a model with several layers and 

training it with data. This nature of multiple layers can improve the accuracy of the classification. 

These multiple levels of representation can provide complex mappings [23,24]. This paper studies 

the capabilities of deep belief network (DBN) for mapping the characteristics of the PDDES to an 

optimistic synchronization scheme in PDDES.  

A deep belief network (DBN) is a machine learning assembly (deep) arranged of a stack of many 

restricted Boltzmann machines (RBMs) [25,26]. The visible layer of the DBN is the first visible layer 

of an RBM, while all other layers are hidden DBN layers. The hidden neurons are not connected 

between them; therefore, they are conditionally independent. To train a DBN, you must train a single 

RBM at a time. The “input layer is used to train the connection weights between the two layers”, 

while the output layer is used to build the input of the next RBM [24]. The hidden layers of a DBN 

are unsupervised and act as feature detectors. These unsupervised layers can be useful by detecting 

features in the PDDES software and hardware and then with the supervised layer, creating the 

relationships between features and the synchronization schemes. DBNs have successfully created 
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mappings in challenging problems such as traffic flow prediction, electroencephalography, and 

natural language understanding [26–30]. The work presented in this paper is the first attempt to use 

DBNs to help design PDDES. 

The learning mechanism in DBNs starts with the RBMs and their respective energy function. An 

energy function based on the connection weights and individual unit biases is used to define the 

probability distribution over the joint states of the neurons. For binary RBMs, the energy of the joint 

configuration of visible and hidden neurons is provided by: 

E(�, �; θ) = − � � ���

�

���

��ℎ�

�

���

− � ����

�

���

− � ��ℎ�
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where θ = (�,�,�) and � = (��) with � = (ℎ�) are the visible and hidden neurons. Variables �� and 

�� are the bias terms while ��� is the weight between neurons i and j [31,32]. 

The following equation calculates the probability assigned to every possible pair of a visible 

vector v: 

�(�; θ) =
∑ ���(�,�;�)

�

∑ ∑ ���(�,�;�)
��

 (2) 

This vector is the partial derivative of the log-likelihood probability of a training vector for the 

neuron’s weights 

 ∂ log [p(�)]

��
= ∆��� = 〈��ℎ�〉���� − 〈��ℎ�〉�����  (3) 

Therefore, the learning rule (i.e., updating of the weights) for stochastic steepest ascent in the 

log probability of the training dataset is given by: 

∆��� = ��〈����〉���� − 〈����〉������ (4) 

where ε is the learning rate. 

The individual activation probabilities are defined by: 

�(�� = 1|�; θ) = � �� ���

�

���

ℎ� + ��� (5) 

where σ(λ) = 1/(1 + e^(−λ)) is a sigmoid function [22,24]. Correspondingly, for training input v 

randomly selected, the binary state hj of each hidden neuron j is set to 1 with a probability provided 

by: 

��ℎ� = 1|�; θ� = � �� ���

�

���

�� + ��� (6) 

Real-valued data are more naturally modeled by using a Gaussian–Bernoulli RBM (GRBM) with 

an energy function of the form: 

E(�, �; θ) = − � � ���

�
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 (7) 

RBMs represent probability distributions after being trained. They assign a probability to every 

possible input-data vector using the energy function. 

Real-valued GRBMs have a conditional probability for ℎ� = 1, a hidden variable turned on, given 

the evidence vector � of the form: 

��ℎ� = 1|�; θ� = � �� ���

�

���

�� + ��� (8) 
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The GRBM conditional probability for �� = 1, given the evidence vector h, is continuous-normal 

and has the form 

�(��|�; θ) = � �� ���

�

���

ℎ� + ��, 1� (9) 

where �(μ�, 1) =
�

�
(�����)

�

�

√��
 is a Gaussian distribution with the mean calculated by �� = ∑ ���

�
��� ℎ� +

�� and a variance unity [22,24]. 

3. Validation and Variations of the Implementation of Deep Belief Networks (DBNs)  

The validation of the DBN software was built using MATLAB and was performed using 

standard benchmark pattern classification data from the MNIST handwritten digits database [33,34]. 

The MNIST database of handwritten digits has a training set of 60,000 examples and a test set of 

10,000 examples. The digits were normalized in size and centered on a 28 × 28-pixel size image (Figure 

5). The MNIST handwritten digits database has become a good database for researchers who want to 

test software that implements artificial intelligence algorithms on real-world data while spending 

minimal effort on pre-processing and formatting. Several architectures were developed using a 

different number of layers and neurons. The performance in the testing set achieved was more 

significant than 98% accuracy, which corresponds with the values reported by other researchers [35]. 

The software was also validated by sharing the source code and the results with the MNIST database 

with the research group of the creator of DBNs (Geoffrey Hinton) at the University of Toronto. 

 

Figure 5. Example of handwritten digits from the MNIST handwritten digits database. 

Additionally, the DBN software developed was modified to perform signal processing using 

NASA Space Shuttle data, a very well-known anomaly detection problem [36]. This DBN developed 

uses stochastic Bernoulli restricted Boltzmann machines in the implementation of DBN. Furthermore, 

this implementation employs analysis of variances (ANOVA) as “brute force” optimization to help 

identify DBN parameters, factors that influence the cross-entropy (CE), or the root mean square 

(RMS) minimum errors during stochastic DBN training. 

The method devised for anomaly detection examines the difference between two DBN output 

probabilities. The output probability of a DBN in reaction to its own nominally trained telemetry 

signal set is compared with the output probability of the same DBN in reaction to its own nominally 

trained data set, but with a small change. This method allows for the use of a DBN to detect slight 

changes in telemetry signals. Figure 6 shows the detection process. 
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Figure 6. Detection by comparison of signals using nominal patterns as the basis to contrast with off-

nominal patterns. 

This case trained a deep belief neural network with six nominal temperature instrumentation 

signals, 2 transducers per the main engine. All data were normalized, therefore the data set had a 

magnitude range of [0, 1]. Six nominal instrumentation temperature signals collected from five 

independent space shuttle missions (i.e., flights) were used for training. Table 1 summarizes 

telemetry variables, missions, and timeframes used. 

Table 1. Datasets of different shuttle flights (telemetry data from the three main engines) for training. 

Flight Number Flight Date Start GMT End GMT TCID 

133 24 February 2011 124700 150000 SA133B 

132 14 May 2010 090000 111000 SA132B 

131 4 May 2010 010627 045800 SA131A 

128 28 August 2009 185712 210000 SA128B 

126 14 October 2008 154210 190000 SA126A 

Space Shuttle Main Engine Main Fuel Valve Telemetry Retrieved 

Engine 3: E41T3153A1, E41T3154A1 (β(1), β(2)). Engine 2: E41T2153A1, E41T2154A1 

(β(3), β(4)). Engine 1: E41T1153A1, E41T1154A1 (β(5), β(6)). 

The structure of the DBN for this test case used three hidden layers, one input layer and one 

output layer. During the deep learning processes, the cross-entropy error was investigated at every 

epoch in each hidden layer to ensure a decreasing trend at every epoch. Many iterations of deep 

learning were executed by systematically changing combinations of hidden neurons at each layer and 

the epochs. This process employed ANOVA as a technique to help identify if a particular factor 

affected cross-entropy. Results from the iterative process of changing the number of hidden neurons 

at the three hidden layers of the DBN as well as the number of RBM epochs produced an acceptable 

nominal DBN model. The final DBN parameters are listed in Table 2. 

Table 2. Deep belief network (DBN) architecture and elements of the neurodynamics were built for 

the case study of the space shuttle. 

Learning 

Rate 

Hidden 

Layer 1 

Neurons 

Hidden 

Layer 2 

Neurons 

Hidden 

Layer 3 

Neurons 

Number 

Output 

Neurons 

RBM 

Mini-

Batch 

Size 

RBM 

Epochs 

DBN 

Mini-

Batch 

Size 

DBN 

Epochs 

Weight   

Cost 
Momentum 

10−6 30 20 10 1 50 50 50 1 0.01 0.5 
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The neuron activation probability at the output of the DBN was tested with data from a different 

shuttle flight (the STS-135). When the DBN was presented with the STS-135 data as its visible neurons, 

neuron activation propagated through the neural network until the output was reached. The 

prediction was performed with 100% accuracy. This case study illustrated the feasibility of using the 

output of a deep belief network as a possible detector of off-nominal patterns under certain specific 

restrictions and conditions described in this section. Additionally, it showed that our implementation 

was excellent.  

4. Selection of a Parallel and Distributed Discrete-Event Simulation (PDDES) Platform 

We selected a PDDES platform to implement the different distributed simulation designs and 

get the corresponding results for the time and synchronization management schemes. We studied 

several parallel and distributed discrete-event simulation (PDDES) engines. Several PDDES 

platforms were reviewed during our efforts, and they are listed as follows: 

 Rensselaer’s optimistic simulation system (ROSS) [37,38]; 

 Georgia tech time warp (GTW) [2]; 

 Synchronous parallel environment for emulation and discrete-event simulation (SPEEDES) [2]; 

 WarpIV engine [16]. 

The listed parallel processing computing engines can implement high-performance parallel 

simulation executives for discrete-event simulation applications with their own recommended 

compilers. Due to the superior features, we decided to use WarpIV in this research.  

4.1. WarpIV Engine 

WarpIV kernel can perform discrete-event simulations upon parallel and distributed settings 

[16,39,40]. The Warp engine can perform heterogeneous network applications using a high-speed 

arrangement, which mixes shared memory with standard protocols. This integration can also offer 

high bandwidth. 

The modeling constructs and the time management schemes provided with the WarpIV engine 

kernels offer optimistic time mechanisms (e.g., TW, BTB, BTW). It also facilitates the component-

based and interoperability modeling paradigm for simulation model reusability. WarpIV uses 

memory management caching techniques. 

The simulation modeler can use scheduling methods. On the other hand, this simulation kernel 

allows for arbitrary arguments to be specified through the event interface construct. It uses C and 

C++ languages.  

WarpIV engine has unique features. One of the main differences is the division between 

simulation objects and logical processes. Simulation objects inherit from the class logical process. 

Logical processes (LPs) are automatically distributed during startup to different nodes in several 

styles (e.g., block, scatter, user-defined).  

4.2. Advantages of WarpIV 

The Warp engine provides the resources for scheduling event processing in sequential, parallel, 

and distributed settings. These resources have the following advantages: 

 It features state-of-the-art conservative, optimistic, and sequential time management modes. 

 It distributes models and simulation objects automatically across multiple processors (even 

using the Internet) while handling event processing in logical time. 

 It offers an excellent interface. 

 It is updated to the latest operating systems, network connections, and extensions built to 

enhance functionality. 

 It supports interoperability and reusability. 

 There are training courses and support available. 
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5. Programming in Warp IV  

We provide an example of the case studies used to develop the training database for this 

research, as depicted in Figure 7. This range detection implements a parallel distributed discrete-

event simulation. It models the interactions of several aircraft and radars.  

 

Figure 7. Simulation scenario (case study) using two classes of simulations objects (SOs) with their 

respective events and trajectories. These SOs are radars and aircraft. 

These are the general features of its implementation: 

1. It is a discrete-event simulation program (with capabilities to be executed in parallel/distributed 

computing environments). WarpIV provides a rollbackable version of the standard template 

library (STL) to accommodate mainstream C++ programmers [16,41]. Therefore, the 

programming is built using C/C++. 

2. Time is in seconds for the simulation clock. 

3. There are two (2) types of simulation objects (SOs): 

a. Aircraft. 

b. Ground Radars. 

There is an event TestUpdateAttribute that updates the trajectory of the aircraft at specific times. 

The event for the radars is Scan. At the initial simulation time, Scan is scheduled, and it happens 

at regular intervals depending on the technical specifications of the radars. WarpIV engine has the 

class logical process (LP) (Figure 8). Simulation object (SO) is a regular LP class and inherits from the 

LP Class. The logical process manager (LPM) can have several simulation objects (SOs), and a 

simulation object can belong to only one LPM. A SO manager class (that inherits from the LPM Class) 

for each user-defined simulation object type is automatically generated by a macro (for this case study 

is Aircraft and Radar). With regards to events: events always have one input message and zero or 

more outgoing messages that are generated and sent to create new events. Events inherit from the 

event class (Scan and TestUpdateAttribute for this case study). 
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Figure 8. Unified modeling language (UML) schematics of the development with two types of 

simulation objects (Aircraft and Radar) and two events (i.e., Scan and TestUpdateAttribute). (The symbol 

* means: many). 

The simulation randomly initializes the position of each aircraft and radar in the selected theater 

of operations. Earth-centered rotational Cartesian coordinates (ECR) represent positions (X, Y, Z). 

After initialization, the simulation begins with the aircraft flying in trajectories and the radars 

scanning the airspace to detect them using pre-established technical specifications. 

4. The theater of operations is read from a file with the corresponding longitude and latitude. The 

speed (maximum and minimum) of the aircraft is read from a file (m/s). The range (scanning) of 

the radar can be read from a file or hardcoded in the program. See Figure 9 for an example of a 

theater of operations. 

5. After the initialization routines, the simulation senses an aircraft’s proximity to a radar utilizing 

the predefined technical specifications.  

6. The TestUpdateAttribute event points to the method TestUpdateAttribute(). The event’s framework 

scheduler kicks off this method at simulation time = zero. At each simulation time, each parallel 

instance (one for each aircraft) of the TestUpdateAttribute() method in C_RandomMotion.C 

(Figure 9) computes the path position of each aircraft. 

7. The Scan event points to method Scan() for each radar. The event’s framework scheduler kicks 

off this method at simulation time = zero. At each discrete simulation time, each parallel instance 

of the Scan() method computes the proximity of an aircraft to each ground radar. Proximity 

(range) is calculated in parallel using radar position and moving entity position vectors via 

����� = √∆�2 + ∆�2 + ∆�2, where ∆ represents the difference between radar and aircraft positions 

(∆latitude, ∆longitude, and ∆altitude) in earth-centered rotational coordinates (ECR). 

8. The aircraft does not know the existence of the radars, but the radars can know their position. 
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Figure 9. Example of a theater of operations as defined by the rectangle with vertices (A–D). 

The aircraft detection simulation code implements each instance of aircraft as federation objects 

and initializes their subscription. Federation objects (Fo) are used to facilitate the grouping of entity 

and entity components with related attributes. The grouped attributes can then be distributed and 

published to other entity components and entities that are subscribers. During simulation execution, 

object attributes such as dynamic position (latitude, longitude, and altitude) and aircraft 

identification are published. Figure 10 shows the different methods in the C programming language 

to implement the simulation model of Figures 7–9. 

 

Figure 10. Different methods in the C programming language adapted to WarpIV to program the case 

study of Figure 7. 

Now, we can execute this discrete-event simulation model in several nodes (local and global 

nodes, when the local and global nodes are more than 1, we have a parallel distributed discrete-event 

simulation system). Local nodes share the memory, and global nodes are distributed on the Internet 
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or a private network/cluster (Figure 11). A global node is a cluster, and a local node is a computational 

resource from a specific cluster. For instance, global four and local one involves four clusters. Of these 

clusters, each one will have a single computer (in total four nodes). 

 

Figure 11. Examples of node configurations with cores and distributed computing elements for the 

experiments. 

In addition, we can execute this model with the desired time synchronizations and management 

scheme. The following definitions are required to understand the experiments designed with the 

discrete-event simulation model and Warp IV: 

 T (wall-clock time) is a measure of the actual time from start to finish, containing the time due 

to scheduled interruptions or waiting for computational assets. 

 Speedup relative is the wall-clock time for a single node (sequential) divided by T (wall-clock 

time), considering all of the nodes used for that synchronization scheme (the wall-clock time of 

the node with the maximum value). 

The speedup relative for the different time and synchronization management for these initial 

experiments is displayed in Table 3 and Figure 12. The best result of 2.9 was achieved by TW (the 

theoretical speedup for this problem is 3.0). BTW and TW are very comparable. BTB has better 

performance with multicore arrangements for this simulation case study. 

Table 3. Example of simulation runs (variations) with different configurations and their respective 

wall-clock times for the case study depicted in Figures 7–10. 

 
# Nodes     

Local Global 
Wall Clock 

Time (s) 

Speedup 

Rel 

Speedup 

Theoretical 
Server 

BTW 1 1 16.5 1 3 PC1 
 1 2 14.1 1.2 3 PC1 
 1 3 12.4 1.3 3 PC1 
 1 4 11.4 1.4 3 PC1 
 2 to 4 14 6.1 2.7 3 PC1 
 4 8 6.5 2.6 3 PC1 
 4 4 9.4 1.8 3  
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 3 3 10.5 1.6 3  

BTB 1 1 16.1 1 3 PC1 
 1 2 62.1 0.3 3 PC1 
 1 3 148 0.1 3 PC1 
 1 4 162.6 0.1 3 PC1 
 2 to 4 14 7.7 2.1 3 PC1 
 4 8 6.2 2.6 3 PC1 
 4 4 9.4 1.7 3  

 3 3 10.2 1.6 3  

TW 1 1 17.2 1 3 PC1 
 1 2 13.8 1.2 3 PC1 
 1 3 12.6 1.4 3 PC1 
 1 4 10.9 1.6 3 PC1 
 2 to 4 14 5.9 2.9 3 PC1 
 4 8 6.2 2.8 3 PC1 
 4 4 10 1.7 3  

 3 3 11.4 1.5 3  

 

Figure 12. Speedup chart for different time and synchronization schemes (BTW, BTB, and TW) for the 

distributed configurations. It is essential to observe the differences in performance due to the 

configuration and the time and synchronization scheme for the case study—this graph will be 

different for other performance measures. 

6. Measuring the Complexity of a Parallel Distributed Discrete-Event Simulation Implementation  

Measuring simulation algorithm/software complexity is challenging. Shao and Wang [42] and 

Misra [43] investigated the complexity of software using the viewpoint of software due to creative 

activities. We are using the cognitive weights of basic control structures to measure simulation 

software complexity. Software constructs, such as loops, conditional statements, are assigned a 

weight value. The cognitive weights are as follows: a sequence is weighted with a factor of one, if-

then-else with two, case statements with a three, a for-loop with three, repeat-until with three, a 

function call with a factor of two, parallel structures with a factor of four, and the interrupts for 

synchronization with a four. Figure 12 shows an example of the weight’s calculations for a program 

in WarpIV. 

The total cognitive weight of a computer program is calculated by applying the following 

equation where q is the total number of “main” constructs and m and n are the nested constructs with 

their specific cognitive weight (Wc): 
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Cognitive weights are one of the inputs to the DBN. Table 4 provides the cognitive weights for 

the implementation of the model represented in Figure 7. Additionally, we have captured other 

parameters that define the settings of the parallel distributed DES problems such as hardware, 

messaging, network, simulation objects, and classes, as explained as follows (21 inputs): 

1. Cognitive weights of the software; 

2. Simulation objects; 

3. Classes of simulation objects; 

4. Mean of events; 

5. Standard deviation of events; 

6. Mean of cognitive weights used by simulation objects; 

7. Standard deviation of the cognitive weights; 

8. Global nodes; 

9. Mean of the local nodes per global node; 

10. Standard deviation of the local nodes; 

11. Mean number of cores/threads utilized; 

12. Standard deviation of the number of cores/threads utilized; 

13. Mean of the CPUs’ speed; 

14. Standard deviation of the CPUs’ speed; 

15. Mean of the memory size; 

16. Standard deviation of the memory size; 

17. Critical path; 

18. Theoretical (maximum) speedup; 

19. Ratio of local events divided by the local and global events ; 

20. Ratio of the number of subscriber objects divided by publishers and subscribers; 

21. Scatter or block distribution. 

Table 4. Calculation of cognitive weights for the case study. 

  Cognitive Weights  
C_Radar.C  3  

 C_Radar::Init() 41  

 C_Radar::Terminate() 13  

 C_Radar::DiscoverFo 5  

 C_Radar::RemoveFo 5  

 C_Radar::UpdateFoAttributes 5  

 C_Radar::ReflectFoAttributes 5  

 C_Radar::Scan() 2547 <-Event 

C_RandomMotion.C  5  

 C_RandomMotion::Init 83  

 C_RandomMotion::Terminate 7  

 C_RandomMotion::TestUpdateAttribute 144 <-Event 

 C_RandomMotion::RabeloCircle 16  

S_AirCraft.C  0  

 S_AirCraft::Init() 9  

 S_AirCraft::Terminate() 7  
S_GroundRadar.C  0  
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 S_GroundRadar::Init() 0  

 S_GroundRadar::Terminate() 7  

Sim.c    

 main 17  

 Total Program Weights 2919  

The output vector has three components that correspond to the best scheme for that specific 

input vector. In our case, the one with the best speedup performance (as confirmed by executing the 

simulation model in WarpIV (Figure 13) and the best wall-clock time). For example, if the best 

performance is for TW, then, the output vector is 1 for TW, 0 for BTW, and 0 for BTB. 

 

Figure 13. Calculation of the cognitive weights for a program. 

7. Results 

The performance criterion is the minimum wall-clock time, and this indicates the 

synchronization scheme with the best level of speedup achieved. The wall-clock time tells us the time 

it takes for the computer system to finish the simulation. It is the time to the solution: the number of 

seconds of wall-clock time to satisfy the termination criterion of detecting the aircraft in this case. 

Many research initiatives have used speedup and its relationship with the wall-clock time as a 

performance measure [44–47]. Table 5 indicates the training vector for the case study of Figure 7, with 

four global nodes and one local node using block as the distribution policy, with TW as the best 

performance (best wall-clock time). It is essential to say that if this case study is implemented using 

three global nodes and three local nodes using block as the distribution policy, then BTB is the 

synchronization scheme with the best performance (minimum wall-clock time). 

Table 5. Example of a vector that defines the parallel distributed discrete-event simulation (PDDES) 

implementation for the aircraft detection model of Figure 7 with 4 global nodes and 1 local node using 

block as the distribution policy, with TW as the best performance (best wall-clock time). 

Inputs (21 Input Neurons)  

Total Simulation Program Cognitive Weights 2919 

Number of Sim objects 6 

Types of Sim objects 3 

Mean Events per Object 1 

STD Events per Simulation Object 0 

Mean Cog Weights of All objects 1345 

STD Cog Weights of All objects 1317 

Number of Global Nodes 4 

Mean Local Nodes per Computer 1 
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STD Local Nodes per Computer 0 

Mean number of cores 1 

STD Number of cores 0 

Mean processor Speed 2.1 

STD processor Speed 0.5 

Mean RAM 6.5 

STD RAM 1.9 

Critical Path% 0.32 

Theoretical Speedup 3 

Local Events/(Local Events + External Events) 1 

Subscribers/(Publishers + Subscribers) 0.5 

Block or Scatter? 1 

Outputs (3 output neurons)  

BTB 0 

BTW 0 

TW 1 

Another point is that a great deal of data is needed, so numerous problems were selected to 

generate case studies and variations of hardware/simulation objects/nodes to train the DBN. Two 

hundred and forty case studies and their variations were selected for training, sixty case studies and 

variations for validation, the right number of neurons and hidden layers, and one hundred for testing. 

The variations were produced with changes in the number of global and local nodes. The training 

session for a DBN was accomplished. Figure 14 shows the details of the training of the DBN. The best 

architecture had three hidden layers with 21 inputs, 50 neurons in each hidden layer (three-hidden 

layers), and one output layer with three neurons (one for each time and synchronization management 

scheme). 

 

Figure 14. Root mean square error and cross-entropy error—training curve for the DBN developed 

with 21 inputs, 50 neurons in the first hidden layer, 50 neurons in the second hidden layer, 50 neurons 

in the third hidden layer, and 3 output neurons. 

This DBN has the testing performance that is shown in Figure 15. Preliminary datasets were 

utilized with the multi-layer perceptron (backpropagation) [48]; however, the performance obtained 

was lower than 60%. 



Information 2020, 11, 467 18 of 21 

 

 

Figure 15. The testing performance of the DBNs built using 21 inputs, 50 neurons in the first hidden 

layer, 50 neurons in the second hidden layer, 50 neurons in the third hidden layer, and 3 output 

neurons. 

The performance of the DBN can be increased using more case studies. The study demonstrated 

the feasibility of the new technique, which can be used to design parallel distributed discrete-event 

simulation configurations. This first effort places emphasis on speedup. 

8. Conclusions and Further Research 

The research work presented here implemented a decision-making scheme that, based on the 

simulation environment (software, hardware, and simulation logic), can identify the best 

synchronization and time management to perform a specific parallel and distributed DES. This new 

approach is original, pioneering, and uses deep learning. This development has the potential to save 

time on experimentation and provide better designs. The prototype developed in this research work 

can be improved and give a better performance with more case studies and even use recently 

developed deep learning algorithms that are more powerful. The method presented in this paper is 

straightforward and automatically selects the correct scheme (TW, BTW, BTB). Of course, it can be 

extended to more schemes, and it can continue learning with new case studies and using parallel 

distributed simulation repositories. 

This study contributes to a new approach to an existing problem that is very complex. We 

recognize that PDDES is critical for the current trends in simulation and hardware/software 

developments. There were limitations to this research. This study was a preliminary effort; therefore, 

more case studies can be added to improve performance. Another point is that we focus on the DBN, 

and there is potential to use other types of deep learning, such as modified convolutional neural 

networks (CNNs) [49] and adversarial networks [50]. Modified CNNs and adversarial networks 

recently have been gaining attention as deep neural networks with the best performance. Another 

limitation was the utilization of only popular optimistic synchronization schemes. There is the 

potential to use other newer optimistic synchronization schemes and study load balancing among 

nodes [46,47]. The speedup based on the best wall-clock time was the only performance measure 

studied. It is essential to study more performance measures. 

There are several issues that we will start exploring, and this approach may contribute. For 

example, cloud computing [4,6–9,11], the World Wide Web of simulation [3,5,7,10], and autonomic 

computing (AC) [6]. We can use our approach to design simulators/configurations for these 

platforms. Nevertheless, the input will have to be modified to characterize cloud computing, web-

based elements and policies (e.g., on-demand service model of simulation resources, high-level 

architecture (HLA) support). This area of research is required due to cloud computing being 

recognized as the new dominant environment for enterprise IT. Across industries, cloud computing 

persists to be one of the fastest-growing areas.  
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