

Information 2020, 11, 467; doi:10.3390/info11100467 www.mdpi.com/journal/information

Article

Design of Distributed Discrete-Event Simulation

Systems Using Deep Belief Networks

Edwin Cortes 1, Luis Rabelo 2, Alfonso T. Sarmiento 3,* and Edgar Gutierrez 4

1 Institute of Simulation and Training, Orlando, FL 32816, USA; Edwin.Cortes@knights.ucf.edu
2 Department of Industrial Engineering and Management Systems, University of Central Florida,

Orlando, FL 32816, USA; Luis.Rabelo@ucf.edu
3 Faculty of Engineering, Universidad de La Sabana, Chia 250001, Colombia
4 Center for Latin America Logistics Innovation, Bogota 110111, Colombia; edgargutierrezfranco@gmail.com

* Correspondence: alfonsosava@unisabana.edu.co

Received: 2 September 2020; Accepted: 29 September 2020; Published: 1 October 2020

Abstract: In this research study, we investigate the ability of deep learning neural networks to

provide a mapping between features of a parallel distributed discrete-event simulation (PDDES)

system (software and hardware) to a time synchronization scheme to optimize speedup

performance. We use deep belief networks (DBNs). DBNs, which due to their multiple layers with

feature detectors at the lower layers and a supervised scheme at the higher layers, can provide

nonlinear mappings. The mapping mechanism works by considering simulation constructs,

hardware, and software intricacies such as simulation objects, concurrency, iterations, routines, and

messaging rates with a particular importance level based on a cognitive approach. The result of the

mapping is a synchronization scheme such as breathing time buckets, breathing time warp, and

time warp to optimize speedup. The simulation-optimization technique outlined in this research

study is unique. This new methodology could be realized within the current parallel and distributed

simulation modeling systems to enhance performance.

Keywords: parallel distributed discrete-event simulation; deep learning; deep belief networks;

breathing time buckets; breathing time warp; time warp

1. Introduction and Background

A fundamental paradigm in simulation is discrete-event simulation (DES) [1]. DES is

characteristically involved with the modeling simulation of systems as a succession of events in a

discrete fashion. These events arise at specific times and have the potential to change the state of the

system. The execution of a single DES program on parallel and distributed computational systems is

called parallel and distributed discrete-event simulation (PDDES) [2]. These systems can have

characteristics from the high-performance computing systems and the hardware multi-threaded

systems. These systems include schemes that communicate through shared memory modules. They

also can include a more loosely coupled system where each processor has its local memory and a

communication scheme based on messages. In addition, new initiatives, especially on platforms such

as cloud-based virtualized arrangements and Internet-scale settings, can make PDDES more viable,

easy to use, and cost-effective [3–12].

The widely used simulation schemes with distribution and parallelism at the event level aim to

divide the global simulation tasks into a set of logical processes (LP) with communication capacities.

These strategies exploit the inherent parallelism between the respective components of the problem

with the concurrent execution of these LPs. This arrangement results in a simulation due to the

collaboration between the set of LPs [13].

Information 2020, 11, 467 2 of 21

The simulations of systems with LPs have an architecture based on sets of LPs. The design of

this arrangement of LPs to execute events synchronously or asynchronously in parallel has to have a

communication system not only to exchange data but also to synchronize activities. Each LP is

assigned to a specific region of the model to be simulated. The simulation engines can operate in an

event-driven fashion and execute local events and the respective subset of state variables (and

generate remote events—i.e., events in other LPs).

PDDES systems use synchronization techniques that fall “into two main categories: conservative

approaches that avoid violating the constraint of local causality, and optimistic approaches that allow

violations to occur but provide a mechanism” for recovery called rollback [14]. Rollback involves

undoing incorrect modifications. The most effective implementation of the PDDES approach is the

optimistic algorithm [15]. It is widely used for simulations in logistics, missile defense, and

computational physics [16]. In this paper, we investigate the ability of deep learning neural networks

to provide a mapping between features of a PDDES (software and hardware) to an optimistic time

synchronization scheme to optimize speedup performance. We will explain the different

synchronization techniques that this research implements below.

1.1. Conservative and Optimistic Schemes

Simulation objects must interact in a particular fashion to accomplish an efficient parallel and

distributed execution with perfect integrity. Several innovative techniques have been developed to

solve this challenging problem from conservative and optimistic viewpoints [2].

1.1.1. Conservative Viewpoint

The conservative viewpoint executes events for simulation objects (SOs) once it can be assured

that an SO will get no other event with an earlier timestamp. Conservative approaches restrict how

SOs may interact. SOs can only interact with other SOs as specified by connectivity rules established

during the simulation’s initialization.

The most general approach in the conservative domain is fixed time buckets [2]. Fixed time

buckets (Figure 1) permit events to be scheduled and executed asynchronously by allowing an SO to

schedule events in other simulation objects. This process only occurs tighter in time than the global

lookahead (L) of the simulation. For instance, if an SO is at time TA, then the speediest it can book an

event for another SO is at TA + LA (Figure 1), where LA is the respective lookahead of the simulation.

Figure 1. Fixed time buckets allow events to be scheduled and processed asynchronously using the

concept of a global lookahead.

1.1.2. Optimistic Viewpoint

The optimistic viewpoint uses a unique approach for attaining parallelism by determinedly

executing events but sometimes without considering causal accuracy. Rollback is employed to

invalidate events that might have been executed when straggler event messages are accepted from

other elements of the simulation system. Therefore, events are executed optimistically without the

anticipation of rollback. This optimistic viewpoint has no limitations on how SOs intermingle;

however, the disadvantage is that simulations must be built in a rollbackable style.

Information 2020, 11, 467 3 of 21

There are several schemes developed to implement an optimistic viewpoint. The most utilized

ones are time warp (TW), breathing time buckets (BTB), and breathing time warp (BTW) [2,17–19].

Time Warp (TW)

The TW event management delivers a well-organized rollback procedure for each simulation

object (SO). Each SO has a simulation clock that advances with the timestamp of its executed events.

When a SO receives a straggler event, it rolls the SO back. The SO is rolled back until its last executed

event before executing more events. If an event was rolled back, it needs to be reprocessed to continue

the simulation.

TW only rollbacks the affected events when the SO receives a straggler message. The control

structure must retract the events that were scheduled by rollbacked events. Each event must maintain

a record of its created events until the event is consigned. Antimessages is the name given to messages

used to withdraw wrongly scheduled event messages [2].

A fundamental concept in optimistic time management is the global virtual time (GVT). GVT

approves when an event can be committed. Events with timestamps less than GVT are considered

appropriately processed and will not be rolled back. The objective is to revise GVT across the

simulation as frequently as possible without affecting the efficacy of the simulation due to extreme

levels of synchronization. The best performance is on authentic parallel machines with shared

memory and high-speed connections (Figure 2).

Figure 2. The implementation of rollback produced by straggler messages and antimessages in time

warp (TW).

When a SO gets a straggler, message triggers rollbacks. TW rolls back each null event and deals

with the straggler event. When an event is rolled back, this can cause antimessages to be generated

for other events, which leads to more rollbacks and antimessages.

Breathing Time Buckets (BTB)

TW and fixed time buckets contribute to BTB [2]. The messages created while executing events

are not sent pending, acknowledging that the event creating the messages will not be included in the

rollback process. BTB is a mix, as explained below:

Information 2020, 11, 467 4 of 21

 BTB is TW without the scheme of using antimessages.

 BTB deals with events in the same style as fixed time buckets. The difference is that the size of

the cycles is not predetermined.

The concept of the event horizon is essential in BTB [17–20]. The event horizon is defined as the

specific time where events created turn back. All new events created at the last bucket are organized

and combined into the event queue at the event horizon (Figure 3). This process is fundamental to

exploit. The calculation of the global event horizon is essential to avoid problems with other SOs. The

nodes are prepared to synchronize when they have executed events up to their local event horizon.

Next, we can calculate GVT as the minimum local event horizon from all the nodes and commit

events with timestamps less than or equal to GVT.

Figure 3. The event horizon for a single node and the insertion of events on the list.

A probable difficulty is that a number of nodes may have executed events that went further than

GVT. Rollback, in this particular case, comprises removing messages that were produced but not sent

by the specific event and subsequently returning the SO to the state before the event modified it.

Breathing Time Warp (BTW)

Breathing time warp is another optimistic hybrid scheme [17–20]. BTW attempts to fix the

drawbacks with BTB and TW. TW has the possible problem of antimessage explosions and the

corresponding increase in rollbacks. BTB has the possibility of a higher occurrence of

synchronizations and reduced parallelism.

When events are close to the current GVT, cascading antimessage explosion can occur. The cause

of this explosion is that events being executed far ahead in the simulation time of the rest will

probably be rolled back. A potential solution is for those runaway events not to send their messages

right away. Furthermore, using TW as the first step and then using BTB later reduces the occurrence

of synchronizations and widens the bucket. The cycle is described below in five nodes (Figure 4):

1. TW phase: This phase starts with TW. There is a crucial flow parameter to fine-tune called Nrisk.

“Nrisk is the number of events processed beyond GVT by each node” (locally) “that are allowed

to send their messages with risk” [21].

2. BTB phase: At the end of the TW phase, messages are held back, and the BTB phase starts

execution.

3. Computing GVT: At the end of the BTB phase, computing GVT is performed. There are two

other crucial flow parameters to fine-tune called Ngvt and Nopt. “Ngvt is the number of messages

received by each node before requesting a GVT update” [21]. On the other hand, “Nopt is the

number of events allowed to be processed on each node beyond GVT” [21]. Therefore, Ngvt and

Nopt control when GVT is calculated.

4. Committed Events: The events that are executed before GVT is committed.

Information 2020, 11, 467 5 of 21

Figure 4. Example of the breathing time warp (BTW) event-processing cycle with a TW phase, a

breathing time buckets (BTB) phase, computing of global virtual time (GVT), and the corresponding

commitment of events in five nodes.

1.2. Problem Statement

Discrete-event simulation on parallel and distributed processors is very different from the single

processor scheme, as realized in the traditional and commercial programs. As explained above,

techniques such as BTB, BTW, and TW have been developed to implement optimistic time

synchronization schemes, each with its respective strengths and weaknesses in PDDES [2]. However,

there is no mechanism or efficient rules to decide a priori the best approach at a given simulation

problem with the respective hardware, software, and network infrastructure in order to optimize a

desired performance measure. Therefore, we introduce deep belief networks (DBNs) as a mechanism

to decide a priori the best approach in Section 2. Section 3 describes the validation and variations of

the DBN implementation built for this research. Section 4 illustrates the selection of the PDDES

environment (WarpIV). Section 5 introduced programming in WarpIV using a case study and

speedup (with its relationship to wall-clock time for these preliminary studies—other performance

measures are possible, but this study just places emphasis on wall-clock time). Section 6 introduces

the measure of complexity utilized to characterize a simulation computer program. The results of the

DBN to map a PDDES environment to a synchronization scheme is explained in Section 7. Finally,

we provide conclusions and further research in Section 8.

2. Deep Belief Networks

Hinton and Salakhutdinov [22] began deep learning in 2006 and contributed to a new movement

in neural networks. Deep learning is self-learning by constructing a model with several layers and

training it with data. This nature of multiple layers can improve the accuracy of the classification.

These multiple levels of representation can provide complex mappings [23,24]. This paper studies

the capabilities of deep belief network (DBN) for mapping the characteristics of the PDDES to an

optimistic synchronization scheme in PDDES.

A deep belief network (DBN) is a machine learning assembly (deep) arranged of a stack of many

restricted Boltzmann machines (RBMs) [25,26]. The visible layer of the DBN is the first visible layer

of an RBM, while all other layers are hidden DBN layers. The hidden neurons are not connected

between them; therefore, they are conditionally independent. To train a DBN, you must train a single

RBM at a time. The “input layer is used to train the connection weights between the two layers”,

while the output layer is used to build the input of the next RBM [24]. The hidden layers of a DBN

are unsupervised and act as feature detectors. These unsupervised layers can be useful by detecting

features in the PDDES software and hardware and then with the supervised layer, creating the

relationships between features and the synchronization schemes. DBNs have successfully created

Information 2020, 11, 467 6 of 21

mappings in challenging problems such as traffic flow prediction, electroencephalography, and

natural language understanding [26–30]. The work presented in this paper is the first attempt to use

DBNs to help design PDDES.

The learning mechanism in DBNs starts with the RBMs and their respective energy function. An

energy function based on the connection weights and individual unit biases is used to define the

probability distribution over the joint states of the neurons. For binary RBMs, the energy of the joint

configuration of visible and hidden neurons is provided by:

E(�, �; θ) = − � � ���

�

���

��ℎ�

�

���

− � ����

�

���

− � ��ℎ�

�

���

 (1)

where θ = (�,�,�) and � = (��) with � = (ℎ�) are the visible and hidden neurons. Variables �� and

�� are the bias terms while ��� is the weight between neurons i and j [31,32].

The following equation calculates the probability assigned to every possible pair of a visible

vector v:

�(�; θ) =
∑ ���(�,�;�)

�

∑ ∑ ���(�,�;�)
��

 (2)

This vector is the partial derivative of the log-likelihood probability of a training vector for the

neuron’s weights

 ∂ log [p(�)]

��
= ∆��� = 〈��ℎ�〉���� − 〈��ℎ�〉����� (3)

Therefore, the learning rule (i.e., updating of the weights) for stochastic steepest ascent in the

log probability of the training dataset is given by:

∆��� = ��〈����〉���� − 〈����〉������ (4)

where ε is the learning rate.

The individual activation probabilities are defined by:

�(�� = 1|�; θ) = � �� ���

�

���

ℎ� + ��� (5)

where σ(λ) = 1/(1 + e^(−λ)) is a sigmoid function [22,24]. Correspondingly, for training input v

randomly selected, the binary state hj of each hidden neuron j is set to 1 with a probability provided

by:

��ℎ� = 1|�; θ� = � �� ���

�

���

�� + ��� (6)

Real-valued data are more naturally modeled by using a Gaussian–Bernoulli RBM (GRBM) with

an energy function of the form:

E(�, �; θ) = − � � ���

�

���

��ℎ�

�

���

−
1

2
�(�� − ��)�

�

���

− � ��ℎ�

�

���

 (7)

RBMs represent probability distributions after being trained. They assign a probability to every

possible input-data vector using the energy function.

Real-valued GRBMs have a conditional probability for ℎ� = 1, a hidden variable turned on, given

the evidence vector � of the form:

��ℎ� = 1|�; θ� = � �� ���

�

���

�� + ��� (8)

Information 2020, 11, 467 7 of 21

The GRBM conditional probability for �� = 1, given the evidence vector h, is continuous-normal

and has the form

�(��|�; θ) = � �� ���

�

���

ℎ� + ��, 1� (9)

where �(μ�, 1) =
�

�
(�����)

�

�

√��
 is a Gaussian distribution with the mean calculated by �� = ∑ ���

�
��� ℎ� +

�� and a variance unity [22,24].

3. Validation and Variations of the Implementation of Deep Belief Networks (DBNs)

The validation of the DBN software was built using MATLAB and was performed using

standard benchmark pattern classification data from the MNIST handwritten digits database [33,34].

The MNIST database of handwritten digits has a training set of 60,000 examples and a test set of

10,000 examples. The digits were normalized in size and centered on a 28 × 28-pixel size image (Figure

5). The MNIST handwritten digits database has become a good database for researchers who want to

test software that implements artificial intelligence algorithms on real-world data while spending

minimal effort on pre-processing and formatting. Several architectures were developed using a

different number of layers and neurons. The performance in the testing set achieved was more

significant than 98% accuracy, which corresponds with the values reported by other researchers [35].

The software was also validated by sharing the source code and the results with the MNIST database

with the research group of the creator of DBNs (Geoffrey Hinton) at the University of Toronto.

Figure 5. Example of handwritten digits from the MNIST handwritten digits database.

Additionally, the DBN software developed was modified to perform signal processing using

NASA Space Shuttle data, a very well-known anomaly detection problem [36]. This DBN developed

uses stochastic Bernoulli restricted Boltzmann machines in the implementation of DBN. Furthermore,

this implementation employs analysis of variances (ANOVA) as “brute force” optimization to help

identify DBN parameters, factors that influence the cross-entropy (CE), or the root mean square

(RMS) minimum errors during stochastic DBN training.

The method devised for anomaly detection examines the difference between two DBN output

probabilities. The output probability of a DBN in reaction to its own nominally trained telemetry

signal set is compared with the output probability of the same DBN in reaction to its own nominally

trained data set, but with a small change. This method allows for the use of a DBN to detect slight

changes in telemetry signals. Figure 6 shows the detection process.

Information 2020, 11, 467 8 of 21

Figure 6. Detection by comparison of signals using nominal patterns as the basis to contrast with off-

nominal patterns.

This case trained a deep belief neural network with six nominal temperature instrumentation

signals, 2 transducers per the main engine. All data were normalized, therefore the data set had a

magnitude range of [0, 1]. Six nominal instrumentation temperature signals collected from five

independent space shuttle missions (i.e., flights) were used for training. Table 1 summarizes

telemetry variables, missions, and timeframes used.

Table 1. Datasets of different shuttle flights (telemetry data from the three main engines) for training.

Flight Number Flight Date Start GMT End GMT TCID

133 24 February 2011 124700 150000 SA133B

132 14 May 2010 090000 111000 SA132B

131 4 May 2010 010627 045800 SA131A

128 28 August 2009 185712 210000 SA128B

126 14 October 2008 154210 190000 SA126A

Space Shuttle Main Engine Main Fuel Valve Telemetry Retrieved

Engine 3: E41T3153A1, E41T3154A1 (β(1), β(2)). Engine 2: E41T2153A1, E41T2154A1

(β(3), β(4)). Engine 1: E41T1153A1, E41T1154A1 (β(5), β(6)).

The structure of the DBN for this test case used three hidden layers, one input layer and one

output layer. During the deep learning processes, the cross-entropy error was investigated at every

epoch in each hidden layer to ensure a decreasing trend at every epoch. Many iterations of deep

learning were executed by systematically changing combinations of hidden neurons at each layer and

the epochs. This process employed ANOVA as a technique to help identify if a particular factor

affected cross-entropy. Results from the iterative process of changing the number of hidden neurons

at the three hidden layers of the DBN as well as the number of RBM epochs produced an acceptable

nominal DBN model. The final DBN parameters are listed in Table 2.

Table 2. Deep belief network (DBN) architecture and elements of the neurodynamics were built for

the case study of the space shuttle.

Learning

Rate

Hidden

Layer 1

Neurons

Hidden

Layer 2

Neurons

Hidden

Layer 3

Neurons

Number

Output

Neurons

RBM

Mini-

Batch

Size

RBM

Epochs

DBN

Mini-

Batch

Size

DBN

Epochs

Weight

Cost
Momentum

10−6 30 20 10 1 50 50 50 1 0.01 0.5

Information 2020, 11, 467 9 of 21

The neuron activation probability at the output of the DBN was tested with data from a different

shuttle flight (the STS-135). When the DBN was presented with the STS-135 data as its visible neurons,

neuron activation propagated through the neural network until the output was reached. The

prediction was performed with 100% accuracy. This case study illustrated the feasibility of using the

output of a deep belief network as a possible detector of off-nominal patterns under certain specific

restrictions and conditions described in this section. Additionally, it showed that our implementation

was excellent.

4. Selection of a Parallel and Distributed Discrete-Event Simulation (PDDES) Platform

We selected a PDDES platform to implement the different distributed simulation designs and

get the corresponding results for the time and synchronization management schemes. We studied

several parallel and distributed discrete-event simulation (PDDES) engines. Several PDDES

platforms were reviewed during our efforts, and they are listed as follows:

 Rensselaer’s optimistic simulation system (ROSS) [37,38];

 Georgia tech time warp (GTW) [2];

 Synchronous parallel environment for emulation and discrete-event simulation (SPEEDES) [2];

 WarpIV engine [16].

The listed parallel processing computing engines can implement high-performance parallel

simulation executives for discrete-event simulation applications with their own recommended

compilers. Due to the superior features, we decided to use WarpIV in this research.

4.1. WarpIV Engine

WarpIV kernel can perform discrete-event simulations upon parallel and distributed settings

[16,39,40]. The Warp engine can perform heterogeneous network applications using a high-speed

arrangement, which mixes shared memory with standard protocols. This integration can also offer

high bandwidth.

The modeling constructs and the time management schemes provided with the WarpIV engine

kernels offer optimistic time mechanisms (e.g., TW, BTB, BTW). It also facilitates the component-

based and interoperability modeling paradigm for simulation model reusability. WarpIV uses

memory management caching techniques.

The simulation modeler can use scheduling methods. On the other hand, this simulation kernel

allows for arbitrary arguments to be specified through the event interface construct. It uses C and

C++ languages.

WarpIV engine has unique features. One of the main differences is the division between

simulation objects and logical processes. Simulation objects inherit from the class logical process.

Logical processes (LPs) are automatically distributed during startup to different nodes in several

styles (e.g., block, scatter, user-defined).

4.2. Advantages of WarpIV

The Warp engine provides the resources for scheduling event processing in sequential, parallel,

and distributed settings. These resources have the following advantages:

 It features state-of-the-art conservative, optimistic, and sequential time management modes.

 It distributes models and simulation objects automatically across multiple processors (even

using the Internet) while handling event processing in logical time.

 It offers an excellent interface.

 It is updated to the latest operating systems, network connections, and extensions built to

enhance functionality.

 It supports interoperability and reusability.

 There are training courses and support available.

Information 2020, 11, 467 10 of 21

5. Programming in Warp IV

We provide an example of the case studies used to develop the training database for this

research, as depicted in Figure 7. This range detection implements a parallel distributed discrete-

event simulation. It models the interactions of several aircraft and radars.

Figure 7. Simulation scenario (case study) using two classes of simulations objects (SOs) with their

respective events and trajectories. These SOs are radars and aircraft.

These are the general features of its implementation:

1. It is a discrete-event simulation program (with capabilities to be executed in parallel/distributed

computing environments). WarpIV provides a rollbackable version of the standard template

library (STL) to accommodate mainstream C++ programmers [16,41]. Therefore, the

programming is built using C/C++.

2. Time is in seconds for the simulation clock.

3. There are two (2) types of simulation objects (SOs):

a. Aircraft.

b. Ground Radars.

There is an event TestUpdateAttribute that updates the trajectory of the aircraft at specific times.

The event for the radars is Scan. At the initial simulation time, Scan is scheduled, and it happens

at regular intervals depending on the technical specifications of the radars. WarpIV engine has the

class logical process (LP) (Figure 8). Simulation object (SO) is a regular LP class and inherits from the

LP Class. The logical process manager (LPM) can have several simulation objects (SOs), and a

simulation object can belong to only one LPM. A SO manager class (that inherits from the LPM Class)

for each user-defined simulation object type is automatically generated by a macro (for this case study

is Aircraft and Radar). With regards to events: events always have one input message and zero or

more outgoing messages that are generated and sent to create new events. Events inherit from the

event class (Scan and TestUpdateAttribute for this case study).

Information 2020, 11, 467 11 of 21

Figure 8. Unified modeling language (UML) schematics of the development with two types of

simulation objects (Aircraft and Radar) and two events (i.e., Scan and TestUpdateAttribute). (The symbol

* means: many).

The simulation randomly initializes the position of each aircraft and radar in the selected theater

of operations. Earth-centered rotational Cartesian coordinates (ECR) represent positions (X, Y, Z).

After initialization, the simulation begins with the aircraft flying in trajectories and the radars

scanning the airspace to detect them using pre-established technical specifications.

4. The theater of operations is read from a file with the corresponding longitude and latitude. The

speed (maximum and minimum) of the aircraft is read from a file (m/s). The range (scanning) of

the radar can be read from a file or hardcoded in the program. See Figure 9 for an example of a

theater of operations.

5. After the initialization routines, the simulation senses an aircraft’s proximity to a radar utilizing

the predefined technical specifications.

6. The TestUpdateAttribute event points to the method TestUpdateAttribute(). The event’s framework

scheduler kicks off this method at simulation time = zero. At each simulation time, each parallel

instance (one for each aircraft) of the TestUpdateAttribute() method in C_RandomMotion.C

(Figure 9) computes the path position of each aircraft.

7. The Scan event points to method Scan() for each radar. The event’s framework scheduler kicks

off this method at simulation time = zero. At each discrete simulation time, each parallel instance

of the Scan() method computes the proximity of an aircraft to each ground radar. Proximity

(range) is calculated in parallel using radar position and moving entity position vectors via

����� = √∆�2 + ∆�2 + ∆�2, where ∆ represents the difference between radar and aircraft positions

(∆latitude, ∆longitude, and ∆altitude) in earth-centered rotational coordinates (ECR).

8. The aircraft does not know the existence of the radars, but the radars can know their position.

Information 2020, 11, 467 12 of 21

Figure 9. Example of a theater of operations as defined by the rectangle with vertices (A–D).

The aircraft detection simulation code implements each instance of aircraft as federation objects

and initializes their subscription. Federation objects (Fo) are used to facilitate the grouping of entity

and entity components with related attributes. The grouped attributes can then be distributed and

published to other entity components and entities that are subscribers. During simulation execution,

object attributes such as dynamic position (latitude, longitude, and altitude) and aircraft

identification are published. Figure 10 shows the different methods in the C programming language

to implement the simulation model of Figures 7–9.

Figure 10. Different methods in the C programming language adapted to WarpIV to program the case

study of Figure 7.

Now, we can execute this discrete-event simulation model in several nodes (local and global

nodes, when the local and global nodes are more than 1, we have a parallel distributed discrete-event

simulation system). Local nodes share the memory, and global nodes are distributed on the Internet

Information 2020, 11, 467 13 of 21

or a private network/cluster (Figure 11). A global node is a cluster, and a local node is a computational

resource from a specific cluster. For instance, global four and local one involves four clusters. Of these

clusters, each one will have a single computer (in total four nodes).

Figure 11. Examples of node configurations with cores and distributed computing elements for the

experiments.

In addition, we can execute this model with the desired time synchronizations and management

scheme. The following definitions are required to understand the experiments designed with the

discrete-event simulation model and Warp IV:

 T (wall-clock time) is a measure of the actual time from start to finish, containing the time due

to scheduled interruptions or waiting for computational assets.

 Speedup relative is the wall-clock time for a single node (sequential) divided by T (wall-clock

time), considering all of the nodes used for that synchronization scheme (the wall-clock time of

the node with the maximum value).

The speedup relative for the different time and synchronization management for these initial

experiments is displayed in Table 3 and Figure 12. The best result of 2.9 was achieved by TW (the

theoretical speedup for this problem is 3.0). BTW and TW are very comparable. BTB has better

performance with multicore arrangements for this simulation case study.

Table 3. Example of simulation runs (variations) with different configurations and their respective

wall-clock times for the case study depicted in Figures 7–10.

Nodes

Local Global
Wall Clock

Time (s)

Speedup

Rel

Speedup

Theoretical
Server

BTW 1 1 16.5 1 3 PC1
 1 2 14.1 1.2 3 PC1
 1 3 12.4 1.3 3 PC1
 1 4 11.4 1.4 3 PC1
 2 to 4 14 6.1 2.7 3 PC1
 4 8 6.5 2.6 3 PC1
 4 4 9.4 1.8 3

Information 2020, 11, 467 14 of 21

 3 3 10.5 1.6 3

BTB 1 1 16.1 1 3 PC1
 1 2 62.1 0.3 3 PC1
 1 3 148 0.1 3 PC1
 1 4 162.6 0.1 3 PC1
 2 to 4 14 7.7 2.1 3 PC1
 4 8 6.2 2.6 3 PC1
 4 4 9.4 1.7 3

 3 3 10.2 1.6 3

TW 1 1 17.2 1 3 PC1
 1 2 13.8 1.2 3 PC1
 1 3 12.6 1.4 3 PC1
 1 4 10.9 1.6 3 PC1
 2 to 4 14 5.9 2.9 3 PC1
 4 8 6.2 2.8 3 PC1
 4 4 10 1.7 3

 3 3 11.4 1.5 3

Figure 12. Speedup chart for different time and synchronization schemes (BTW, BTB, and TW) for the

distributed configurations. It is essential to observe the differences in performance due to the

configuration and the time and synchronization scheme for the case study—this graph will be

different for other performance measures.

6. Measuring the Complexity of a Parallel Distributed Discrete-Event Simulation Implementation

Measuring simulation algorithm/software complexity is challenging. Shao and Wang [42] and

Misra [43] investigated the complexity of software using the viewpoint of software due to creative

activities. We are using the cognitive weights of basic control structures to measure simulation

software complexity. Software constructs, such as loops, conditional statements, are assigned a

weight value. The cognitive weights are as follows: a sequence is weighted with a factor of one, if-

then-else with two, case statements with a three, a for-loop with three, repeat-until with three, a

function call with a factor of two, parallel structures with a factor of four, and the interrupts for

synchronization with a four. Figure 12 shows an example of the weight’s calculations for a program

in WarpIV.

The total cognitive weight of a computer program is calculated by applying the following

equation where q is the total number of “main” constructs and m and n are the nested constructs with

their specific cognitive weight (Wc):

Information 2020, 11, 467 15 of 21

�� = � �� � ��(�, �, �)

�

���

�

���

�

�

���

 (10)

Cognitive weights are one of the inputs to the DBN. Table 4 provides the cognitive weights for

the implementation of the model represented in Figure 7. Additionally, we have captured other

parameters that define the settings of the parallel distributed DES problems such as hardware,

messaging, network, simulation objects, and classes, as explained as follows (21 inputs):

1. Cognitive weights of the software;

2. Simulation objects;

3. Classes of simulation objects;

4. Mean of events;

5. Standard deviation of events;

6. Mean of cognitive weights used by simulation objects;

7. Standard deviation of the cognitive weights;

8. Global nodes;

9. Mean of the local nodes per global node;

10. Standard deviation of the local nodes;

11. Mean number of cores/threads utilized;

12. Standard deviation of the number of cores/threads utilized;

13. Mean of the CPUs’ speed;

14. Standard deviation of the CPUs’ speed;

15. Mean of the memory size;

16. Standard deviation of the memory size;

17. Critical path;

18. Theoretical (maximum) speedup;

19. Ratio of local events divided by the local and global events ;

20. Ratio of the number of subscriber objects divided by publishers and subscribers;

21. Scatter or block distribution.

Table 4. Calculation of cognitive weights for the case study.

 Cognitive Weights
C_Radar.C 3

 C_Radar::Init() 41

 C_Radar::Terminate() 13

 C_Radar::DiscoverFo 5

 C_Radar::RemoveFo 5

 C_Radar::UpdateFoAttributes 5

 C_Radar::ReflectFoAttributes 5

 C_Radar::Scan() 2547 <-Event

C_RandomMotion.C 5

 C_RandomMotion::Init 83

 C_RandomMotion::Terminate 7

 C_RandomMotion::TestUpdateAttribute 144 <-Event

 C_RandomMotion::RabeloCircle 16

S_AirCraft.C 0

 S_AirCraft::Init() 9

 S_AirCraft::Terminate() 7
S_GroundRadar.C 0

Information 2020, 11, 467 16 of 21

 S_GroundRadar::Init() 0

 S_GroundRadar::Terminate() 7

Sim.c

 main 17

 Total Program Weights 2919

The output vector has three components that correspond to the best scheme for that specific

input vector. In our case, the one with the best speedup performance (as confirmed by executing the

simulation model in WarpIV (Figure 13) and the best wall-clock time). For example, if the best

performance is for TW, then, the output vector is 1 for TW, 0 for BTW, and 0 for BTB.

Figure 13. Calculation of the cognitive weights for a program.

7. Results

The performance criterion is the minimum wall-clock time, and this indicates the

synchronization scheme with the best level of speedup achieved. The wall-clock time tells us the time

it takes for the computer system to finish the simulation. It is the time to the solution: the number of

seconds of wall-clock time to satisfy the termination criterion of detecting the aircraft in this case.

Many research initiatives have used speedup and its relationship with the wall-clock time as a

performance measure [44–47]. Table 5 indicates the training vector for the case study of Figure 7, with

four global nodes and one local node using block as the distribution policy, with TW as the best

performance (best wall-clock time). It is essential to say that if this case study is implemented using

three global nodes and three local nodes using block as the distribution policy, then BTB is the

synchronization scheme with the best performance (minimum wall-clock time).

Table 5. Example of a vector that defines the parallel distributed discrete-event simulation (PDDES)

implementation for the aircraft detection model of Figure 7 with 4 global nodes and 1 local node using

block as the distribution policy, with TW as the best performance (best wall-clock time).

Inputs (21 Input Neurons)

Total Simulation Program Cognitive Weights 2919

Number of Sim objects 6

Types of Sim objects 3

Mean Events per Object 1

STD Events per Simulation Object 0

Mean Cog Weights of All objects 1345

STD Cog Weights of All objects 1317

Number of Global Nodes 4

Mean Local Nodes per Computer 1

Information 2020, 11, 467 17 of 21

STD Local Nodes per Computer 0

Mean number of cores 1

STD Number of cores 0

Mean processor Speed 2.1

STD processor Speed 0.5

Mean RAM 6.5

STD RAM 1.9

Critical Path% 0.32

Theoretical Speedup 3

Local Events/(Local Events + External Events) 1

Subscribers/(Publishers + Subscribers) 0.5

Block or Scatter? 1

Outputs (3 output neurons)

BTB 0

BTW 0

TW 1

Another point is that a great deal of data is needed, so numerous problems were selected to

generate case studies and variations of hardware/simulation objects/nodes to train the DBN. Two

hundred and forty case studies and their variations were selected for training, sixty case studies and

variations for validation, the right number of neurons and hidden layers, and one hundred for testing.

The variations were produced with changes in the number of global and local nodes. The training

session for a DBN was accomplished. Figure 14 shows the details of the training of the DBN. The best

architecture had three hidden layers with 21 inputs, 50 neurons in each hidden layer (three-hidden

layers), and one output layer with three neurons (one for each time and synchronization management

scheme).

Figure 14. Root mean square error and cross-entropy error—training curve for the DBN developed

with 21 inputs, 50 neurons in the first hidden layer, 50 neurons in the second hidden layer, 50 neurons

in the third hidden layer, and 3 output neurons.

This DBN has the testing performance that is shown in Figure 15. Preliminary datasets were

utilized with the multi-layer perceptron (backpropagation) [48]; however, the performance obtained

was lower than 60%.

Information 2020, 11, 467 18 of 21

Figure 15. The testing performance of the DBNs built using 21 inputs, 50 neurons in the first hidden

layer, 50 neurons in the second hidden layer, 50 neurons in the third hidden layer, and 3 output

neurons.

The performance of the DBN can be increased using more case studies. The study demonstrated

the feasibility of the new technique, which can be used to design parallel distributed discrete-event

simulation configurations. This first effort places emphasis on speedup.

8. Conclusions and Further Research

The research work presented here implemented a decision-making scheme that, based on the

simulation environment (software, hardware, and simulation logic), can identify the best

synchronization and time management to perform a specific parallel and distributed DES. This new

approach is original, pioneering, and uses deep learning. This development has the potential to save

time on experimentation and provide better designs. The prototype developed in this research work

can be improved and give a better performance with more case studies and even use recently

developed deep learning algorithms that are more powerful. The method presented in this paper is

straightforward and automatically selects the correct scheme (TW, BTW, BTB). Of course, it can be

extended to more schemes, and it can continue learning with new case studies and using parallel

distributed simulation repositories.

This study contributes to a new approach to an existing problem that is very complex. We

recognize that PDDES is critical for the current trends in simulation and hardware/software

developments. There were limitations to this research. This study was a preliminary effort; therefore,

more case studies can be added to improve performance. Another point is that we focus on the DBN,

and there is potential to use other types of deep learning, such as modified convolutional neural

networks (CNNs) [49] and adversarial networks [50]. Modified CNNs and adversarial networks

recently have been gaining attention as deep neural networks with the best performance. Another

limitation was the utilization of only popular optimistic synchronization schemes. There is the

potential to use other newer optimistic synchronization schemes and study load balancing among

nodes [46,47]. The speedup based on the best wall-clock time was the only performance measure

studied. It is essential to study more performance measures.

There are several issues that we will start exploring, and this approach may contribute. For

example, cloud computing [4,6–9,11], the World Wide Web of simulation [3,5,7,10], and autonomic

computing (AC) [6]. We can use our approach to design simulators/configurations for these

platforms. Nevertheless, the input will have to be modified to characterize cloud computing, web-

based elements and policies (e.g., on-demand service model of simulation resources, high-level

architecture (HLA) support). This area of research is required due to cloud computing being

recognized as the new dominant environment for enterprise IT. Across industries, cloud computing

persists to be one of the fastest-growing areas.

Information 2020, 11, 467 19 of 21

Author Contributions: Conceptualization, E.C., L.R.; investigation, E.C., L.R., A.T.S., and E.G writing—review

and editing E.C., L.R., A.T.S., and E.G. All authors have read and agreed to the published version of the

manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Borshchev, A. The Big Book of Simulation Modeling: Multimethod Modeling with AnyLogic 6; AnyLogic North

America: Chicago, IL, USA, 2013.

2. Fujimoto, R. Parallel and Distributed Simulation, 1st ed.; John Wiley & Sons: New York, NY, USA, 2000.

3. Page, E.; Buss, A.; Fishwick, P.; Healy, K.; Nance, R.; Paul, R. Web-based Simulation: Revolution or

Evolution? ACM Trans. Modeling Comput. Simul. (TOMACS) 2000, 10, 3–17.

4. Fujimoto, R.; Malik, A.; Park, A. Parallel and distributed Simulation in the cloud. SCS Modeling Simul. Mag.

2010, 3, 1–10.

5. Jávor, A.; Fur, A. Simulation on the Web with distributed models and intelligent agents. Simulation 2012,

88, 1080–1092.

6. Amoretti, M.; Zanichelli, F.; Conte, G. Efficient autonomic cloud computing using online discrete event

simulation. J. Parallel Distrib. Comput. 2013, 73, 767–776.

7. Jafer, S.; Liu, Q.; Wainer, G. Synchronization methods in Parallel and distributed discrete-event Simulation.

Simul. Model. Pract. Theory 2013, 30, 54–73.

8. Padilla, J.; Diallo, S.; Barraco, A.; Lynch, C.; Kavak, H. Cloud-based simulators: Making simulations

accessible to non-experts and experts alike. In Proceedings of the 2014 Winter Simulation Conference 2014,

Savannah, GA, USA, 7–10 December 2014; pp. 3630–3639.

9. Yoginath, S.; Perumalla, K. Efficient Parallel Discrete Event Simulation on cloud/virtual machine platforms.

ACM Trans. Modeling Comput. Simul. (TOMACS) 2015, 26, 1–26.

10. Padilla, J.; Lynch, C.; Diallo, S.; Gore, R.; Barraco, A.; Kavak, H.; Jenkins, B. Using simulation games for

teaching and learning discrete-event simulation. In Proceedings of the 2016 Winter Simulation Conference

(WSC), Washington, DC, USA, 11–14 December 2016; pp. 3375–3384.

11. Liu, D.; De Grande, R.; Boukerche, A. Towards the Design of an Interoperable Multi-cloud Distributed

Simulation System. In Proceedings of the 2017 Spring Simulation Multi-Conference—Annual Simulation

Symposium, Virginia Beach, VA, USA, 23−26 April 2017. pp. 1−12.

12. Diallo, S.; Gore, R.; Padilla, J.; Kavak, H.; Lynch, C. Towards a World Wide Web of Simulation. J. Def.

Modeling Simul. Appl. Methodol. Technol. 2017, 14, 159–170.

13. Shchur, L.; Shchur, L. Parallel Discrete Event Simulation as a Paradigm for Large Scale Modeling

Experiments. In Proceedings of the XVII International Conference “Data Analytics and Management in

Data Intensive Domains” (DAMDID/RCDL’2015), Obninsk, Russia, 13−16 October 2015.

14. Tang, Y.; Perumalla, K.; Fujimoto, R.; Karimabadi, H.; Driscoll, J.; Omelchenko, Y. Optimistic parallel

discrete event simulations of physical systems using reverse computation. In Proceedings of the Workshop

on Principles of Advanced and Distributed Simulation (PADS’05), Monterey, CA, USA, 1−3 June 2005.

15. Ziganurova, L.; Novotny, M.; Shchur, L. Model for the evolution of the time profile in optimistic parallel

discrete event simulations. In Proceedings of the International Conference on Computer Simulation in

Physics and Beyond, Moscow, Russia, 6–10 September 2015.

16. Steinman, J. The WarpIV Simulation Kernel. In Proceedings of the Workshop on Principles of Advanced

and Distributed Simulation (PADS 2005), Monterey, CA, USA, 1−3 June 2005.

17. Steinman, J. Breathing Time Warp. In Proceedings of the 7th Workshop on Parallel and Distributed

Simulation (PADS93), San Diego, CA, USA, 16–19 May 1993.

18. Cortes, E.; Rabelo, L.; Lee, G. Using Deep Learning to Configure Parallel Distributed Discrete-Event

Simulators. In Artificial Intelligence: Advances in Research and Applications, 1st ed.; Rabelo, L., Bhide, S.,

Gutierrez, E., Eds.; Nova Science Publishers: Hauppauge, NY, USA, 2018.

19. Steinman, J. Discrete-Event Simulation, and the Event Horizon. ACM SIGSIM Simul. Dig. 1994, 24, 39−49.

20. Steinman, J. Discrete-Event Simulation and the Event Horizon Part 2: Event List Management. ACM

SIGSIM Simul. Dig. 1996, 26, 170−178.

Information 2020, 11, 467 20 of 21

21. Steinman, J.; Nicol, D.; Wilson, L.; Lee, C. Global Virtual Time and Distributed Synchronization. In

Proceedings of the 1995 Parallel and Distributed Simulation Conference, Lake Placid, NY, USA, 14−16 June

1995.

22. Hinton, G.; Salakhutdinov, R. Reducing the dimensionality of data with neural networks. Science 2006, 313,

504–507.

23. Yu, K.; Jia, L.; Chen, Y.; Xu, W. Deep learning: Yesterday, today, and tomorrow. J. Comput. Res. Dev. 2013,

50, 1799–1804.

24. Jiang, L.; Zhou, Z.; Leung, T.; Li, T.; Fei-Fei, L. Mentornet: Learning data-driven curriculum for very deep

neural networks on corrupted labels. In Proceeding of the Thirty-Fifth International Conference on

Machine Learning, Stockholmsmässan, Stockholm, Sweden, 10−15 July 2018.

25. Hinton, G. A practical guide to training restricted Boltzmann machines. Momentum 2010, 9, 926.

26. Mohamed, A.; Sainath, T.; Dahl, G.; Ramabhadran, B.; Hinton, G.; Picheny, M. Deep belief networks using

discriminative features for phone recognition. In Proceedings of the Acoustics, Speech and Signal

Processing (ICASSP), 2011 IEEE International Conference, Prague, Czech Republic, 22–27 May 2011.

27. Mohamed, A.; Dahl, G.; Hinton, G. Acoustic modeling using deep belief networks. IEEE Trans. Audio Speech

Lang. Process. 2012, 20, 14–22.

28. Huang, W.; Song, G.; Hong, G. Deep architecture for traffic flow prediction: Deep belief networks with

multitask learning. IEEE Trans. Intell. Transp. Syst. 2014, 15, 2191–2201.

29. Sarikaya, R.; Hinton, G.; Deoras, A. Application of deep belief networks for natural language

understanding. IEEE/ACM Trans. Audio Speech Lang. Process. 2014, 22, 778–784.

30. Movahedi, F.; Coyle, J.; Sejdić, E. Deep belief networks for electroencephalography: A review of recent

contributions and future outlooks. IEEE J. Biomed. Health Inform. 2018, 22, 642–652.

31. Hinton, G.; Osindero, S.; Yee-Whye, T. A Fast Learning Algorithm for Deep Belief Nets. Neural Comput.

2006, 18, 1527–1554.

32. Cho, K.; Ilin, A.; Raiko, T. Improved learning of Gaussian-Bernoulli restricted Boltzmann machines. In

Artificial Neural Networks and Machine Learning—ICANN 2011; Springer: Berlin Heidelberg,: Berlin,

Germany, 2011; Volume 6791, pp. 10–17.

33. LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition.

Proc. IEEE 1998, 86, 2278–2324.

34. LeCun, Y.; Corinna, C. THE MNIST DATABASE of Handwritten Digits. Available online:

http://yann.lecun.com/exdb/mnist/ (accessed on 22 September 2020).

35. Wu, M.; Chen, L. Image Recognition Based on Deep Learning. In Proceedings of the 2015 Chinese

Automation Congress (CAC), Wuhan, China, 27–29 November 2015; pp. 542–546.

36. Cortes, E.; Rabelo, L. An architecture for monitoring and anomaly detection for space systems. SAE Int. J.

Aerosp. 2013, 6, 81–86.

37. Carothers, C.; Bauer, D.; Pearce, S. ROSS: A high-performance, low memory modular time warp system. J.

of Parallel Distrib. Comput. 2002, 62, 1648−1669.

38. Mubarak, M.; Carothers, C.; Ross, R.; Carns, P. Using massively parallel Simulation for MPI collective

communication modeling in extreme-scale networks. In Proceedings of the 2014 Winter Simulation

Conference, Savannah, GA, USA, 7−10, December 2014; pp. 3107–3118.

39. Steinman, J.; Lammers, C.; Valinski, M. A Proposed Open Cognitive Architecture Framework (OpenCAF).

In Proceedings of the 2009 Winter Simulation Conference, Austin, TX, USA, 13−16 December 2009.

40. Steinman, J.; Lammers, C.; Valinski, M.; Steinman, W. External Modeling Framework and the OpenUTF.

Report of WarpIV Technologies. Available online: http://www.warpiv.com/Documents/Papers/EMF.pdf

(accessed on 30 September 2020).

41. Plauger, P.; Stepanov, A.; Lee, M.; Musser, D. The C++ Standard Template Library; Prentice-Hall PTR,

Prentice-Hall Inc.: Upper Saddle River, NJ, USA, 2001.

42. Shao, J.; Wang, Y. A new measure of software complexity based on cognitive weights. Can. J. Electr. Comput.

Eng. 2003, 28, 69–74.

43. Misra, S. A Complexity Measure based on Cognitive Weights. Int. J. Theor. Appl. Comput. Sci. 2006, 1, 1–10.

44. Kent, E.; Hoops, S.; Mendes, P. Condor-COPASI: High-throughput computing for biochemical networks.

BMC Syst. Biol. 2012, 6, 91.

Information 2020, 11, 467 21 of 21

45. Wang, Y.; Jung, Y.; Supinie, T.; Xue, M. A Hybrid MPI–OpenMP Parallel Algorithm and Performance

Analysis for an Ensemble Square Root Filter Designed for Multiscale Observations. J. Atmos. Ocean. Technol.

2013, 30, 1382–1397.

46. Zhan, D.; Qian, J.; Cheng, Y. Balancing global and local search in parallel efficient global optimization

algorithms. J. Glob. Optim. 2017, 67, 873–892.

47. Grandison, A.; Cavanagh, Y.; Lawrence, P.; Galea, E. Increasing the Simulation Performance of Large-Scale

Evacuations Using Parallel Computing Techniques Based on Domain Decomposition. Fire Technol. 2017,

53, 1399–1438.

48. Rumelhart, D.; Hinton, G.; Williams, R. Learning representations by back-propagating errors. Nature 1986.

323, 533–536.

49. Wang, X.; Zhao, Y.; Pourpanah, F. Recent advances in deep learning. Int. J. Mach. Learn. Cybern. 2020, 11,

747–750.

50. Ren, K.; Zheng, T.; Qin, Z.; Liu, X. Adversarial Attacks and Defenses in Deep Learning. Engineering 2020,

6, 346–360.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access

article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

