
 information

Article

High-Fidelity Router Emulation Technologies Based
on Multi-Scale Virtualization †

He Song 1 , Xiaofeng Wang 1,2,* , Mengdong Zhai 1 and Guangjie Zhang 1

1 School of Internet of Things Engineering, Jiangnan University, Wuxi 214122, China;
6171910007@stu.jiangnan.edu.cn (H.S.); 6161914040@vip.jiangnan.edu.cn (M.Z.);
6161914041@vip.jiangnan.edu.cn (G.Z.)

2 The Cyberspaces Security Research Center, Peng Cheng Laboratory, Shenzhen 518055, China
* Correspondence: wangxf@jiangnan.edu.cn
† This paper is an extended version of our paper published in the 2018 IEEE 7th International Conference on

Cloud Networking (CloudNet), “Research on High-Fidelity Router Emulation Technologies Based on
Cloud Platform”.

Received: 10 December 2019; Accepted: 15 January 2020 ; Published: 16 January 2020
����������
�������

Abstract: Virtualization has the advantages of strong scalability and high fidelity in host node
emulation. It can effectively meet the requirements of network emulation, including large scale,
high fidelity, and flexible construction. However, for router emulation, virtual routers built with
virtualization and routing software use Linux Traffic Control to emulate bandwidth, delay, and packet
loss rates, which results in serious distortions in congestion scenarios. Motivated by this deficiency,
we propose a novel router emulation method that consists of virtualization plane, routing plane,
and a traffic control method. We designed and implemented our traffic control module in multi-scale
virtualization, including the kernel space of a KVM-based virtual router and the user space of
a Docker-based virtual router. Experiments show not only that the proposed method achieves
high-fidelity router emulation, but also that its performance is consistent with that of a physical router
in congestion scenarios. These findings provide good support for network research into congestion
scenarios on virtualization-based emulation platforms.

Keywords: cyberspace security; network emulation; router emulation; traffic control; virtualization

1. Introduction

The research of cyberspace security for large-scale networks is an essential direction to ensuring
the order of the Internet. But limited by the number of physical devices, it is not realistic to use
physical networks for large-scale cyberspace security technology verification and offensive-defensive
drills [1,2]. Emulation technology based on virtualization has the advantages of high controllability
and excellent scalability [3,4], so it has become a significant tool to reproduce complex or large-scale
network topologies. At present, researchers design virtual routers by loading routing software into
virtual machines (VM) [5,6], and using Linux Traffic Control (TC) to control the bandwidth on a
VM’s network interface card (NIC) to emulate the transmission bandwidth of the physical Ethernet
(e.g., 100 Mbps or 1000 Mbps) [7,8].

In this context, it is critical that the constructed virtual router has the same effect as the physical
hardware, which is also called high fidelity. However, when emulating a large-scale denial of service
(DoS) (such as a distributed DoS (DDoS) [9] or a low-rate DoS (LDoS) [10]), we found that the
performance of the virtual router mentioned above is completely different from that of a physical router.
For example, Wang et al. [11] emulated an LDoS attack [12] on a BGP session running autonomous
systems (AS). In 50 experiments, the BGP session on the physical router with 1 Gbps NIC bandwidth

Information 2020, 11, 47; doi:10.3390/info11010047 www.mdpi.com/journal/information

http://www.mdpi.com/journal/information
http://www.mdpi.com
https://orcid.org/0000-0001-9667-5202
https://orcid.org/0000-0001-8105-2897
http://dx.doi.org/10.3390/info11010047
http://www.mdpi.com/journal/information
https://www.mdpi.com/2078-2489/11/1/47?type=check_update&version=2

Information 2020, 11, 47 2 of 17

was successfully interrupted 14 times, whereas the TC-defined virtual router with 1 Gbps bandwidth
was never interrupted (and hence, the BGP session was never reset). The cause of such distortion
comes from the token bucket scheme in TC. In congestion sensitive scenario, compared with the
physical device, TC improves the probability of transmitting short packets, such as BGP keep-alive
packets. This has a large impact on the emulation results, leads to the illusion that DDoS or LDoS
attacks cannot interrupt BGP sessions, and also shows the low-fidelity of the TC-based virtual router.

In order to solve this problem, we propose a high-fidelity router emulation scheme that can
effectively control the bandwidth and perform exactly the same as a physical router. Different from TC,
we no longer use token bucket as the method of bandwidth control, but a delay waiting method to
accurately calculate and control the transmission time of each waiting packet in the buffer queue,
which is closer to the performance of physical router. Especially in congestion scenarios, our virtual
router successfully emulates real LDoS and DDoS attack phenomena.

In addition, the emulation scheme above has been roughly introduced in our first version [11],
and we have constructed a module and verified it based on the kernel of KVM. However, according to
further research, for one thing, KVM has some limitations, such as large resource consumption and
poor migration. For another, there are several different virtualization methods for router emulation,
and the kernel programs of some lightweight virtual routers (such as Docker-based virtual router)
cannot be modified because they share the same kernel space with the host. Therefore, we applied
our emulation scheme in the user space of Docker based on iptables (a firewall software on Linux) and
libnetfilter_queue (a user space network library). Then, we used two different virtualization methods to
realize multi-scale virtualization.

Overall, the main contributions of our paper are as follows:

1. We propose a high-fidelity router emulation scheme that consists of virtualization plane,
routing plane, and a traffic control method. We focus on the composition of a traffic control
method, which uses the “drop from tail” algorithm as the buffer queue management, the first in,
first out (FIFO) method as the buffer queue scheduling rule, and the delay waiting method as
the bandwidth control module. The specially designed bandwidth control module can solve the
distortion of virtual router.

2. We customized our traffic control module separately in the Network Protocol Stack in the
Linux kernel of KVM and the user space of Docker, building a KVM-based virtual router and a
Docker-based virtual router. Docker has many advantages, such as a light weight, small resource
occupation, and convenient migration. It helped us extend the router emulation scheme to
multi-scale virtualization, and greatly expands the scale of emulation topology.

3. To verify the fidelity and practicality of our KVM and Docker virtual routers, we integrated the
two virtualization methods, Docker and KVM, built a complex inter-AS network topology with
3000 virtual routers and 5179 links, and successfully simulated LDoS attack behavior. This proves
the effectiveness of our emulation method, and it is also meaningful for improving the emulation
fidelity in congestion scenarios.

The remainder of this paper is organized as follows: In Section 2, we introduce the current
router emulation scheme. In Section 3, we present our router emulation architecture and novel traffic
control method, which improves the fidelity of the virtual router. Based on the proposed architecture,
in Section 4, we implement our traffic control module in the kernel space and user space of the virtual
router. Then, in Section 5, we evaluate our scheme on the basis of traffic control effectiveness and
router emulation fidelity.

2. Related Work

Researchers have explored a number of different technologies and proposed a variety of solutions
to construct a complete router emulation. Guo et al. [13] attempted to achieve router emulation by
combining Click and NS2. However, their virtual router does not meet the fidelity requirements of

Information 2020, 11, 47 3 of 17

emulation experiments because NS2 is simply a discrete event simulator. Hou et al. [14] used Quagga
as the routing engine and OpenFlow as the virtual switch to complete data forwarding. They also
deeply customized the Floodlight (SDN controller) to complete their virtual router. They focused on
the interconnections between the virtual router and the traditional network, but the interconnection
performance between virtual routers was not sufficiently robust for network emulation experiments.
Based on VegaNet, Zhang et al. [15] combined Xen semi-virtualization technology, Quagga, and Click to
construct a virtual router. However, the use of VegaNet makes the router incompatible with mainstream
virtual network systems, such as OpenFlow. This made it is difficult to migrate their virtual router
to cloud platforms. Based on KVM and LXC virtualization respectively, Kamla et al. [16] used the
routing software Quagga for implementation, which meets the routing and forwarding requirements
of cloud platforms, and thus, is a commonly used router emulation method in the current virtual
environment. But their route emulation method did not consider bandwidth control, which makes the
traffic between virtual links uncontrollable and unable to emulate congestion scenarios. Our virtual
router combines the work of [6,16], and adds traffic control on that basis.

In general, link traffic control is realized based on TC in virtualized network emulation
environments [7,8]. TC is a flexible and powerful traffic control method built on the Network Protocol
Stack of the Linux kernel to ensure the quality of service (QoS) of the Linux system. It includes a
series of flow control strategies (e.g., FIFO, PFIFO_fast, TBF, HTB, and red [17]). PFIFO_fast is the
default strategy adopted by Linux. PFIFO_fast allocates data packets to three FIFO queues based on
their type of service (TOS), and sends as many packets as possible without any bandwidth control,
while TBF and HTB are the most accurate traffic control strategies in Linux and can ensure that the
bandwidth of a NIC remains below a certain value [18]. They are often used in TC for traffic control
in network emulation. For example, based on the emulation scheme proposed by Kamla et al. [16],
Liu et al. [19] and Mendoza et al. [20] emulated satellite routing. Furthermore, they successfully
emulated link characteristics such as bandwidth, delay, and packet loss rate in satellite link emulation
with TC-HTB. However, Wang et al. [11] (our first version) found that TC-HCB did not perform well
in congestion scenarios, and it could not replicate the real situation of BGP-LDoS attacks on virtual
platforms. They proposed a congestion control scheme for queuing delay emulation to solve this
problem, but they did not elaborate on the details of the solution and verified it only on a KVM-based
virtual router.

Based on multi-scale virtualization, this paper focuses on the fidelity of router emulation.
We studied how to build a virtual router and designed a traffic control module based on KVM
and Docker. We hope our modules are better able to support network emulation research.

3. Router Emulation Architecture

Figure 1 shows the architecture of our virtual router. Based on the physical server and operating
system, we used Docker and KVM in the virtualization plane, Quagga in the routing plane,
and designed our own traffic control module. The coverage of different virtualization planes forms
multi-scale virtualization. Specifically, we provide detailed introductions in Sections 3.1 and 3.2.

Information 2020, 11, 47 4 of 17

Figure 1. Virtual router architecture.

3.1. Virtual Router

As a result of its high-fidelity, virtualization techniques are widely used in router emulation.
In this paper, the term “virtual router” includes both a Docker-based virtual router and a KVM-based
virtual router.

(1) Virtualization plane: KVM is a virtualization module embedded in the Linux kernel [21].
A KVM-based VM has an independent kernel space; hence, we can freely customize the kernel files in
the VM to satisfy the router emulation requirements. KVM-based VMs also boast a high degree of
system isolation and an excellent emulation fidelity. However, KVM-based VMs require a relatively
large amount of hardware resources, and it is difficult to construct a large-scale virtual node emulation.

Docker is an OS-level virtualization solution based on Linux Containers (LXC) [22]. The containers
created by Docker are superior in several ways, such as their fast startup speed, low resource
consumption, and large deployment scale. However, all containers share the same host kernel and
portion of the run-time library; consequently, the router emulation module cannot be customized by
modifying the kernel [23].

Therefore, in Figure 1, we show our use of KVM-based virtual routers to emulate pivotal routers
and Docker-based virtual routers to expand the emulation scale.

(2) Routing plane: Quagga is a routing software suite that supports protocol emulations, including
RIP, OSPF, and BGP, and has a strong affinity for Unix-like systems [24]. Quagga is mainly composed
of a routing protocol controller, a kernel routing table manager, and a kernel routing table. The routing
protocol controller is responsible for configuring the routing protocols, for discovering the routes,
and for calculating the paths of those protocols. The kernel routing table manager is responsible for
adding the routing protocol configurations to the system kernel routing table; subsequently, the kernel
routing table builds a data forwarding table and performs data forwarding. Therefore, in Figure 1,
we show our use of scalable and modular routing software to implement support for multiple routing
protocols in router emulation.

3.2. Traffic Control

3.2.1. Problem Statement

TC uses FIFO, drop from tail, and token bucket strategies for traffic control. Specifically, all the
packets enter the buffer queue following a FIFO scheduling rule, and the drop from tail queue
management policy drops packets when the buffer queue is full. At the same time, the system sends

Information 2020, 11, 47 5 of 17

tokens to the token bucket at a limited rate. When a packet is about to leave (to be sent) the buffer
queue, it needs to consume the same number of tokens as its length. If the number of tokens in the
bucket does not satisfy transmission of the packet, the packet will continue to wait for more tokens
to be generated during its delayed transmission time. Finally, if the delayed transmission time has
elapsed, the packet is dropped.

For example, we assume that the number of tokens generated per millisecond (ms) is 10, and that
the delayed transmission time of each packet is 10 ms. If no token exists in the current bucket and the
length of the packet to be sent is greater than 100, the packet will never obtain a sufficient number
of tokens and will be dropped after 10 ms; conversely, if the length of the packet to be sent is less
than 100, the packet can be successfully sent after waiting for some period of time. This case clearly
demonstrates that if the data traffic remains excessively large, longer packets will be continuously
dropped, and shorter packets will be successfully transmitted because it is easier for shorter packets
to obtain enough tokens. This also increases the likelihood that subsequent packets will enter the
buffer queue.

The purpose of BGP-oriented DDoS and LDoS attacks is to force keep-alive packets
(with a length of 19) between BGP sessions to drop continuously, which will cause route flapping
and a decline in network performance, and force the BGP session to reset. When using the TC strategy
to control the emulation bandwidth of a link, a large data flow has little impact on the probability of
dropping a keep-alive packet; thus, the BGP session never gets interrupted and reset, which causes the
illusion that DDoS and LDoS attacks cannot interrupt a BGP session.

3.2.2. Traffic Control Method

We propose a high-fidelity traffic control method based on two aspects: queue scheduling
and management, and bandwidth control. Queue scheduling refers to the process of arranging
or rearranging packets in the queue to control their sending sequence [25,26]. Queue management is
responsible for determining whether a received packet should be dropped [27]. In bandwidth control,
for example, the token bucket algorithm [28], is used to control the transmission rate of packets below a
fixed value. For the specific implementation of the two traffic control modules in Figure 1, see Section 4.

(1) Queue scheduling and management: Normally, the default queue scheduling method used by
the physical router is FIFO, and the default queue management method is the drop from tail algorithm,
which utilizes fewer resources to manage the packets. To ensure emulation fidelity, we also use FIFO
and the drop from tail algorithm as the scheduling and management methods, respectively, for the
virtual router’s packet buffer queue. Figure 2 depicts the enqueuing and dequeuing processes of a
packet in a buffer queue.

In detail, the sequence in which packets arrive is used as the sequence of the buffer queue. When a
packet arrives, it will be inserted at the tail of the queue, and the packet at the head of the queue will
be simultaneously sent to the network. When the buffer queue is full, newly arrived packets will be
dropped until the queue has sufficient free space to receive the incoming packet.

Figure 2. Queue scheduling and management.

Information 2020, 11, 47 6 of 17

(2) Bandwidth control: Bandwidth is usually defined as the maximum amount of data (measured
in bps) that the NIC can send or receive in a given period of time. In general, we can limit only the
packets sent by the NIC; we cannot limit the packets received. Therefore, the process of controlling
bandwidth involves precisely controlling the total size of the packets that the NIC can send per unit
of time.

Assuming that the bandwidth of the NIC is B, for a packet of length L, the theoretically required
transmission time T can be calculated as follows:

T = L/B. (1)

In a virtual environment, because the I/O operations of a VM are extremely fast, we assume that
the virtual router NIC actually sends packets within a negligible transmission time. Therefore, we set a
time delay T before each packet is sent and then deliver the packet to the NIC for packet transmission
to achieve bandwidth control of a virtual router.

Algorithm 1 describes our bandwidth control method in detail. First, the algorithm calculates the
packet length L of the head packet packet_skb. According to the preset bandwidth B, the theoretical
transmission time T of the packet is calculated by Formula (1). Then, the algorithm creates a
high-precision timer and delays the transmission by T. Finally, the NIC driver sends the packet
to the physical layer for further transmission.

Algorithm 1. Bandwidth control algorithm.

Input:
packet_skb, B;
//packet_skb is the packet dequeued from the FIFO queue header; B is the bandwidth value that we

need to emulate.
Output:

packet_skb;
1: L← Obtain the length of packet_skb;
2: T ← L/B;
3: Tstart ← Retrieve the current system time;
4: Tend ← Tstart;
5: while Tend − Tstart < T
6: Tend ← Retrieve the current system time;
7: end while
8: return packet_skb;

//network interface driver sends the packet

4. Router Emulation Implementation

As described in Section 3.1, based on multi-scale virtualization and Quagga, we can easily
implement virtual router. In this section, we focus on our traffic control modules based on KVM and
Docker to achieve high-fidelity router emulation.

4.1. KVM-Based Traffic Control Module

The KVM-based Linux VM has its own independent kernel space. In the Linux kernel, TC provides
traffic control policies through Qdisc (a network scheduler). Therefore, we implemented the traffic
control method described in Section 3.2.2 in the TC module within the Network Protocol Stack of
Linux 3.2.90, and we used Qdisc to associate our traffic control policy with the NIC to implement the
bandwidth emulation on the virtual router.

As shown in Figure 3, our traffic control module includes three parts: queue management,
queue scheduling, and bandwidth control.

Information 2020, 11, 47 7 of 17

Figure 3. KVM-based traffic control module architecture.

1. Queue management: This module is responsible for receiving the packets delivered by the Linux
kernel IP Stack and determining whether each packet enters the queue scheduling module or is
dropped according to the drop from tail algorithm.

2. Queue scheduling: This module is designed to initialize the FIFO buffer queue and sort the
packets entering the buffer queue according to the FIFO principle.

3. Bandwidth control: This part is the most important module. It obtains each dequeued packet
from the queue scheduling module and calculates its delay time T. By calling the hrtimer
(a high-resolution timer) in the kernel to perform the delay operation, the bandwidth control
module can emulate the packet transmission situation under the available bandwidth B.

However, in an actual emulation, most program operations suffer from certain systematic errors.
Since the delay time of a data packet is usually in the order of nanoseconds, a slight systematic error
between the set delay time Tset and the actual delay time Treal can lead to a large bandwidth control
error. To solve this problem, we obtain multiple data pairs of Tset and Treal through experiments and fit
these discrete data to capture the linear relationship between Tset and Treal . This linear relationship is
shown in Figure 4. The regression formula is as follows:

Treal = 65.359× Tset + 6239.477. (2)

Information 2020, 11, 47 8 of 17

Under a preset NIC bandwidth B, for a packet of length L, we deduce Tset according to
Formula (2):

Tset = (
8× 109 × L

B
− 6239.477)/65.359, (3)

where Tset is measured in ns, L is the length of the packet in bytes, and B is measured in bit/s.
This dynamic adjustment of Tset offsets the systematic error and stabilizes the control of the
bandwidth B, thereby achieving high-fidelity bandwidth control of the KVM-based virtual router.
Note that the constant terms in Equations (2) and (3) are obtained in our experimental environment.
Although we have tried many different hardware configurations and obtained very similar formulas,
we still can not guarantee that the constants can be applied in all environments. Researchers should
reconstruct the appropriate equations in their experimental environment.

After associating Qdisc with our traffic control module in the KVM-based virtual router, the packet
process in the Linux kernel is as follows:

Step 1: dev_queue_xmit() (a function in net/core/dev.c) is used to obtain the packet skb waiting to be
sent in the Linux IP Stack.

Step 2: The function dev_queue_xmit() delivers skb to Qdisc to complete traffic management.
Step 3: skb enters our traffic control module through Qdisc.
Step 4: Our queue management module first determines whether the current buffer queue is full.

When the current queue buffer is full, the module directly returns a command that skb is to be dropped;
otherwise, skb is delivered to the queue scheduling module.

Step 5: The queue scheduling module inserts skb into the tail of the queue and updates the backlog
size of the queue.

Step 6: When possible, the queue scheduling module takes the packet skb from the head of the
queue and delivers it to the bandwidth control module.

Step 7: The bandwidth control module calculates the packet length L and calculates Tset according
to Formula (3).

Step 8: The hrtimer is used to implement a delay time Tset.
Step 9: The packet skb is returned to dev_hard_start_xmit() through Qdisc.
Step 10: dev_hard_start_xmit() delivers skb to the NIC driver to send the packet.

Figure 4. KVM-based Treal and Tset fitting results.

4.2. Docker-Based Traffic Control Module

Docker is an OS-level virtualization technology. The Docker-based virtual router shares the same
host kernel with other containers; therefore, we cannot control the transmission of packets through

Information 2020, 11, 47 9 of 17

the TC module in the Linux IP Stack. Instead, we need to design a high-compatibility traffic control
module based on user space.

The Netfilter framework provides a variety of solutions, such as iptables, libnfnetlink,
and libnetfilter_queue, for controlling network traffic in user space. Some of the functions in Netfilter
enable us to control the kernel to perform specified operations and achieve accurate traffic control.
In detail, all the data packets sent by a virtual router will pass the POSTROUTING chain of the
mangle table in the iptables before they leave the NIC. The Netlink socket implements inter-process
communication (IPC) between the kernel and user space, thereby providing interfaces so that users
can inter-operate with the kernel. On this basis, we can read the packets in the POSTROUTING chain,
execute our traffic control strategy, and return the packet judgments of the to the kernel to achieve
control of each packet.

As shown in Figure 5, we build a Docker-based traffic control module. First, we establish a queue
(labeled as queue-num) for a NIC on a virtual router and execute the NFQUEUE rule to judge all
the packets. In this scheme, each packet is allocated to the queue corresponding to its target NIC.
Then, we create and initialize the Netlink socket to obtain packet information from the queue and
provide our module’s decision; that is, whether the packet should be accepted or dropped to the
Netfilter framework in the kernel through IPC.

iptables -t mangle -I POSTROUTING -o ethX -j NFQUEUE –queue-num queue-num

Figure 5. Docker-based traffic control module architecture.

A high-precision timer is required to implement a time delay for each packet. However, the hrtimer
in kernel space cannot be accessed from user space. After many experiments, we chose the time stamp
counter (TSC) to achieve precise timing by counting the number of clock cycles. Specifically, the value
of the TSC is incremented by one at every clock cycle. We assume that the CPU frequency of the Docker
host is FHz, (the precise value can be obtained by checking the CPU information); consequently, here,
the clock frequency is 1/F. To execute the time delay, we first obtain the current value tstart of the TSC

Information 2020, 11, 47 10 of 17

using RDTSC (an assembly instruction), and then continually acquire subsequent TSC values tend until
tend − tstart ≥ T × F. However, a systematic error still exists between the set delay time Tset and the
actual delay time Treal realized by the TSC. Through multiple sets of experiments, we obtained a linear
relationship between Tset and Treal . This relationship is shown in Figure 6, and the corresponding
formula is:

Treal = 1.0001× Tset + 28.51. (4)

Similar to the processes used to obtain Equations (2) and (3), the set delay time Tset can be
expressed as follows:

Tset = (
8× 109 × L

B
− 28.51)/1.0001, (5)

where Tset is measured in ns. Eliminating systematic errors in this fashion stabilizes the bandwidth
control of the Docker-based virtual router. Note that the constant terms in Equations (4) and (5) are
obtained in our experimental environment.

Figure 6. Docker-based Treal and Tset fitting results.

5. Experiment and Evaluation

To verify the effectiveness of our traffic control strategy and the fidelity of router emulation in
offensive-defensive scenarios, we conducted the following four experiments:

1. We evaluated the error between the set bandwidth and the actual bandwidth of the virtual router
to demonstrate the effectiveness of our traffic control method.

2. We compared the packet loss rate of the virtual router with that of a Cisco physical router to
demonstrate the fidelity of our traffic control method.

3. We compared the results of emulated BGP-DDoS and BGP-LDoS attacks in a physical network
topology, a TC-based virtual topology, and a virtual topology based on our method to further
validate the fidelity of our router emulation.

4. Based on the OpenStack platform, we constructed a large-scale LDoS emulation scenario
including both the KVM-based virtual router and the Docker-based virtual router to demonstrate
the importance and value of our high-fidelity router emulation research in the network
emulation domain.

5.1. Experimental Environment

We executed our KVM-based virtual router and Docker-based router on OpenStack Mitaka;
the simulation consisted of one controller node, one network node, and several compute nodes.
Each compute node was virtualized using Docker and KVM. The physical server hardware consisted

Information 2020, 11, 47 11 of 17

of a typical Dell PowerEdge R730 server with two Intel(R) Xeon(R) E5-4620 v4 processors and 64 GB of
RAM. All the physical servers were interconnected via a 10 Gigabit switch and were running a Linux
CentOS 7 operating system. The physical router type used in the experiment was a Cisco 4400.

5.2. Bandwidth Evaluation

We forced the virtual router to forward a large number of User Datagram Protocol (UDP) packets
with random length and used the KVM-based and Docker-based traffic control modules to control the
bandwidth. We set the traffic of the UDP packets to 3 Gbps to emulate a congestion scenario and tested
several emulation bandwidths. The actual bandwidth performances and relative errors are shown in
Table 1.

According to Table 1, under the different emulation bandwidths, when we use the KVM-based
traffic control module to emulate the bandwidth, the maximum error between the set bandwidth and
the actual bandwidth is 6.4%; the minimum error is 3.2%; and the average error is 4.95%. When we use
the Docker-based traffic control module, the maximum, minimum, and average errors are 5.6%, 4.0%,
and 4.76%, respectively. Our traffic control modules constructed on KVM and Docker boast a high
bandwidth control accuracy and provide a high-fidelity emulation solution for virtual routers.

Table 1. Bandwidth performance.

KVM-Based Docker-Based

Set Bandwidth Bandwidth Error Bandwidth Error

100 Mbps 96 Mbps 4.0% 96 Mbps 4.0%
300 Mbps 284 Mbps 5.3% 283 Mbps 5.6%
500 Mbps 473 Mbps 5.4% 475 Mbps 5.0%
700 Mbps 655 Mbps 6.4% 661 Mbps 5.5%
900 Mbps 851 Mbps 5.4% 859 Mbps 4.5%

1 Gbps 968 Mbps 3.2% 960 Mbps 4.0%

5.3. Loss Rate Evaluation

We further evaluated the fidelity of the traffic control module integrated into our virtual router to
investigate the packet loss rate. We separately employed a physical router, the KVM virtual router,
and the Docker virtual router to establish three experimental scenarios. For the physical router,
we chose a Cisco router with an NIC bandwidth of 1 Gbps to build a test link. For the KVM and Docker
virtual routers, we fixed the bandwidth of the test link to 1 Gbps using our traffic control module.
We tested the packet loss rate of 100 ping packets after multiple sets of UDP traffic with different
magnitudes (500 Mbps, 1 Gbps, etc.) passed through the test link. The experimental results are shown
in Table 2.

Table 2. Packet loss rate performance.

UDP Flow Cisco Router KVM-Based Docker-Based

0 bps 0% 0% 0%
0.5 Gbps 0% 0% 0%
1 Gbps 22% 21% 20%

1.5 Gbps 53% 50% 54%
2 Gbps 71% 70% 69%

2.5 Gbps 80% 80% 79%
3 Gbps 82% 83% 81%

Obviously, in all three scenarios, when the UDP traffic does not fully occupy the link bandwidth,
no packet loss occurs. However, once the UDP traffic reaches or exceeds the link bandwidth, packet loss
is observed. Under the seven traffic magnitude settings, our method always exhibits a performance

Information 2020, 11, 47 12 of 17

close to that of the physical router. Taking the packet loss rate of the physical router as the standard,
the experimental errors of the KVM and Docker traffic control modules are both approximately 2%.
This means that our modules also have a good fidelity with regard to the packet loss rate.

5.4. Evaluation by Emulated DDoS and LDoS Attacks

To determine whether the proposed traffic control method could solve the distortion problem
of TC in a congestion scenario, we constructed a small-scale experimental topology for emulating
DDoS and LDoS attacks. As shown in Figure 7, Host-1 to Host-10 were the attack nodes (the VMs
responsible for the attacks); Host-11, Host-12 and Host-13 were the target nodes (the VMs being
attacked); and Router-1 and Router-2 were the virtual routers belonging to two different ASes. BGP
was configured between the two routers so that they could learn the routing information and forward
packets. The interval times of keep-alive and hold time were respectively set as 60 s and 180 s. Ideally,
if we perform a DDoS or LDoS attack on the link between these two routers, link congestion will form,
and as a result, the keep-alive packets and retransmitted packets in BGP will be continuously lost,
interrupting the BGP session and forcing it to reset, causing link instability. In network security,
this kind of attack will not directly affect the confidentiality, integrity, and authenticity of information,
but it will destroy the availability [12,29].

We constructed four experimental scenarios for detailed comparison, including one physical
scenario and three virtual scenarios. For physical scenario, we used real commercial PCs as the host
nodes and Cisco routers (whose Ethernet interfaces are 1 Gbps) as the router nodes. For virtual
scenarios, we applied KVM and Docker as virtual routers respectively, and used our traffic control
module for 1 Gbps bandwidth emulation (KVM-our and Docker-our). In particular, we added a
comparison with native KVM virtual router with Linux TC(KVM-TC).

Figure 7. Topology of the distributed denial of service (DDoS) and low rate DoS (LDoS) experimental
scenarios.

5.4.1. DDoS Emulation

Firstly, according to the fact that the traffic in BGP control plane and in data plane of the Internet
use the same physical medium, we emulated three BGP-DDoS attacks with attack flows of 2 Gbps,
2.5 Gbps, and 3 Gbps. Specifically, Host-1 to Host-10 were set as bots and implanted with UDP traffic
generators; then, they randomly sent a UDP data stream to Host-11, Host-12, and Host-13. The UDP
data stream of a single bot was evenly distributed according to the set attack flows, and the duration of
the attack was 10 min. Under each attack flow, we conducted 50 experiments and counted the number
of BGP sessions dropped (the number of successful attacks). The experimental results are shown in
Table 3.

Information 2020, 11, 47 13 of 17

Table 3. DDoS and LDoS emulation results.

Attack Flow
BGP Session Reset Time

Cisco Router KVM-TC KVM-Our Docker-Our

DDoS
2 Gbps 20 0 22 20

2.5 Gbps 39 0 38 38
3 Gbps 43 0 41 42

LDoS
2 Gbps 5 0 5 4

2.5 Gbps 8 0 9 8
3 Gbps 14 0 15 16

In the physical scenario, 20, 39, and 43 BGP sessions are dropped between the two routers. In other
words, as the DDoS attack flow increases, the success rate of the attack increases. At the same time,
the two virtual scenarios constructed with our traffic control modules, KVM-our and Docker-our,
displayed performances very close to that of the physical scenario. Under different attack flows, 22, 38,
and 41, BGP sessions are dropped in the KVM-our virtual router, while 20, 38, and 42 BGP sessions are
dropped in the Docker-our virtual router. The average numbers of errors between these two virtual
routers and the physical router are both only one dropped session. However, in the KVM-TC virtual
router constructed by the TC method, no BGP sessions are dropped, resulting in the illusion that DDoS
attacks cannot successfully block the target link.

5.4.2. LDoS Emulation

Next, because BGP is an application layer protocol running on TCP, the TCP-targeted LDoS
attack can effect BGP session. We emulated an BGP-LDoS attack with square wave flows of 2 Gbps,
2.5 Gbps, and 3 Gbps. In the experiment, the TCP connections uses uniformly recommended minRTO
(minRTO = 1 s). For each bot, we created a periodic square-wave of UDP data stream with peak R,
burst length L, and period T. R was set to the average of the total square wave flows, L was set to 0.6 s,
T was set to 1 s, and the attack duration was 30 min. As with the DDoS emulation, we performed 50
experiments in each of the four experimental scenarios. The results are shown in Table 3.

As the benchmark, 5, 8, and 14 BGP sessions are dropped in the physical router under the three
different attack flows. The numbers of dropped BGP sessions in the KVM-our and Docker-our scenarios
are basically consistent with those in the physical scenario, and the average error is approximately one
dropped session, reflecting the ability of our virtual routers to emulate an attack with a high fidelity. In
contrast, the BGP sessions still fail to break and reset under the KVM-TC scenario.

In summary, in the emulated DDoS and LDoS attacks, we reveal that our virtual routers essentially
perform the same as the physical router. However, due to the defect caused by the token bucket in TC,
when the link is congested, its packet loss performance is considerably different from that of the
physical router; thus, its emulation fidelity is low. When using the traffic control method proposed
in this paper to emulate the bandwidth of the virtual router, the module is not inclined to send
short-length packets and discard long-length packets; hence, the designed traffic control module is
highly consistent with the physical router. Furthermore, the errors in the DDoS and LDoS attack
phenomena relative to the physical scenario are small, and the emulation fidelity is high.

5.5. Evaluation of a Large-Scale LDoS Emulation

In the previous section, we verified that DoS attacks, such as DDoS and LDoS attacks,
can effectively cause BGP sessions between virtual routers to drop and reset. However, real-world
network topology is usually highly complex. The purpose of a DoS attack is to cause the target link
to drop and reset with a high frequency. In detail, once the BGP session of a target link is dropped,
the routers at both ends of the link will recalculate the optimal path, update the routing table, and send
BGP update packets. These packets force other routers in the topology to generate a series of routing

Information 2020, 11, 47 14 of 17

updates. Thus, a large number of BGP update packets are accompanied by frequent routing table
changes, resulting in route flapping, which greatly degrades the network’s performance. Therefore,
it is necessary to build a large-scale network experimental platform to verify whether our traffic control
method can emulate real-world scenarios.

We used the OpenStack cloud platform as the emulation environment to build a large-scale
network topology and emulate an LDoS attack. A simple sketch of the topology is shown in Figure 8.

Figure 8. Topology of the large-scale LDoS experimental scenario.

Specifically, based on CAIDA AS Rank, we considered one AS domain as a virtual router,
and divided the topology into 10 parts with METIS multi-layer graph segmentation technology.
Then, on the OpenStack cloud platform which contains 10 computing nodes (which have installed
Docker or KVM), we built a complex inter-AS network topology with 3000 virtual routers and 5179 links.
Among the virtual routers, KVM was used to emulate only a small number of key routers because it
consumes more resources but is more similar to a physical device; the other routers were emulated
by Docker. In order to maximize the route flapping, we calculated the shortest paths between all the
pairs of nodes in the topology by breadth first search and back tracking algorithm, and then got all the
routing links. We selected 30 core links as the target links and simultaneously launched LDoS attacks
on all of them. Any end of the target link can be KVM or Docker router, and the bandwidths of them are
limited to 1 Gbps by our traffic control method. For each target link, the attack data stream was set as
3 Gbps. Each bot generates a periodic square-wave of UDP data stream with R = 100 Mbps, L = 0.6 s,
and T = 1 s with the UDP traffic generator, and sends it to other bots through the target links.

In the one-hour attack emulation, 22 target links were interrupted; moreover, due to long-term
congestion, some of the links were interrupted again after the BGP sessions had been reset.
Overall, the LDoS attacks interrupted 135 target links. During the attack emulation, we also counted
the number of BGP update packets and the number of times route flapping occurred in the entire
topology. As shown in Figure 9, the attack caused 157,914 instances of route flapping throughout
the entire topology, and a maximum of 454 routers experienced route flapping over a single second.
Furthermore, a total of 17,528,093 update packets were generated with a single-second maximum
of 47,333.

Information 2020, 11, 47 15 of 17

Figure 9. Results of the large-scale LDoS experimental scenario.

The experiments show that, on the one hand, when the network is relatively complex, an LDoS
attack can force the routers in the topology to perform an immense number of route recalculations and
transmit a very large number of BGP update packets, seriously affecting the network’s performance.
Compared with the experiments in the simple network topology, we fully considered the real situation
of the complex network. Our virtual routers perform well under large-scale complex networks, and do
not unpack the packet, so its security is good. Therefore, the virtual router based on our traffic control
method can effectively support the research in congestion scenarios on the emulation platforms based
on virtualization technology. On the other hand, because BGP-LDoS attack is launched from the data
plane through large-scale traffic, the current defense strategy is mainly illegal traffic by detecting traffic
characteristics. However, it is difficult to guarantee the reliability of the detection results and filter
the illegal flow completely. Many proposed solutions are too idealistic to be verified in the emulation
environment. But with the help of our high-fidelity emulation method, the research on the overall
defense strategy of LDoS attack can be realized.

6. Conclusions and Future Work

This paper proposed a high-fidelity router emulation technology based on multi-scale
virtualization. We first introduced the emulation architectures of the virtual routers, including the
virtualization plane and routing plane. Accordingly, we emulated the traffic control method of a
physical router using the drop from tail queue management method, the FIFO queue scheduling rule,
and a bandwidth control method that effectively controls the packet transmission time. This strategy
effectively overcomes the low fidelity of the conventional virtual router in a congestion scenario.
At the same time, we separately designed two traffic control modules—one in the KVM kernel
space and one in the Docker user space. Together, these achieve a high-fidelity and diversified route
emulation solution.

Finally, we verified the effectiveness and fidelity of the proposed traffic control method by
conducting several groups of experiments, including evaluations of the bandwidth control, the packet
loss rate, and emulations of DDoS and LDoS attacks. Furthermore, through a large-scale LDoS
emulation experiment, we verified the practicability of the KVM and Docker virtual routers constructed
in this paper for use in the network security research domain.

Information 2020, 11, 47 16 of 17

In the future, we intend to construct a flexible and reliable network security experimental platform
based on our router emulation technology that can be used for research on network attack and defense
strategies and to evaluate their effects.

Author Contributions: Conceptualization, H.S. and X.W.; methodology, H.S. and M.Z.; software, H.S.;
validation, H.S., M.Z., and G.Z.; writing—original draft preparation, H.S.; writing—review and editing, H.S.;
project administration, X.W.; funding acquisition, X.W. All authors have read and agreed to the published version
of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (grant numbers 61672264
and 61972182), the National Key R&D Program of China (grant number 2016YFB0800801), and the Peng Cheng
Laboratory Project of Guangdong Province (grant number PCL2018KP004).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Pham, C.; Tang, D.; Chinen, K.; Beuran, R. Cyris: A cyber range instantiation system for facilitating
security training. In Proceedings of the Seventh Symposium on Information and Communication Technology; ACM:
New York, NY, USA, 2016; pp. 251–258.

2. Andel, Todd R., Kyle E. Stewart, and Jeffrey W. Humphries. Using virtualization for cyber security education
and experimentation. In Proceedings of the 14th Colloquium for Information System Security Education
(CISSE), Baltimore, MD, USA, 7–9 June 2010.

3. Dutta, A.; Gnawali, O. Large-scale network protocol emulation on commodity cloud. In Proceedings of the
Global Communications Conference (GLOBECOM), Austin, TX, USA, 8–12 December 2014.

4. Muelas, D.; Ramos, J.; López de Vergara, J. Software-driven definition of virtual testbeds to validate emergent
network technologies. Information 2018, 9, 45. [CrossRef]

5. Abeni, L.; Kiraly, C.; Li, N.; Bianco, A. On the performanc of KVM-based virtual routers. Comput. Commun.
2015, 70, 40–53. [CrossRef]

6. Huang, M.H.; Zhang, Y.X.; Fei, X.U. Design of Routing Simulation Experiment Platform Based on
Virtualization Technology. J. Syst. Simul. 2014, 26, 1672–1677.

7. Li, H.; Zhou, H.; Zhang, H.; Shi, W. EmuStack: An OpenStack-Based DTN Network Emulation Platform.
In Proceedings of the International Conference on Networking & Network Applications, Hokkaido, Japan,
23–25 July 2016.

8. Benet, C.H.; Nasim, R.; Noghani, K.A.; Kassler, A. OpenStackEmu—A cloud testbed combining
network emulation with OpenStack and SDN. In Proceedings of the 2017 14th IEEE Annual Consumer
Communications & Networking Conference (CCNC), Las Vegas, NV, USA, 8–11 January 2017; pp. 566–568.

9. Kang, M.S.; Lee, S.B.; Gligor V D. The crossfire attack. In Proceedings of the 2013 IEEE Symposium on
Security and Privacy, Berkeley, CA, USA, 19–22 May 2013; pp. 127–141.

10. Li, H.; Zhu, J.; Wang, Q.; Zhou, T.; Qiu, H.; Li, H. LAAEM: A Method to Enhance LDoS Attack. IEEE Commun.
Lett. 2016, 20, 708–711. [CrossRef]

11. Wang, X.; Zhai, M.; Zhang G. Research on High-Fidelity Router Emulation Technologies Based on Cloud
Platform. In Proceedings of the 2018 IEEE 7th International Conference on Cloud Networking (CloudNet),
Tokyo, Japan, 22–24 October 2018; pp. 1–4.

12. Schuchard, M.; Mohaisen, A.; Foo Kune, D.; Hopper, N.; Kim, Y.; Vasserman, E.Y. Losing control of the
internet: Using the data plane to attack the control plane. In Proceedings of the 17th ACM Conference on
Computer and Communications Security; ACM: New York, NY, USA, 2010.

13. Guo, X.; Jiao, L.; Qiu, Y.; Ge L. Design and implementation of a multi-path inter-domain routing simulator
based on Click and NS2. J. Shangdong Univ. (Nat. Sci.) 2013, 48, 36–43.

14. Hou, C. Research on OpenFlow Network Software Routing. J. Lanzhou Univ. Nat. Sci. 2013, 120–123.
15. Zhang, Y.; Xu, M.; Li, Q. VegaNet Network Virtual Router. Chin. J. Comput. 2014, 37, 2342–2352.
16. Kamla, R.Z.; Yahiya, T.A.; Mustafa N. An Implementation of Software Routing for Building a Private Cloud.

Int. J. Comput. Netw. Inf. Secur. 2018, 3, 1–7.
17. Almesberger W. Linux Network Traffic Control—Implementation Overview. 1999. Available online: https:

//www.almesberger.net/cv/papers/tcio8.pdf (accessed on 16 January 2020).

http://dx.doi.org/10.3390/info9020045
http://dx.doi.org/10.1016/j.comcom.2015.05.005
http://dx.doi.org/10.1109/LCOMM.2016.2532330
https://www.almesberger.net/cv/papers/tcio8.pdf
https://www.almesberger.net/cv/papers/tcio8.pdf

Information 2020, 11, 47 17 of 17

18. Salim, J.H. Linux Traffic Control Classifier-Action Subsystem Architecture. In Proceedings of the Netdev 0.1,
Ottawa, ON, Canada, 14–17 February 2015.

19. Liu, Y.; Zhang, H.; Ye, H.; Li, J.; Wang, X.; Zhang, G. Research on satellite link emulation for space-ground
integration information network. J. Commun. 2018, 39, 56–67.

20. Mendoza, F.; Ferrus, R.; Sallent O. Experimental proof of concept of an SDN-based traffic engineering
solution for hybrid satellite-terrestrial mobile backhauling. Int. J. Satell. Commun. Netw. 2019, 37, 630–645.
[CrossRef]

21. Chirammal, H.D.; Mukhedkar, P.; Vettathu, A. Mastering KVM Virtualization; Packt Publishing Ltd.:
Birmingham, UK, 2016.

22. Merkel, D. Docker: Lightweight linux containers for consistent development and deployment. Linux J. 2014,
2014, 2.

23. Bernstein D. Containers and cloud: From lxc to docker to kubernetes. IEEE Cloud Comput. 2014, 1, 81–84.
[CrossRef]

24. Jakma, P.; Lamparter D. Introduction to the quagga routing suite. IEEE Netw. 2014, 28, 42–48. [CrossRef]
25. Durner, R.; Blenk, A.; Kellerer W. Performance study of dynamic QoS management for OpenFlow-enabled

SDN switches. In Proceedings of the 2015 IEEE 23rd International Symposium on Quality of Service (IWQoS),
Portland, OR, USA, 15–16 June 2015; pp. 177–182.

26. Wei X. Research and Analysis of Scheduling Mechanism Impact on Network QoS. In Proceedings of the
2011 International Conference on Internet Computing and Information Services, Hong Kong, China, 17–18
September 2011; pp. 488–490.

27. Lo, S.C.; Chiang, M.H.; Liou, J.H.; Gao, J.S. Routing and buffering strategies in delay-tolerant networks:
Survey and evaluation. In Proceedings of the 2011 40th international conference on parallel processing
workshops, Taipei City, Taiwan, 13–16 September 2011; pp. 91–100.

28. Zhong, Q.; Shen, G.; Li, D. Token Bucket-Based Traffic Limiting Method and Apparatus. U.S. Patent
9,363,184[P], 7 June 2016.

29. Li, H.; Zhu, J.; Qiu, H.; Zhou, T.; Li, H. The new threat to internet: DNP attack with the attacking flows
strategizing technology. Int. J. Commun. Syst. 2015, 28, 1126–1139. [CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1002/sat.1303
http://dx.doi.org/10.1109/MCC.2014.51
http://dx.doi.org/10.1109/MNET.2014.6786612
http://dx.doi.org/10.1002/dac.2748
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Router Emulation Architecture
	Virtual Router
	Traffic Control
	Problem Statement
	Traffic Control Method

	Router Emulation Implementation
	KVM-Based Traffic Control Module
	Docker-Based Traffic Control Module

	Experiment and Evaluation
	Experimental Environment
	Bandwidth Evaluation
	Loss Rate Evaluation
	Evaluation by Emulated DDoS and LDoS Attacks
	DDoS Emulation
	LDoS Emulation

	Evaluation of a Large-Scale LDoS Emulation

	Conclusions and Future Work
	References

