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Abstract: Linguistic Pythagorean fuzzy (LPF) set is an efficacious technique to comprehensively
represent uncertain assessment information by combining the Pythagorean fuzzy numbers and
linguistic variables. In this paper, we define several novel essential operations of LPF numbers based
upon Einstein operations and discuss several relations between these operations. For solving the
LPF numbers fusion problem, several LPF aggregation operators, including LPF Einstein weighted
averaging (LPFEWA) operator, LPF Einstein weighted geometric (LPFEWG) operator and LPF
Einstein hybrid operator, are propounded; the prominent characteristics of these operators are
investigated as well. Furthermore, a multi-attribute group decision making (MAGDM) approach
is presented on the basis of the developed operators under an LPF environment. Ultimately,
two application cases are utilized to demonstrate the practicality and feasibility of the developed
decision approach and the comparison analysis is provided to manifest the merits of it.

Keywords: multi-attribute group decision making; Linguistic Pythagorean fuzzy set; aggregation
operator; Einstein operations

1. Introduction

Multi-attribute group decision-making is an important component of modern decision making
(DM) science, which has been widely considered by multitudinous scholars and has achieved rich
research achievements [1–6]. Due to the uncertainty and complexity of DM environments, it is arduous
to portray the evaluation value of alternatives by precise numerical value. Therefore, Zadeh [7]
originally propounded the fuzzy set (FS) theory to address this limitation. Since its introduction, a
large number of achievements on FS have been acquired in many fields, including fuzzy control [8–10],
decision analysis [11–15] and so on. However, one of the defects of FS is that it only reveals the
membership degree (MD) of an element to a selected objective. Hence, as an effective extension of
FS, Attanassov [16] introduced the notion of an intuitionistic fuzzy set (IFS), which can effectively
deal with the defect of FS by adding a non-membership degree (NMD). Since its emergence, a lot of
research results have been attained in theory and application. Xu [17] proposed several aggregation
operators for aggregating an intuitionistic fuzzy number (IFN). Xia et al. [18] propounded some
aggregation operators based upon Archimedean operations of IFN. Abdullah et al. [19] extended the
DEMATEL method to interval-valued intuitionistic fuzzy setting to handle the problem of sustainable
solid waste management. Zhang et al. [20] propounded an extended TODIM approach combined with
Choquet integral to sort products with online reviews. Shen et al. [21] developed an extended TOPSIS
approach with a novel distance measure to do with the credit risk evaluation issue. Liu et al. [22]
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propounded several intuitionistic fuzzy Dombi Bonferroni mean operators, which can take into account
the correlation of different attributes. Liu et al. [23] presented a dynamic intuitionistic fuzzy DM
approach by combining evidential reasoning and a dynamic intuitionistic fuzzy geometric operator.

IFS theory has been applied in diverse DM approaches and practical applications. However,
in several particular situations, the evaluation information provided by experts is disabled under
the intuitionistic fuzzy context, that is, the sum of the membership degree and non-membership
degree is bigger than 1. In order to surmount this defect, Yager [24,25] propounded the notion of the
Pythagorean fuzzy set (PFS) by extending the FS and IFS whose square sum of MD and NMD is less
than or equal to one. PFS is more effective and flexible for solving the vagueness and uncertainty
issues than are FS and IFS. Since its introduction, increasingly investigators have paid their attention
to research on PFS and have obtained many achievements. These achievements are summarized as
follows: (1) The foundation theories such as operational laws [26,27], score function [28,29], information
entropy measure [30–32], distance measure and similarity measure [33–37], and so forth; (2) The DM
methodologies on PFS?Peng and Yang [38] proposed the MABAC approach combined with Choquet
integral to resolve the MAGDM problem with Pythagorean fuzzy information. Liang et al. [39]
propounded a novel approach by synthesizing the three-way decision theory and TOPSIS ideal
solutions under a Pythagorean fuzzy environment. Khan et al. [40] presented an extended VIKOR
method to tackle MAGDM, the problem of unknown attribute weight; (3) The aggregation operators
aspect? Garg [41] propounded generalized Pythagorean fuzzy geometric aggregation operators on the
basis of Einstein operations. Garg [42] proposed several Pythagorean fuzzy geometric operators based
on the novel neutrality operation of Pythagorean fuzzy number (PFN). Li et al. [43] developed some
novel interactive hybrid weighted operators for fusing Pythagorean fuzzy information. Zhu and Li [44]
presented an MAGDM approach based on Muirhead Mean operators under a Pythagorean fuzzy
environment. Khan et al. [45] developed an MADM approach based on a new ranking methodology
with Pythagorean trapezoidal uncertain linguistic fuzzy information. More research results on the
theories and techniques can be found in References [46–51].

The theory discussed above can only deal with uncertainty from a quantitative point of view.
However, in actual problems, several attribute values are qualitative in essence and cannot describe an
accurate numerical value. Under these circumstances, it is more convenient to express the preference
information of DMs with linguistic variables. For this issue, Zadeh [52–54] propounded the notion
of a linguistic variable and utilized it to express assessment information in the form of natural
linguistics. For instance, when we evaluate the performance of a computer, we often use natural
linguistics such as “excellent ”, “very good”, “good” to provide evaluation information instead
of a numerical value. Hence, a linguistic variable is more in line with human cognitive thinking
to provide vague and uncertain assessment information. For reducing the information loss in the
computation procedure, Xu [55] further propounded the notion of a continuous linguistic term set
(LTS). Zhang et al. [56] originally proposed the conception of a linguistic intuitionistic fuzzy set (LIFS)
by combining the linguistic method and IFS. Chen et al. [57] presented several aggregation operators
of linguistic intuitionistic fuzzy number (LIFN) to construct a DM methodology. Garg [58] proposed
a novel DM methodology by combining possibility degree measures and linguistic intuitionistic
fuzzy Einstein aggregation operators. Garg [59] defined the concept of a linguistic interval-valued
Atanassov intuitionistic fuzzy set and introduced its basic theory and aggregation operators. However,
in such special cases, if an expert shall provide his or her preference information in the form of LIFN,
denoted as (s4, s5), in which st denotes the linguistic term and t ∈ [0, 8]. It is obvious that the LIFS
fails to address this situation because of 4 + 5 � 8. Therefore, in this setting, the above-mentioned
approaches cannot resolve its validly. To overcome this shortcoming, Garg [60] firstly brought forward
the concept of a linguistic Pythagorean fuzzy set (LPFS) by synthesizing the theory of PFS with the
concept of linguistic terms to model qualitative assessment information. The element in LPFS is called
the linguistic Pythagorean fuzzy number (LPFN), which is composed of linguistic MD and NMD that
are denoted as the linguistic term. Aiming at the mentioned particular case, we can resolve it easily
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under the LPF environment because of 42 + 52 ≤ 8. Furthermore, from the difference of IFN and PFN,
we can find that an LIFN is also an LPFN, while an LPFN may not be an LIFN, which means that the
LPFN has a wider scope than LIFN to express evaluation information for DMs. Later on, Li et al. [61]
proposed the partitioned Bonferroni mean aggregation operators to fuse LPF information. Li et al. [62]
presented a novel TOPSIS approach by combining a correlation coefficient and an entropy measure to
resolve decision issues.

Aggregation operators are one of the hot topics in the field of decision support systems to
aggregate the assessment information and to sort alternatives. It is known that most aggregation
operators are propounded on the basis of the algebraic T-norm and S-norm but the algebraic operations
lack flexibility and robustness. As a particular Archimedean T-norm and S-norm [63], Einstein T-norm
and S-norm not only has the same characteristics of smooth approximation as the algebraic but also
has stronger flexibility and robustness than algebraic T-norm and S-norm. So, aggregation operators
have been widely applied to generate operational laws for fuzzy numbers. On the basis of the
aforementioned, we can find that (1) The LPFN can express uncertainty information more generally
than LIFN and PFN; (2)The traditional operational laws of LPFN lack flexibility and robustness during
the procedure of information integration; (3)The Einstein T-norm and S-norm can not only generate
operational laws but can also improve the flexibility and smoothness more than Algebraic operations.
Accordingly, it is meaningful to utilize Einstein T-norm and S-norm to model the intersection and union
on LPFN to propound novel aggregation operators. The main research objective and contributions of
this article are:

1. To extend he Einstein T-norm and T-conorm to LPFS and propose novel operational laws of
LPFNs to improve the flexibility and robustness of the proposed approach;

2. To propose several LPF Einstein operators such as LPF Einstein averaging operators, LPF Einstein
geometry operators, LPF Einstein hybrid operators and discuss several related properties of these
operators;

3. To present a novel DM method based on the proposed operators to solve MAGDM problems in
practical situations;

4. To provide an application example to illustrate the validity of the presented approach and give a
comparative analysis to show its advantages.

The organization of the paper is described below. Section 2 briefly introduces several fundamental
concepts. Section 3 defines the novel operations of LPFN based on Einstein operation. Section 4
brings forward several LPFE operators and proves their related properties. We utilize those presented
operators to construct an MAGDM approach to solve MAGDM problems in Section 5. Consequently,
several examples are given to illustrate the validity of the proposed method and show its advantages
by comparing it with other approaches in Section 6. Several conclusions are given at the end.

2. Preliminaries

This section reviews several foundation knowledge of LPFS and Einstein operation.

2.1. Linguistic Pythagorean Fuzzy Set

Garg [60] originally propounded LPFS by synthesizing PFS and LTS. The definition of LPFS is
depicted below:

Definition 1 ([60]). Assume that X is a fixed set and S̄ = {sα|α ∈ [0, t]} with a nonnegative integer t be a
continue LTS. A LPFS A on X is defined as:

A = {(x, sα(x), sβ(x))|x ∈ X}. (1)
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where sα(x) and sβ(x) denote linguistic MD and linguistic NMD of the element x toA. Each pair (sα(x), sβ(x))
is simplified as (sα, sβ), which stand for an LPFN and meets that α, β ∈ [0, t] and α2 + β2 ≤ t2. For any x ∈ X ,
ΠA = s√t2−α2−β2 is named linguistic hesitancy degree of x to A.

Garg [60] also presented the score function with an accuracy function to build the comparison
approach of LPFNs.

Definition 2 ([60]). Let A = (sα1 , sβ1) be a LPFN with sα1 , sβ1 ∈ S̄ . The score function T and accuracy
functionH of A are defined as:

T (A) = s√
t2+α2

1−β2
1

2

, (2)

H(A) = s√
α2

1+β2
1
. (3)

For comparing two LPFNs A and B, the comparison method is given as:

1. if T (A)>T (B), then A � B;
2. if T (A)=T (B), then

• ifH(A)<H(B), then A ≺ B;
• ifH(A)=H(B), then A ∼ B.

2.2. Einstein T-Norm and S-Norm

Definition 3 ([63]). For arbitrary two real numbers ρ, $ ∈ [0, 1], the Einstein sums SΞ and Einstein product
TΞ are defined as follows:

SΞ(ρ, $) = ρ⊕ $ =
ρ + $

1 + ρ$
, (4)

TΞ(ρ, $) = ρ⊗ $ =
ρ$

1 + (1− ρ)(1− $)
. (5)

3. Einstein Operations of LPFNs

Under this section, we redefine the operational laws of LPFNs based upon the Einstein operations
and discuss its properties in detail.

Definition 4. Let A = (sα1 , sβ1) and B = (sα2 , sβ2) be two LPFNs and λ > 0, then the LPFE operations are
defined as

1. A⊕B =

s
t

√
t2(α2

1+α2
2)

t4+α2
1α2

2

, s
t β1β2√

t4+(t2−β2
1)(t

2−β2
2)

;

2. A⊗B =

st α1α2√
t4+(t2−α2

1)(t
2−α2

2)

, s
t

√
t2(β2

1+β2
2)

t4+β2
1β2

2

;

3. λA =

s
t

√
(t2+α2

1)
λ−(t2−α2

1)
λ

(t2+α2
1)

λ+(t2−α2
1)

λ

, s
t

√
2βλ

1√
(2t2−β2

1)
λ+(β2

1)
λ

;

4. Aλ =

s
t

√
2αλ

1√
(2t2−α2

1)
λ+(α2

1)
λ

, s
t

√
(t2+β2

1)
λ−(t2−β2

1)
λ

(t2+β2
1)

λ+(t2−β2
1)

λ

.
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Theorem 1. Let Ai = (sαi , sβi ), (i = 1, 2) be two LPFNs, then A1 ⊕A2,A1 ⊗A2, λA1 and Aλ
1 are also

LPFNs, respectively.

Proof. Due to Ai = (sαi , sβi )(i = 1, 2) be two LPFNs, then we get αi, βi ∈ [0, t], αi/t, βi/t ∈
[0, 1] and α2

i + β2
i ∈ [0, t2]. Since (α2

1/t2 − 1)(α2
2/t2 − 1) ≥ 0, then, (α2

1/t2)(α2
2/t2) − (α2

1/t2 +

α2
2/t2) + 1 ≥ 0, so, (α2

1/t2 + α2
2/t2)/((α2

1/t2)(α2
2/t2) + 1) ≤ 1. Similarly, since 1 + (1− β2

1/t2)(1−
β2

2/t2) ≥ 1, (β1/t · β2/t) ≤ 1, then ((β1/t)(β2/t))/(1 + (1 − β2
1/t2)(1 − β2

2/t2)) ≤ 1, hence,

(β1β2)/(
√

t4 + (t4 − β2
1)(t

4 − β2
2)) ≤ 1. Accordingly, we summarize that t

√
t2(α2

1+α2
2)

t4+α2
1α2

2
∈ [0, t] and

t β1β2√
t4+(t2−β2

1)(t
2−β2

2)
∈ [0, t]. Furthermore

(
t

√
t2(α2

1 + α2
2)

t4 + α2
1α2

2

)2

+

t
β1β2√

t4 + (t2 − β2
1)(t

2 − β2
2)

2

≤ t2

(
t2(α2

1 + α2
2)

t4 + α2
1α2

2
+

(t2 − α2
1)(t

2 − α2
2)

t4 + α2
1α2

2

)

= t2

(
t2(α2

1 + α2
2) + (t2 − α2

1)(t
2 − α2

2)

t4 + α2
1α2

2

)
= t2.

Hence, we can obtain that A1 ⊕A2 is a LPFN.
Furthermore, for λA, we have√

(t2 + α2
1)

λ − (t2 − α2
1)

λ

(t2 + α2
1)

λ + (t2 − α2
1)

λ
=

√
1−

2(t2 − α2
1)

λ

(t2 + α2
1)

λ + (t2 − α2
1)

λ
≤
√

1− (t2 − α2
1)

λ ≤ 1,

and

t2 + α2
1 ≥ t2 − α2

1 ⇒ (t2 + α2
1)

λ − (t2 − α2
1)

λ ≥ 0⇒

√
(t2 + α2

1)
λ − (t2 − α2

1)
λ

(t2 + α2
1)

λ + (t2 − α2
1)

λ
≥ 0.

Accordingly,

0 ≤ t

√
(t2 + α2

1)
λ − (t2 − α2

1)
λ

(t2 + α2
1)

λ + (t2 − α2
1)

λ
≤ t.

Similarly,√
2(t2 − α2

1)
λ

(t2 + α2
1)

λ + (t2 − α2
1)

λ
≤ (t2 − α2

1)
λ ≤ 1, (β2

1)
λ ≥ 0⇒

√
(β2

1)
λ

(t2 + α2
1)

λ + (t2 − α2
1)

λ
≥ 0.

Thus,

0 ≤ t

√
2βλ

1√
(2t2 − β2

1)
λ + (β2

1)
λ
≤ t.
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Moreover,

(
t

√
(t2 + α2

1)
λ − (t2 − α2

1)
λ

(t2 + α2
1)

λ + (t2 − α2
1)

λ

)2

+

t

√
2βλ

1√
(2t2 − β2

1)
λ + (β2

1)
λ

2

≤ t2

(
1−

2(t2 − α2
1)

λ

(t2 + α2
1)

λ + (t2 − α2
1)

λ
+

2(t2 − α2
1)

λ

(t2 + α2
1)

λ + (t2 − α2
1)

λ

)
= t2.

Hence, we can obtain that λA1 is a LPFN.
Similarly, we can get A1 ⊗A2 and Aλ

1 are also LPFNs.

Theorem 2. Let A = (sα1 , sβ1) and B = (sα2 , sβ2) be two LPFNs and λ, λ1, λ2 > 0 be three real numbers,
then we have

1. A⊕B = B ⊕A;
2. A⊗B = B ⊗A;
3. λ(A⊕B) = λA⊕ λB;
4. (A⊗B)λ = Aλ ⊗Bλ;
5. (λ1 ⊕ λ2)A = λ1A⊕ λ2A;
6. Aλ1 ⊗Aλ2 = Aλ1+λ2 .

Proof. We only prove (1), (3) and (5).
(1)

A⊕B =

s
t

√
t2(α2

1+α2
2)

t4+α2
1α2

2

, s
t β1β2√

t4+(t2−β2
1)(t

2−β2
2)

 =

s
t

√
t2(α2

2+α2
1)

t4+α2
2α2

1

, s
t β2β1√

t4+(t2−β2
2)(t

2−β2
1)

 = B ⊕A.

(3) Since

A⊕B =

s
t

√
t2(α2

1+α2
2)

t4+α2
1α2

2

, s
t β1β2√

t4+(t2−β2
1)(t

2−β2
2)

 =

s
t

√
(t2+α2

1)·(t
2+α2

2)−(t
2−α2

1)·(t
2−α2

2)

(t2+α2
1)·(t

2+α2
2)+(t2−α2

1)·(t
2−α2

2)

, s
t

√
2β1β2√

β2
1β2

2+(2t2−β2
1)·(2t2−β2

2)

 .

Let a = (t2 + α2
1)(t

2 + α2
2), b = (t2 − α2

1)(t
2 − α2)

2), c = β2
1 · β2

2, d = (2t2 − β2
1) · (2t2 − β2

2), then

A⊕B =

(
s

t
√

a−b
a+b

, s
t
√

2c
d+c

)
.

By the laws of LPFNs, we can get

λ(A⊕B) = λ

(
s

t
√

a−b
a+b

, s√ 2c
d+c

)

=

s
t

√√√√√ (t2+ t2(a−b)
a+b )λ−(t2− t2(a−b)

a+b )λ

(t2+ t2(a−b)
a+b )λ+(t2− t2(a−b)

a+b )λ

, s
t

(
√

2(t
√

2c√
d+c

)λ)√
(2t2− 2ct2

d+c )
λ+( 2ct2

d+c )
λ

 =

s
t
√

aλ−bλ

aλ+bλ

, s
t
√

2cλ

cλ+dλ



=

s
t

√
(t2+α2

1)
λ ·(t2+α2

2)
λ−(t2−α2

1)
λ ·(t2−α2

2)
λ

(t2+α2
1)

λ ·(t2+α2
2)

λ+(t2−α2
1)

λ ·(t2−α2
2)

λ

, s
t

√
2βλ

1 ·β2λ√
(β2

1)
λ ·(β2

2)
λ+(2t2−β2

1)
λ ·(2t2−β2

2)
λ

 .
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Furthermore,

λA =

s
t

√
(t2+α2

1)
λ−(t2−α2

1)
λ

(t2+α2
1)

λ+(t2−α2
1)

λ

, s
t

√
2βλ

1√
(2t2−β2

1)
λ+(β2

1)
λ

 =

s
t
√

a1−b1
a1+b1

, s
t
√

2c1
d1+c1


and

λB =

s
t

√
(t2+α2

2)
λ−(t2−α2

2)
λ

(t2+α2
2)

λ+(t2−α2
2)

λ

, s
t

√
2βλ

2√
(2t2−β2

2)
λ+(β2

2)
λ

 =

s
t
√

a2−b2
a2+b2

, s
t
√

2c2
d2+c2

 ,

then

λA⊕ λB =

s
t
√

a1−b1
a1+b1

, s
t
√

2c1
d1+c1

⊕
s

t
√

a2−b2
a2+b2

, s√ 2c2
d2+c2

 =

s
t
√

a1a2−b1b2
a1a2+b1b2

, s
t
√

2c1c2
c1c2+d1d2


=

s
t

√
(t2+α2

1)
λ ·(t2+α2

2)
λ−(t2−α2

1)
λ ·(t2−α2

2)
λ

(t2+α2
1)

λ ·(t2+α2
2)

λ+(t2−α2
1)

λ ·(t2−α2
2)

λ

, s
t

√
2βλ

1 ·β2λ√
(β2

1)
λ ·(β2

2)
λ+(2t2−β2

1)
λ ·(2t2−β2

2)
λ

 ,

where a1 = (t2 + α2
1)

λ, b1 = (t2 − α2
1)

λ, c1 = (β2
1)

λ, d1 = (2t2 − (β2
1)

λ), a2 = (t2 + α2
2)

λ, b2 = (t2 −
α2

2)
λ, c2 = (β2

2)
λ, d2 = (2t2 − (β2

2))
λ.

Hence, we can obtain λ(A⊕B) = λA⊕ λB.
(5) Due to

λ1A =

s
t

√
(t2+α2

1)
λ1−(t2−α2

1)
λ1

(t2+α2
1)

λ1+(t2−α2
1)

λ1

, s
t

√
2β

λ1
1√

(2t2−β2
1)

λ1+(β2
1)

λ1

 =

s
t
√

m1−n1
m1+n1

, s
t
√

2p1
p1+q1


and

λ2A =

s
t

√
(t2+α2

1)
λ2−(t2−α2

1)
λ2

(t2+α2
1)

λ2+(t2−α2
1)

λ2

, s
t

√
2β

λ2
1√

(2t2−β2
1)

λ2+(β2
1)

λ2

 =

s
t
√

m2−n2
m2+n2

, s
t
√

2p2
p2+q2

 ,

where mi = (t2 + α2
1)

λi , ni = (t2 − (α2
1)

λi ), pi = (β2
1)

λi , pi = (2t2 − (β2
1)

λ, for i = 1, 2.
So, we have

λ1 · A ⊕ λ2 · A =

s
t
√

m1−n1
m1+n1

, s
t
√

2p1
p1+q1

⊕
s

t
√

m2−n2
m2+n2

, s
t
√

2p2
p2+q2

 =

s
t
√

m1m2−n1n2
m1m2+n1n2

, s
t
√

2p1 p2
p1 p2+q1q2


=

s
t

√
(t2+α2

1)
λ1+λ2−(t2−α2

1)
λ1+λ2

(t2+α2
1)

λ1+λ2+(t2−α2
1)

λ1+λ2

, s
t

√
2β

λ1+λ2
1√

(2t2−β2
1)

λ1+λ2+(β2
1)

λ1+λ2


= (λ1 + λ2)A.

Hence, (λ1 ⊕ λ2)A = λ1 · A ⊕ λ2 · A.

4. LPFE Aggregation Operators

In this part, we shall develop several novel aggregation operators for fusing LPF information
based on the novel operational laws.
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4.1. LPFE Averaging Operators

In this section, we will propose several average operators of LPFN including an LPFE weighted
average operator, an LPFE order weighted average (LPFEOWA) operator and an LPFE hybrid average
(LPFEHA) operator.

4.1.1. LPFEWA Operator

Definition 5. Suppose that κi = (sαi , sβi ) (i = 1, 2, . . . , g) be a set of LPFNs. Then the LPFEWA operator is
defined as

LPFEWA(κ1, κ2, . . . , κg) = τ1κ1 ⊕ τ2κ2 ⊕ · · · ⊕ τgκg,

where τ = (τ1, τ2, . . . , τg)T be the weight vector with τi ∈ [0, 1] and ∑
g
i=1 τi = 1.

Theorem 3. For a collection LPFNs κi = (sαi , sβi ) (i = 1, 2, . . . , g), then the fusion value generated by
LPFEWA operator is also a LPFN and

LPFEWA(κ1, κ2, . . . , κg) =

s
t

√
∏

g
i=1(t

2+α2
i )

τi−∏
g
i=1(t

2−α2
i )

τi

∏
g
i=1(t

2+α2
i )

τi +∏
g
i=1(t

2−α2
i )

τi

, s
t

√
2 ∏

g
i=1 β

τi
i√

∏
g
i=1(2t2−β2

i )
τi +∏

g
i=1(β2

i )
τ

i

 , (6)

where τ = (τ1, τ2, . . . , τg)T be the weight vector with τi ∈ [0, 1] and ∑
g
i=1 τi = 1.

Proof. When g = 2

LPFEWA(κ1, κ2) = τ1κ1 ⊕ τ2κ2.

According to Definition 4, we get

τ1κ1 =

s
t

√
(t2+α2

1)
τ1−(t2−α2

1)
τ1

(t2+α2
1)

τ1+(t2−α2
1)

τ1

, s
t

√
2β

τ1
1√

(2t2−β2
1)

τ1+(β2
1)

τ1

 , τ2κ2 =

s
t

√
(t2+α2

2)
τ2−(t2−α2

2)
τ2

(t2+α2
2)

τ2+(t2−α2
2)

τ2

, s
t

√
2β

τ2
2√

(2t2−β2
2)

τ2+(β2
2)

τ2

 .

Then

LPFEWA(κ1, κ2) = τ1κ1 ⊕ τ2κ2

=


s

t

√√√√√√√
(t2+α2

1)
τ1−(t2−α2

1)
τ1

(t2+α2
1)

τ1 +(t2−α2
1)

τ1
+

(t2+α2
2)

τ2−(t2−α2
2)

τ2

(t2+α2
2)

τ2 +(t2−α2
2)

τ2

1+(
(t2+α2

1)
τ1−(t2−α2

1)
τ1

(t2+α2
1)

τ1 +(t2−α2
1)

τ1
)(

(t2+α2
2)

τ2−(t2−α2
2)

τ2

(t2+α2
2)

τ2 +(t2−α2
2)

τ2
)

, s

t

(

√
2β

τ1
1√

(2t2−β2
1)

τ1 +(β2
1)

τ1
)(

√
2β

τ2
2√

(2t2−β2
2)

τ2 +(β2
2)

τ2
)

√√√√1+((t2−
2(β2

1)
τ1

(2t2−(β2
1))

τ1 +(β2
1)

τ1
)(t2−

2(β2
2)

τ2

(2t2−β2
2)

τ2 +(β2
2)

τ2
))



=

s
t

√
((t2+α2

1)
τ1 )·((t2+α2

2)
τ2 )−((t2−α2

1)
τ1 )·((t2−α2

2)
τ2 )

((t2+α2
1)

τ1 )·((t2+α2
2)

τ2 )+((t2−α2
1)

τ1 )·((t2−α2
2)

τ2 )

, s
t

√
2(β

τ1
1 ·β

τ2
2 )√

(2t2−β2
1)

τ1 ·(2t2−β2
2)

τ2 +(β2
1)

τ1 ·(β2
2)

τ2

 .

Hence, the result is valid for g = 2.
When the consequence is valid for g = k, we have

LPFEWA(A1, A2, . . . , Ak) =

s
t

√
∏k

i=1(t
2+α2

i )
τi−∏k

i=1(t
2−α2

i )
τi

∏k
i=1(t

2+α2
i )

τi +∏k
i=1(t

2−α2
i )

τi

, s
t

√
2 ∏k

i=1 β
τi
i√

∏k
i=1(2t2−β2

i )
τi +∏k

i=1(β2
i )

τi

 .
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Now, when g = k + 1, one has

LPFEWA(A1, A2, . . . Ak+1) = LPFWA(A1, A2, . . . Ak)⊕ τk+1 Ak+1

=

s
t

√
∏k

i=1(t
2+α2

i )
τi−∏k

i=1(t
2−α2

i )
τi

∏k
i=1(t

2+α2
i )

τi +∏k
i=1(t

2−α2
i )

τi

, s
t

√
2 ∏k

i=1 β
τi
i√

∏k
i=1(2t2−β2

i )
τi +∏k

i=1(β2
i )

τi


⊕

s
t

√
(t2+α2

k+1)
τk+1−(t2−α2

k+1)
τk+1

(t2+α2
k+1)

τk+1+(t2−α2
k+1)

τk+1

, s
t

√
2β

τk+1
i√

(2t2−βk+1)
τk+1+(β2

k+1)
τk+1


=

s
t

√
∏k+1

i=1 (t2+α2
i )

τi−∏k+1
i=1 (t2−α2

i )
τi

∏k+1
i=1 (t2+α2

i )
τi +∏k+1

i=1 (t2−α2
i )

τi

, s
t

√
2 ∏k+1

i=1 β
τi
i√

∏k+1
i=1 (2t2−β2

i )
τi +∏k+1

i=1 (β2
i )

τi

 .

Hence, Equation (6) holds for any g, that is, the proof of Theorem 3 is finished.

Based on Theorem 3, we can easily deduce the following properties.

Theorem 4. Let κi = (sαi , sβi ), ιi = (s
α
′
i
, s

β
′
i
)(i = 1, 2, . . . , g) be two collections of LPFNs and τ =

(τ1, τ2, . . . , τg)T is the weight vector with τi ∈ [0, 1] and ∑
g
i=1 τi = 1. We can deduce the following properties:

T1 (Idempotency): If κi = (sαi , sβi ) = (sα, sβ) for all i, then

LPFEWA(κ1, κ2, . . . , κg) = (sα, sβ).

T2 (Monotonicity): If κi ≤ ιi, that is, sαi ≤ s
α
′
i

and sβi ≥ s
β
′
i
, then we have

LPFEWA(κ1, κ2, . . . , κg) ≤ LPFEWA(ι1, ι2, . . . , ιg).

T3 (Boundedness): Suppose κ− = min(κ1, κ2, . . . , κg), κ+ = max(κ1, κ2, . . . , κg), then

κ− ≤ LPFEWA(κ1, κ2, . . . , κg) ≤ κ+.

Proof. Since κi = (sαi , sβi ), ιi = (s
α
′
i
, s

β
′
i
)(i = 1, 2, . . . , g) be two sets of LPFNs. Then

(T1) when κi = (sαi , sβi ) = (sα, sβ) for each i, one has

LPFEWA(κ1, κ2, . . . , κg) =

s
t

√
∏

g
i=1(t

2+α2
i )

τi−∏
g
i=1(t

2−α2
i )

τi

∏
g
i=1(t

2+α2
i )

τi +∏
g
i=1(t

2−α2
i )

τi

, s
t

√
2 ∏

g
i=1 β

τi
i√

∏
g
i=1(2t2−β2

i )
τi +∏

g
i=1(β2

i )
τ

i



=

s
t

√√√√√ (t2+α2
i )

∑
g
i=1 τi−(t2+α2

i )
∑

g
i=1 τi

(t2+α2
i )

∑
g
i=1 τi +(t2+α2

i )
∑

g
i=1 τi

, s
t

√
2β

∑
g
i=1 τi

i√
(2−β2

i )
∑

g
i=1 τi +(β2

i )
∑

g
i=1 τi


=

(
st( αi

t )
, s

t( βi
t )

)
= κi.

(T2) Since κi ≤ ιi for all i, then τiκi ≤ τiιi. Accordingly, we can deduce ⊕g
i=1τiκi ≤ ⊕

g
i=1τiιi.

For LPFEWA(κ1, κ2, . . . , κg) = ⊕g
i=1τiκi and LPFEWA(ι1, ι2, . . . , ιg) = ⊕g

i=1τiιi, we can generate
LPFEWA(κ1, κ2, . . . , κg) ≤ LPFEWA(ι1, ι2, . . . , ιg).



Information 2020, 11, 46 10 of 23

(T3) Since κ− = min(κ1, κ2, . . . , κg), κ+ = max(κ1, κ2, . . . , κg). By means of Theorem (T2),
we have

LPFEWA(κ−, κ−, . . . , κ−) ≤ LPFEWA(κ1, κ2, . . . , κg) ≤ LPFEWA(κ+, κ+, . . . , κ+).

Furthermore, by means of Theorem (T1), we have

LPFEWA(κ+, κ+, . . . , κ+) = κ+, LPFEWA(κ−, κ−, . . . , κ−) = κ−.

Accordingly, we can deduce κ− ≤ LPFEWA(κ1, κ2, . . . , κg) ≤ κ+.

4.1.2. LPFEOWA Operator

Definition 6. Suppose that κi = (sαi , sβi )(i = 1, 2, . . . , g) be a set of LPFNs. Then the LPFEOWA Operator
is depicted as:

LPFEOWA(κ1, κ2, . . . , κg) = τ1κσ(1) ⊕ τ2κσ(2) ⊕ · · · ⊕ τgκσ(g),

where (σ(1), σ(2), . . . , σ(g))is a permutation of (i = 1, 2, . . . , g), such that κσ(i−1) ≥ κσ(i) for each i, τ =

(τ1, τ2, . . . , τg)T is the weight vector with τi ∈ [0, 1] and ∑
g
i=1 τi = 1.

Similar to LPFWA operator, we can deduce the following theorems of LPEOWA operator.

Theorem 5. Let κi = (sαi , sβi ) be a set of LPFNs, then the fusion result by LPFOWA operator is deduced as:

LPFEOWA(κ1, κ2, . . . , κg) =

s
t

√√√√∏
g
i=1(t

2+α2
σ(i))

τi−∏
g
i=1(t

2−α2
σ(i))

τi

∏
g
i=1(t

2+α2
σ(i))

τi +∏
g
i=1(t

2−α2
σ(i))

τi

, s
t

√
2 ∏

g
i=1(βσ(i))

τi√
∏

g
i=1(2t2−β2

σ(i))
τi +∏

g
i=1(β2

σ(i))
τ

i

 , (7)

where (σ(1), σ(2), . . . , σ(g)) is a permutation of (i = 1, 2, . . . , g), such that κσ(i−1) ≥ κσ(i) for each i,
τ = (τ1, τ2, . . . , τg)T is the weight vector with τi ∈ [0, 1] and ∑

g
i=1 τi = 1. Apparently, if w = ( 1

g , 1
g , . . . , 1

g ),
the LPFEOWA operator will reduce to LPFWA operator.

Similar to the LPFEWA operator, it is easy to prove that the proposed operators satisfying the
following properties.

Theorem 6. Let κi = (sαi , sβi ), ιi = (s
α
′
i
, s

β
′
i
)(i = 1, 2, . . . , g) be two collections of LPFNs and τ =

(τ1, τ2, . . . , τg)T is the weight vector with τi ∈ [0, 1] and ∑
g
i=1 τi = 1. We can deduce the following properties:

T1 (Idempotency): If κi = (sαi , sβi ) = (sα, sβ) for all i, then

LPFEOWA(κ1, κ2, . . . , κg) = (sα, sβ).

T2 (Monotonicity): If κi ≤ ιi for all i, then

LPFEOWA(κ1, κ2, . . . , κg) ≤ LPFEOWA(ι1, ι2, . . . , ιg).

T3 (Boundedness): Suppose κ− = min(κ1, κ2, . . . , κg), κ+ = max(κ1, κ2, . . . , κg), then

κ− ≤ LPFEWA(κ1, κ2, . . . , κg) ≤ κ+.
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T4 (Commutativity): Let ιi = (sαi , sβi )(i = 1, 2, . . . , g) is any permutation of κi = (sαi , sβi ). Then

LPFEOWA(κ1, κ2, . . . , κg) = LPFEOWA(ι1, ι2, . . . , ιg).

The proof is analogous to the Theorem 4, so we omit it here.

4.1.3. LPFEHA Operator

Definition 7. Let κi = (sαi , sβi ) ∈ ∆, (i = 1, 2, . . . , g). The LPFEHA operator is defined as

LPFEHAv,τ(κ1, κ2, . . . , κg) = τ1κ̇σ(1) ⊕ τ2κ̇σ(2) ⊕ · · · ⊕ τgκ̇σ(g) (8)

=

s
t

√√√√∏
g
i=1(t

2+(α̇σ(i))
2)τi−∏

g
i=1(t

2−(α̇σ(i))
2)τi

∏
g
i=1(t

2+(α̇σ(i))
2)τi +∏

g
i=1(t

2−(α̇σ(i))
2)τi

, s
t

√
2 ∏

g
i=1(β̇σ(i))

τi√
∏

g
i=1(2t2−(β̇σ(i))

2)τi +∏
g
i=1(β̇2

σ(i))
τi

 ,

where τ = (τ1, τ2, . . . , τg)T is the weight vector with τi ∈ [0, 1] and ∑
g
i=1 τi = 1. and κ̇i = gviαi(i =

1, 2, . . . , g), (κ̇σ(1), Ȧσ(2), . . . , κ̇σ(g)) is any permutation of a collection of the weighted LPFNs (κ̇1, κ̇2, . . . , κ̇n)

such that κ̇σ(i) ≥ κ̇σ(i+1)(i = 1, 2, . . . , n − 1); v = (v1, v2, . . . , vg)T is the weight vector of κi(i =

1, 2, . . . , g), with vi ∈ [0, 1](i = 1, 2, . . . , g), ∑
g
i=1 vi = 1, g is the balancing coefficient.

Theorem 7. The LPFEWA and LPFEOWA operators are a particular case of the LPFEHA operators.

Proof. (1) If τ = ( 1
g , 1

g , . . . , 1
g )

T . Then,

LPFEHAv,τ(κ1, κ2, . . . , κg) = τ1κ̇σ(1) ⊕ τ2κ̇σ(2) ⊕ · · · ⊕ τgκ̇σ(g)

=
1
g
(κ̇σ(1) ⊕ κ̇σ(2) ⊕ · · · ⊕ κ̇σ(g))

= v1κ1 ⊕v2κ2 ⊕ . . . vgκg

= LPFEWAv(κ1, κ2, . . . , κg)

(2) If v = ( 1
g , 1

g , . . . , 1
g )

T and κ̇i = κi(i = 1, 2, . . . , g). Then

LPFEHAτ,v(κ1, κ2, . . . , κg) = τ1κ̇σ(1) ⊕ τ2κ̇σ(2) ⊕ · · · ⊕ τgκ̇σ(g)

= τ1κσ(1) ⊕ τ2κσ(2) ⊕ · · · ⊕ τgκσ(g)

= LPFEOWAτ(κ1, κ2, . . . , κg)

4.2. LPFE Geometric Operators

In this section, we will propose several geometric operators of LPFN including LPFE weighted
geometric operator, LPFE order weighted geometric (LPFEOWG) operator and LPFE hybrid geometric
(LPFEHG) operator.

4.2.1. LPFEWG Operator

Definition 8. Suppose that κi = (sαi , sβi )(i = 1, 2, . . . , g) be a set of LPFNs. Then the LPFEWA operator is
defined as follows:

LPFEWG(κ1, κ2, . . . , κg) = κτ1
1 ⊕ κτ2

2 ⊕ · · · ⊕ κ
τg
g , ,

where τ = (τ1, τ2, . . . , τg)T is the weight vector with τi ∈ [0, 1] and ∑
g
i=1 τi = 1.
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Theorem 8. Assume that κi = (sαi , sβi )(i = 1, 2, . . . , g) be a set of LPFNs. The aggregated value of them
using the LPFWG operator is also a LPFN and

LPFEWG(κ1, κ2, . . . , κg) =

s
t

√
2 ∏

g
i=1 α

τi
i√

∏
g
i=1(2t2−α2

i )
τi +∏

g
i=1(α

2
i )

τ
i

, s
t

√
∏

g
i=1(t

2+β2
i )

τi−∏
g
i=1(t

2−β2
i )

τi

∏
g
i=1(t

2+β2
i )

τi +∏
g
i=1(t

2−β2
i )

τi

 , (9)

where τ = (τ1, τ2, . . . , τg)T is the weight vector with τi ∈ [0, 1] and ∑
g
i=1 τi = 1.

Proof. When g = 2, we have

LPFEWG(κ1, κ2) = κτ1
1 ⊗ κτ2

2 .

Then

κτ1
1 =

s
t

√
2α

τ1
1√

(2t2−α2
1)

τ1+(α2
1)

w1

, s
t

√
(t2+β2

1)
τ1−(t2−β2

1)
τ1

(t2+β2
1)

τ1+(t2−β2
1)

τ1

 , κτ2
2 =

s
t

√
2α

τ2
2√

(2t2−α2
2)

τ2+(α2
2)

w2

, s
t

√
(t2+β2

2)
τ2−(t2−β2

2)
τ2

(t2+β2
2)

τ2+(t2−β2
2)

τ2

 .

Hence,

LPFEWG(κ1, κ2) = κτ1
1 ⊕ κτ2

2

=


s

t

(

√
2α

w1
1√

(2t2−α2
1)

τ1 +(α2
1)

τ1
)(

√
2α

τ2
2√

(2t2−α2
2)

τ2 +(α2
2)

τ2
)

√√√√1+(t2−
2(α2

1)
τ1

(2t2−α2
1)

τ1 +(α2
1)

τ1
)(t2−

2(α2
2)

τ2

(2t2−α2
2)τ2 +(α2

2)
τ2

)

, s

t

√√√√√√√
(t2+β2

1)
τ1−(t2−β2

1)
τ1

(t4+β2
1)

τ1 +(t2−β2
1)

τ1
+

(t2+β2
2)

τ2−(t2−β2
2)

τ2

(t2+β2
2)

τ2 +(t2−β2
2)

τ2

1+(
(t2+β2

1)
τ1−(t2−β2

1)
τ1

(t2+β2
1)

τ1 +(t2−β2
1)

τ1
)(

(t2+β2
2)

τ2−(t2−β2
2)

τ2

(t2+β2
2)

τ2 +(t2−β2
2)

τ2
)



=

s
t

√
2(α

τ1
1 ·α

τ2
2 )√

(2t2−α2
1)

τ1 ·(2t2−α2
2)

τ2 +(α2
1)

τ1 ·(α2
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τ2

, s
t

√
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1)
τ1 )·((t2+β2

2)
τ2 )−((t2−β2

1)
τ1 )·((t2−β2

2)
τ2 )

((t2+β2
1)

τ1 )·((t2+β2
2)

τ2 )+((t2−β2
1)

τ1 )·((t2−β2
2)

τ2 )


Hence, the result is valid for g = 2.
When the consequence is valid for g = k, we have

LPFEWG(κ1, κ2, . . . , κk) =

s
t

√
2 ∏k

i=1 α
τi
i√

∏k
i=1(2t2−α2

i )
τi +∏k

i=1(α
2
i )

τ
i

, s
t

√
∏k

i=1(t
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i )
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i=1(t
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i )
τi

∏k
i=1(t

2+β2
i )

τi +∏k
i=1(t

2−β2
i )

τi

 .

Now, when g = k + 1, we have

LPFEWG(A1, A2, . . . , Ak+1) = LPFWG(A1, A2, . . . Ak)⊕ Aτk+1
k+1

=

s
t

√
2 ∏k

i=1 α
τi
i√

∏k
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τi +∏k
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i )
τi
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2+β2
i )

τi +∏k
i=1(t

2−β2
i )

τi


⊗

s
t

√
2α

τk+1
k+1√

(2t2−α2
k+1)

τk+1+(α2
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√
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=
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 .
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Hence, Equation (9) holds for any g = k + 1, the proof of Theorem 8 is completed.

Based on Theorem 8, it is easy to deduce the following properties of the LPFEWG operator.

Theorem 9. Let κi = (sαi , sβi ), ιi = (s
α
′
i
, s

β
′
i
)(i = 1, 2, . . . , g) be a collection of LPFNs and τ =

(τ1, τ2, . . . , τg)T is the weight vector with τi ∈ [0, 1] and ∑
g
i=1 τi = 1. We can obtain that the following

properties:
T1 (Idempotency): If κi = (sαi , sβi ) = (sα, sβ) for all i, then

LPFEWG(κ1, κ2, . . . , κg) = (sα, sβ).

T2 (Monotonicity): If κi ≤ ιi for all i, then

LPFEWG(κ1, κ2, . . . , κg) ≤ LPFEWG(ι1, ι2, . . . , ιg).

T3 (Boundedness): Suppose κ− = min(κ1, κ2, . . . , κg), κ+ = max(κ1, κ2, . . . , κg), then

κ− ≤ LPFEWG(κ1, κ2, . . . , κg) ≤ κ+.

The proof is analogous to Theorem 4.

4.2.2. LPFEOWG Operator

Definition 9. Suppose that κi = (sαi , sβi )(i = 1, 2, . . . , g) be a set of LPFNs. Then the LPFEWA operator is
defined as follows:

LPFEOWG(κ1, κ2, . . . , κg) = κτ1
σ(1) ⊕ κτ2

σ(2) ⊕ · · · ⊕ κτn
σ(g),

where (σ(1), σ(2), . . . , σ(g))is a permutation of (i = 1, 2, . . . , g), such that κσ(i−1) ≥ κσ(i) for each i, τ =

(τ1, τ2, . . . , τg)T is the weight vector with τi ∈ [0, 1] and ∑
g
i=1 τi = 1.

Theorem 10. Let A = {Ai = (sαi , sβi )|i = 1, 2, . . . , n}, then the LPFEOWG operator is defined as follows:

LPFEOWG(κ1, κ2, . . . , κg) =

s
t

√
2 ∏

g
i=1(ασ(i))

wi√
∏

g
i=1(2t2−α2

σ(i))
τi +∏

g
i=1(α

2
σ(i))

τ
i

, s
t

√√√√∏
g
i=1(t

2+α2
σ(i))

τi−∏
g
i=1(t

2−α2
σ(i))

τi

∏
g
i=1(t

2+α2
σ(i))

τi +∏
g
i=1(t

2−α2
σ(i))

τi

 , (10)

where (σ(1), σ(2), . . . , σ(g))is a permutation of (i = 1, 2, . . . , g), such that κσ(i−1) ≥ κσ(i) for each i, τ =

(τ1, τ2, . . . , τg)T is the weight vector with τi ∈ [0, 1] and ∑
g
i=1 τi = 1. Apparently, if w = ( 1

g , 1
g , . . . , 1

g ), the
LPFEOWA operator will reduce to LPFWA operator.

The LPFEOWG operator also meets the theorems deduced in Theorem 4.

4.2.3. LPFEHG Operator

Definition 10. Let κi = (sαi , sβi ) ∈ ∆, (i = 1, 2, . . . , g). The LPFEHG operator is defined as

LPFEHGv,w(κ1, κ2, . . . , κg) = κ̈τ1
σ(1) ⊕ κ̈τ2

σ(2) ⊕ · · · ⊕ κ̈
τg
σ(g) (11)

=

s
t

√
2 ∏n

i=1(α̈σ(i))
wi√

∏n
i=1(2t2−(α̈σ(i))

2)wi +∏n
i=1(α̈σ(i))

2wi

, s
t

√
∏n

i=1(t
2+(β̈σ(i))

2)wi−∏n
i=1(t

2−(β̈σ(i))
2)wi

∏n
i=1(t

2+(β̈σ(i))
2)wi +∏n

i=1(t
2−(β̈σ(i))

2)wi

 ,
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where τ = (τ1, τ2, . . . , τg)T is the weight vector with τi ∈ [0, 1] and ∑
g
i=1 τi = 1. and κ̇i = gviαi (i =

1, 2, . . . , g), (κ̇σ(1), Ȧσ(2), . . . , κ̇σ(g)) is any permutation of a collection of the weighted LPFNs (κ̇1, κ̇2, . . . , κ̇n)

such that κ̇σ(i) ≥ κ̇σ(i+1)(i = 1, 2, . . . , n − 1); v = (v1, v2, . . . , vg)T is the weight vector of κi (i =

1, 2, . . . , g), with vi ∈ [0, 1] (i = 1, 2, . . . , g), ∑
g
i=1 vi = 1, g is the balancing coefficient.

Theorem 11. The LPFEWG and LPFEOWG operators are a special case of the LPFEHG operators.

Proof. (1) If w = ( 1
g , 1

g , . . . , 1
g )

T . Then,

LPFEHAτ,v(κ1, κ2, . . . , κn) = κ̈τ1
σ(1) ⊕ κ̈τ2

σ(2) ⊕ · · · ⊕ κ̈
τg
σ(g)

= (κ̈σ(1) ⊕ κ̈σ(2) ⊕ · · · ⊕ κ̈σ(g))
1
g

= κv1
1 ⊕ κv2

2 ⊕ . . . κ
vg
n

= LPFWGv(κ1, κ2, . . . , κg)

(2) If v = ( 1
g , 1

g , . . . , 1
g )

T and κ̈i = κi (i = 1, 2, . . . , g). Then,

LPFEHAτ,v(κ1, κ2, . . . , κn) = κ̈τ1
σ(1) ⊕ κ̈τ2

σ(2) ⊕ · · · ⊕ κ̈
τg
σ(n)

= κτ1
σ(1) ⊕ κτ2

σ(2) ⊕ · · · ⊕ κ
τg
σ(g)

= LPFOWGτ(κ1, κ2, . . . , κg)

5. The Developed Decision Making Approach

In this part, we will develop an MAGDM approach based on the presented LPFE operators to
cope with DM issues with LPF information.

Let Υ = {Υ1, Υ2, . . . , Υm} be a group of m alternatives and = = {=1,=2, . . . ,=n} be a group
of attributes whose weight vector τ = (τ1, τ2, . . . , τn)T , with τj ∈ [0, 1] (j = 1, 2, . . . , n) and
∑n

j=1 τj = 1. Assume that there is a collection of δ experts Z = {Z1, Z2, . . . , Zδ} with weight vector

λ = {λ1, λ2, . . . , λδ}T , with λk ∈ [0, 1] (k = 1, 2, . . . , δ) and ∑δ
k=1 λk = 1. Expert Zk provides the

evaluation information on alternative Yi with respect to the attribute =j in the form of LPFNs,
qk

ij = (sk
αij

, sk
βij
), where sk

aij
, sk

βij
∈ S̄. Then the LPF decision matrices Qk = (qk

ij)m×n are constructed. The
decision process is described in the following (the procedure of the propounded MAGDM approach is
shown in Figure 1).

Step 1: Normalize the decision matrices. Because there are two kinds of attribute, we need
transform them to the same type attribute. That is, normalize the decision matrices Qk into a
normalization matrices Ak = (ak

ij)m×n, where

aij =

{
(sk

αij
, sk

βij
) for benefit attribute =j.

(sk
βij

, sk
αij
) for cost attribute =j.

Step 2: Utilize the LPFOWA operator to fuse all the DMs’ information.

qij = (sαij , sβij) = LPFEOWA(q1
ij, q2

ij, . . . , qδ
ij),

or the LPFEOWG operator

qij = (sαij , sβij) = LPFEOWG(q1
ij, q2

ij, . . . , qδ
ij).
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Step 3: Utilize the LPFEWA operator to aggregate all qij for each alternative Yi as follows.

qi = LPFWA(qi1, qi2, . . . , qin)

or the LPFEWG operators

qi = LPFEWG(qi1, qi2, . . . , qin).

Step 4: Calculating the score values T (Υi) for each qi.
Step 5: Rank all alternatives Υi (i = 1, 2, . . . , m).

Figure 1. The decision process of the propounded MAGDM approach.

6. Numerical Example and Comparative Analysis

In this section, we utilize the proposed MAGDM approach to deal with practical problems and
perform a comparative analysis to show its effectiveness and merits.

6.1. Numerical Example

Example 1. This practical example is cited and applied from Reference [57], which is about a company selecting
a supplier. Assuming that Υ = {Υ1, Υ2, Υ3, Υ4} is a set of four optional suppliers as alternatives and the group
of attributes = = {=1,=2,=3,=4,=5} and the weight of the attribute is τ = (0.25, 0.2, 0.15, 0.18, 0.22)T .
The alternatives Υ = {Υ1, Υ2, Υ3, Υ4} are evaluated with respect to the attributes = = {=1,=2,=3,=4,=5}
by DMs’ using the LPFNs based on the linguistic term set S = {s0 = extremely poor, s1 = very poor, s2 =

poor, s3 = slightly poor, s4 = fair, s5 = slightly good, s6 = good, s7 = very good, s8 = extremely good}.
Assume that the weight vector of DMs’ is λ = (0.25, 0.3, 0.2, 0.25)T . Then the LPF decision matrices Ak =

(ak
ij)4×5 are listed in Tables 1–4.
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Table 1. Decision matrix Q1 by Z1.

=1 =2 =3 =4 =5

Υ1 (s7, s1) (s6, s2) (s4, s3) (s7, s1) (s5, s2)
Υ2 (s6, s2) (s5, s2) (s6, s1) (s6, s2) (s7, s1)
Υ3 (s6, s1) (s5, s3) (s7, s1) (s5, s1) (s3, s4)
Υ4 (s5, s2) (s7, s1) (s4, s3) (s6, s1) (s4, s4)

Table 2. Decision matrix Q2 by Z2.

=1 =2 =3 =4 =5

Υ1 (s7, s1) (s4, s4) (s6, s2) (s5, s1) (s3, s5)
Υ2 (s7, s1) (s5, s1) (s6, s1) (s5, s2) (s4, s3)
Υ3 (s6, s2) (s6, s1) (s7, s1) (s5, s3) (s4, s4)
Υ4 (s5, s2) (s4, s3) (s5, s2) (s7, s1) (s5, s3)

Table 3. Decision matrix Q3 by Z3.

=1 =2 =3 =4 =5

Υ1 (s6, s1) (s5, s2) (s3, s4) (s7, s1) (s5, s2)
Υ2 (s7, s1) (s6, s2) (s7, s1) (s6, s2) (s5, s1)
Υ3 (s5, s3) (s5, s2) (s6, s1) (s4, s3) (s3, s1)
Υ4 (s6, s2) (s7, s1) (s5, s1) (s5, s2) (s5, s4)

Table 4. Decision matrix Q4 by Z4.

=1 =2 =3 =4 =5

Υ1 (s5, s3) (s4, s4) (s7, s1) (s5, s1) (s4, s2)
Υ2 (s6, s1) (s7, s1) (s6, s1) (s5, s2) (s6, s1)
Υ3 (s5, s2) (s3, s4) (s6, s2) (s3, s3) (s5, s2)
Υ4 (s4, s3) (s5, s1) (s4, s2) (s6, s2) (s5, s2)

Now, we use the proposed approach to cope with this practical problems.
Step 1: The normalization is omitted because all attributes are considered as the benefit attributes.
Step 2: Utilize the LPFOWA operator to aggregate decision matrix Q1 − Q4, the aggregation

result is shown in Table 5.
Step 3: Utilize the LPFEWA operator or LPFEWG operator to aggregate all qij for each alternative

Υi as follows.

q1 = (s5.3862, s2.6144), q2 = (s5.6262, s2.2769), q3 = (s4.8177, s2.7532), q4 = (s5.1312, s2.5480).

Step 4: According to the score function to calculate the score value of each alternative Υi (i =
1, 2, 3, 4);

T (q1) = 6.5641, T (q2) = 6.7257, T (q3) = 6.3099, T (q4) = 6.4744.

Step 5 : the order relation of alternative Υi (i = 1, 2, . . . , 4) is obtained as follows: Υ2 � Υ1 �
Υ4 � Υ3. Hence, the best alternative is Υ2.
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Table 5. Decision matrix by using LPFOWG operators.

=1 =2 =3 =4 =5

Υ1 (s6.4795, s1.3229) (s4.9191, s2.9534) (s5.5728, s2.2836) (s6.3484, s1.1908) (s4.4073, s2.5479)
Υ2 (s6.6295, s1.1908) (s5.9726, s1.4670) (s6.3141, s1.4670) (s5.5985, s2) (s5.8224, s1.3229)
Υ3 (s5.2885, s1.8690) (s4.9355, s2.2836) (s6.6295, s1.1908) (s4.4073, s2.2962) (s3.9091, s2.5015)
Υ4 (s5.4217, s2.2166) (s6.2248, s1.3229) (s4.5895, s1.8690) (s6.1317, s1.4670) (s4.7789, s3.1959)

Example 2. This example is cited from Reference [60]. The following example is that a multinational company
is planning the strategic objectives of its financial strategy group for the next year and expanding it to other
countries. To this end, the planning department after consultation is to provide four strategic options for selection,
which is depicted as follows:

1. Υ1: Expand to Asia;
2. Υ2: Expand to African;
3. Υ3: Expand to Northern American;
4. Υ4: Expand to all three continent.

In order to evaluate the given alternatives, the company considers the following factors as the attributes of
alternatives which are shown as follows:

1. =1: Short term interests;
2. =2: Medium-term interest;
3. =3: Long-term interests;
4. =4: Strategic risk.

Table 6. Decision matrix R1 by expert Z1.

=1 =2 =3 =4

Υ1 (s6, s1) (s3, s1) (s3, s3) (s1, s6)
Υ2 (s3, s4) (s3, s4) (s2, s5) (s2, s4)
Υ3 (s1, s3) (s2, s3) (s3, s2) (s6, s1)
Υ4 (s6, s2) (s4, s3) (s5, s1) (s7, s1)

Table 7. Decision matrix R2 by expert Z2.

=1 =2 =3 =4

Υ1 (s3, s2) (s3, s1) (s3, s4) (s2, s3)
Υ2 (s5, s2) (s2, s1) (s3, s4) (s2, s5)
Υ3 (s2, s3) (s2, s3) (s1, s2) (s3, s3)
Υ4 (s5, s2) (s4, s3) (s5, s2) (s4, s1)

Table 8. Decision matrix R3 by expert Z3.

=1 =2 =3 =4

Υ1 (s3, s3) (s3, s5) (s6, s1) (s2, s6)
Υ2 (s3, s2) (s2, s4) (s2, s1) (s3, s4)
Υ3 (s6, s1) (s2, s5) (s3, s4) (s1, s3)
Υ4 (s5, s1) (s4, s4) (s6, s2) (s5, s2)
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In order to acquire the best alternative, the company invited three strategic decision experts
Z1, Z2, Z3 to provide their evaluation information for each alternative with respect to the given
attribute by the linguistic term set S̄ = {s0 = extremely poor, s1 = very poor, s2 = poor, s3 =

slightly poor, s4 = fair, s5 = slightly good, s6 = good, s7 = very good, s8 = extremely good}. Then
the LPF decision matrices R1, R2 and R3 are listed in Tables 6–8. The associated weight vector of
attributes is τ = (0.3, 0.1, 0.2, 0.4). Next, the best alternative is selected by utilizing the proposed
approach and the detailed steps are described below:

Step 1: The normalization is omitted because all attributes are considered benefit attributes.
Step 2: Utilize the LPFOWA operator to aggregate decision matrix R1 − R3, the aggregation

result is shown in Table 9.
Step 3: Utilize the LPFEWA operator or LPFEWG operator to aggregate all qij for each alternative

Υi as follows.

q1 = (s2.6532, s1.9591), q2 = (s2.7984, s2.5207), q3 = (s2.4721, s2.2021), q4 = (s5.0590, s1.6489).

Step 4: According to the score function to compute the score value of each alternative qi (i =
1, 2, 3, 4)

T (q1) = 5.7966, T (q2) = 5.7218, T (q3) = 5.7142, T (q4) = 6.5907.

Step 5: By the comparison laws defined in Definition 2, the order relation of alternative Υi (i =
1, 2, 3, 4) is obtained as follows: Υ4 � Υ1 � Υ2 � Υ3. Hence, the best alternative is Υ4.

Table 9. Decision matrix by using LPFOWG operators.

=1 =2 =3 =4

Υ1 (s3.6051, s2.1203) (s3.2221, s2.6726) (s3.6015, s2.9691) (s1.6928, s5.5123)
Υ2 (s3.4175, s2.6413) (s2.2102, s3.6176) (s2.3137, s2.6413) (s2.7965, s2.6594)
Υ3 (s2.2713, s2.6594) (s2.2102, s3.6176) (s2.3137, s2.6413) (s2.7965, s2.6594)
Υ4 (s5.2362, s1.8089) (s3.7361, s3.2754) (s5.2362, s1.8089) (s5.2015, s1.3153)

6.2. Comparative Analysis

In order to verify the validity and practicability of the developed method and to analyze its
merits in this article, we compare the proposed method with the existing approaches, including the
method based on linguistic intuitionistic fuzzy weighted average operator proposed by Chen et al. [57],
the method based on linguistic intuitionistic fuzzy Einstein weighted average (LIFEWA) operator
proposed by Garg [58] and the method based on LPF weighted average operator proposed by Garg [60].
We utilize the proposed approach to resolve the application examples in the existing methods, the final
sorting results are displayed in Table 10. From Table 10, it is apparent that the ranking results obtained
by the proposed method are same as those of the existing methods. That proves the validity of the
propounded approach in this article. In what follows, the advantages of the proposed method are
demonstrated through a detailed comparison with above-mentioned methods.

Table 10. A comparison of preference order for different approaches.

Ranking Orders Ranking Orders
in the Original Literature Based on Proposed Approach

Example in [57] Υ2 � Υ1 � Υ4 � Υ3 Υ2 � Υ1 � Υ4 � Υ3
Example in [58] Υ2 � Υ1 � Υ4 � Υ3 Υ2 � Υ1 � Υ4 � Υ3
Example in [60] Υ4 � Υ3 � Υ1 � Υ2 Υ4 � Υ3 � Υ1 � Υ2
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(1) Compared with the method based on LIFWA operator propounded by Chen et al. [57],
although the LIFWA operator can be utilized to aggregate fuzzy and uncertain information, it lakes
flexibility and robustness during the information fusion process because its operational laws are
generated by Algebraic T-norm and S-norm. Besides, the LIFN can not address several special
situations in real-life issues. For instance, if an expert provides his or her preference information in the
form of LIFN denoted as (s5, s6) with s6, s5 ∈ S , we can find that the LIFWA operator fails to resolve
situation because of 5 + 6 � 8. However, the approach based on the LPFEWA operator can overcome
the above defects. The operational rules generated by Einstein T-norm and S-norm can improve
the robustness and smoothness, the LPFS can address the special situation because of 52 + 62 ≤ 82.
Accordingly, the presented approach in this paper is more general and flexible at resolving actual
issues than LIFN.

(2) Compared with the method based on the LIFEWA operator propounded by Garg [58],
the evaluation information of the approach is in the form of LPFN. We can find that the sorting
result of alternatives in the Example is Υ2 � Υ1 � Υ4 � Υ3, which is the same as with the method in
Reference [58]. However, if the decision maker Z1 in Example 1 changes his preference information
for alternative Υ1 with respect to =1 and =2 to (s4, s5) and (s3, s7), respectively, we cannot acquire
the score values and ranking relation of the alternative by utilizing the LIFEWA operator. For this
limitation, the LPFEWA operator can efficiently overcome it and attain the final sorting of alternatives.
Hence, the LPFS can provide more freedom for the evaluator to express their assessment information
in practical problems.

(3) Compared with the method based on the LPFWA operator propounded by Garg [60],
the LPFWA operator is obtained on the basis of Algebraic T-norm and S-norm. The proposed approach
based upon the LPFEWA operator is generated through Einstein T-norm and S-norm, which has more
robustness and smoothness than Algebraic operations.

To sum up, the developed approach fully demonstrates flexibility and effectiveness by combining
LPFS and Einstein operation. It is more general than LIFS and PFS in solving practical problems.
The significant characteristics of the proposed and other existing approaches are summarized in
Table 11.

Table 11. Feature comparison for different methods.

Approaches
Whether Quantitative

Description of
Information

Whether Qualitative
Description of

Information

Describe a
Wider Range

of Information

Have Generalized
Features

The method propounded by
Xu in [17] NO NO NO NO

The method propounded by
Xia et al.in [18] NO NO NO YES

The method propounded by
Chen et al. in[57] YES YES NO YES

The method propounded by
Garg in[60] YES YES YES NO

The propounded method
in this paper YES YES YES YES

7. Conclusions

LPFS is the extension of PFS, where membership degree and nonmembership degree are indicated
by the linguistic terms to process vague information from a qualitative point of view. In this article,
we propose a multi-attribute group decision making approach for dealing with decision making
problems. To begin with, we define the novel operational laws of LPFNs by utilizing the Einstein
operation. Thereafter, we present several novel LPF Einstein averaging and geometric aggregation
operators to fuse the diverse assessment information of alternatives. Some desirable properties
of these aggregation operators are discussed in detail. Moreover, we utilize these aggregation
operators to construct a novel decision making method to tackle practical issues with LPF information.
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Two illustration examples are utilized to demonstrate the validity and practicality of the proposed
method. A comparative analysis with existing methods is carried out to display the superiorities
of the presented approach. In future research, we will further investigate the Einstein operations
in other fuzzy environments such as linguistic single-valued neutrosophic sets [64], picture 2-tuple
linguistic sets [65] and so on. Furthermore, we can apply the propounded aggregation operators
to solve practical issues, such as information fusion, knowledge management and risk evaluation.
At the same time, we will continue to consider the theory of linguistic Pythagorean fuzzy sets and its
methodologies and applications in decision support systems, big data analysis and so on.
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