
 information

Article

Rating Prediction Algorithm Based on
User Time-Sensitivity

Shulin Cheng 1,2,* and Wanyan Wang 1

1 School of Computer and Information, Anqing Normal University, Anqing 246133, China;
wy.wang0115@gmail.com

2 The University Key Laboratory of Intelligent Perception and Computing of Anhui Province, Anqing Normal
University, Anqing 246133, China

* Correspondence: tmpit@126.com; Tel.: +86-556-530-1156

Received: 1 December 2019; Accepted: 17 December 2019; Published: 20 December 2019 ����������
�������

Abstract: Rating prediction is an important technology in the personalized recommendation field.
Prediction results are influenced by many factors, such as time, and their accuracy directly affects
the quality of the recommendation. Current time-based collaborative filtering (CF) algorithms have
improved the technology of prediction accuracy to a certain extent, but they fail to differentiate the
time-sensitivity of different users, which further affects prediction accuracy. To address this issue,
we have proposed a rating prediction algorithm based on user time-sensitivity differences. First,
we analyzed and modeled the time sensitivities of users, utilized cosine distance and relative entropy
to build a judgment function, and then judged the time sensitivities of users based on a voting
strategy. Next, we applied the time-sensitivity difference to improve the traditional CF algorithm
and optimized the combination of parameters. Finally, we tested our algorithm on standard datasets.
The experimental results showed that there are many users who have different sensitivities to time.
According to these experimental results, our proposed algorithm has achieved a higher prediction
accuracy than other state-of-the-art algorithms.

Keywords: collaborative filtering; time-sensitivity detection; relative entropy; rating prediction

1. Introduction

With the penetration of information technology into every aspect of people’s personal lives and
work, users are not only disseminators of information but also producers of it. With the proliferation of
Internet information resources, it becomes more and more difficult for users to find the information they
need. Furthermore, the rate of information growth far exceeds people’s ability to process it, resulting
in information overload. The collaborative filtering (CF) algorithm is a recommendation method that
can help users quickly mine the most valuable information from the massive amount of data sources
and provide decision support for users [1–5]. The CF algorithm, proposed by Goldberg [6], is one of
the most popular recommendation algorithms. Traditional CF algorithms are generally divided into
user-based and item-based CF algorithms. The latter takes into consideration that users’ preferences
for items are somewhat similar, and essentially recommend items that are similar to users’ historical
preferences. In this study, we calculate item similarities through a user-item rating matrix and then
predict the ratings for items that users have not rated.

In general, users’ most recent ratings are more likely to reflect their preference than earlier records
or ratings, whose influence on current rating prediction results is relatively minor. For example, user
A, who was interested in youth movies one year ago, scored 5 points for High School Musical. However,
as time goes by, he grew more fascinated by sci-fi movies, and because he recently watched a number
of sci-fi movies, he scored 5 points for Avenger: Endgame. If the changes in the user’s interests and

Information 2020, 11, 4; doi:10.3390/info11010004 www.mdpi.com/journal/information

http://www.mdpi.com/journal/information
http://www.mdpi.com
https://orcid.org/0000-0002-3744-6335
http://www.mdpi.com/2078-2489/11/1/4?type=check_update&version=1
http://dx.doi.org/10.3390/info11010004
http://www.mdpi.com/journal/information

Information 2020, 11, 4 2 of 16

preferences are not taken into account when making rating predictions of new movies for user A, the
weights of these two movies in the process of item-based CF recommendation would be the same,
which fails to account for the fact that user A currently has a higher preference for sci-fi movies. As
a result, the quality of the recommendation will be low. For this reason, researchers have proposed
many time-weighted CF algorithms, some of which achieved better results than the traditional CF
algorithm [7]. However, they did not consider that different users would have different degrees of
sensitivity to time. Some users’ interests and preferences change rapidly with time, while others are
relatively stable and less affected by time. Therefore, in this study, we applied the time-sensitivity
difference to improve the traditional CF algorithm and proposed a rating prediction algorithm based
on user time-sensitivity.

2. Related Work

In recent years, many experts and academics have tried different methods to improve the CF
algorithm. Such methods primarily focused on the improvement of similarity calculating methods and
the integration of external context (such as time).

2.1. Improvement of Similarity Calculating Methods

In CF, prediction accuracy is a key issue, one that largely influences the prevalence of the
recommendation systems. Most of the existing research on CF has focused on designing recommenders
with high accuracy. Ratings are determined not only by user preferences but also by the rating habits
of users, and the traditional methods of calculating similarity ignored the influence of a rating scale. To
solve this problem, Ding et al. [8] proposed converting the user ratings into user preferences and then
compared the user preferences to obtain more appropriate similarity scores. Rong Jin et al. [9] presented
an approach of normalizing the ratings of different users to the same scale, using an optimization
algorithm to automatically compute the weight for different users [10]. While most of the user-item
rating matrices are sparse, Ahn et al. [11] proposed an improved similarity calculating method through
a heuristic approach, in which the accuracy of CF was improved even when there were few available
ratings. Jesús et al. [12] proposed a similarity calculating method based on singular points to extract
the contextual user information and calculate the singularity of each item. To increase the accuracy
of recommendation, Polatidis et al. [13] improved the CF algorithm by taking the number of items
rated jointly by users and the value of Pearson similarity as constraints and adjusted the user similarity
according to the corresponding threshold value. Tao et al. [14] divided the dimensions of items into
different types and calculated the average preference of all users for these dimensions. The authors
then used it to measure the preference sensitivity of each user for each dimension and finally applied
the dynamic feature weight to improve the traditional CF algorithm.

2.2. Integration of Time Context

Users’ interests and preferences change dynamically with the passage of time and a change in
surroundings. However, traditional CF algorithms only considered the similarity between items
and ignored the dynamic changes. In this regard, the current research has been improved in three
aspects, the first one of which is based on the time window model. For the first time, Shen et al. [15]
considered the rolling time window with the time sequence feature and presented a user-item-time 3D
dynamic model with the rolling time window. The authors proposed a dynamic CF recommendation
model and algorithm, which processed different ratings according to the time sequence. Finally, they
improved the timeliness of the algorithm. The second aspect of improvement was the introduction
of a time weight function. Ding et al. [16] proposed a time weight function that used the nonlinear
exponential forgetting function to describe the degree of information attenuation, so as to reflect
the impact of the ratings in different time periods on the recommendation results. Based on the
dynamic time sequence, Koren et al. [17] proposed a CF model for rating prediction, which modeled
the change of time over the entire data life cycle and modeled the user’s rating bias of items as a time

Information 2020, 11, 4 3 of 16

function, thereby allowing users to change their benchmark ratings. Wei et al. [18] proposed a new
algorithm by introducing an interest weight function and a popularity weight function. The algorithm
comprised item categories and dynamic time weighting and analyzed the impact of user interest and
item popularity that change dynamically with time on recommendations. Zhao et al. [19] proposed
time-drifting privacy-preserving CF (TPPCF) based on the privacy protection under the time drift when
the authors studied the protection of user privacy and improved the accuracy of rating prediction. They
fully considered the characteristics of time drift and assigned a higher weight to the latest rating when
calculating user similarities, by adding different time weights to generate relatively accurate results.
Based on the nearest neighbor method, Hu et al. [20] integrated the time information into the similarity
measurement of the traditional CF algorithm and proposed a time-aware CF algorithm to achieve
high-quality web service recommendations. The third aspect of improvement to the CF algorithm
was the introduction of a time-series model. For example, Xiao et al. [21] argued that the time-series
characteristics of user browsing behaviors were important factors in the prediction model. In this
work, the authors proposed a type of CF recommendation algorithm that considered the time-series
characteristics of user behaviors.

2.3. Time Context Application for Trust-Based Social Recommendation

In real life, users generally have a tendency to consume items recommended by their friends
rather than strangers and trust in friends plays an important role in user’s preferences. Trust between
users in social networks emerges as an essential decisive feature when designing social recommender
systems, and recommendation quality can be guaranteed based on user interpersonal interests in a
social network. To improve the accuracy of recommendation, several social-trust-based recommender
systems have recently been suggested. Meo et al. [22] proposed the PTP-MF (pairwise trust prediction
through matrix factorization) algorithm, a matrix-factorization approach to predict the intensity of
trust and distrust relations in online social networks. The PTP-MF algorithm also incorporated biases
in trustor and trustee behavior to make more accurate predictions. Liu et al. [23] presented a contextual
trust-oriented social network structure and a concept of quality of trust and proposed a new efficient
and effective approximation algorithm D-MCBA based on the Monte Carlo method and optimization
search strategies. Time information can be useful in facilitating track in the evolution of user interests
and improving recommendation accuracy [24]. In fact, interactions are not perceived the same way
over time because some interactions are more important than others when computing an opinion [25].
Taking into account the impact of time, Frikha et al. [26] proposed to integrate the temporal factor in
measuring trust between social network friends and developed a Trusted Friends’ Facebook application
to demonstrate the importance of time in users’ interactions for determining social trusted friends.
Kalaï et al. [27] proposed a level of social trust model, which is founded on novel trust metrics based
not only on the users’ interests similarity according to their semantic social profiles but also takes into
account the time factor of the users’ active interactions. The experimental results demonstrated how
their model produces satisfactory results than other computational models.

The above CF algorithms with time context did not take into account the sensitivity of users
to time and held the view that all users’ interests and preferences will change similarly with time.
However, in reality, the degree to which the interests and preferences of different users change over
time differs. Therefore, in this paper, we analyzed the differences in users’ time sensitivities and
divided users into preference-stable users and time-sensitive users, so as to enhance the accuracy of
the proposed algorithm. For the preference-stable users, we only needed to use the traditional CF
algorithm to predict their ratings. However, for time-sensitive users, it was necessary to premeditate
the change of their interests and preferences with time, and therefore we incorporated the time context
into the CF algorithm to predict their ratings.

Information 2020, 11, 4 4 of 16

3. Time-Sensitive Detection Algorithm

3.1. Item-Based CF Algorithms

The traditional item-based CF algorithm mainly consists of three phases: constructing ratings
matrix R (Table 1), computing similarity of items, and predicting ratings.

Table 1. User-item ratings matrix R.

I1 I2 I3 . . . In

U1 R11 R12 R13 . . . R1n
U2 R21 R22 R23 . . . R2n
U3 R31 R32 R33 . . . R3n
.
Um Rm1 Rm2 Rm3 . . . Rmn

Phase 1. Constructing ratings matrix R.
Where U = {U1, U2, U3, . . . , Um} identifies the user set composed of m users, I = {I1, I2, I3, . . . , In}

identifies the item set composed of n items, Rij identifies the rating of i-th user to the j-th item, and the
value of it is an integer that ranges from 1 to 5. The level of rating implies the degree of user preference
to corresponding items; the higher the rating, the more interested the user is in the item.

Phase 2. Similarity computation. There are two main approaches to compute the similarity
between two items: cosine similarity and Pearson correlation coefficient.

In cosine similarity, an item is considered as a vector in the m dimension user-space. As in [28],
the similarity between different items is measured by calculating the cosine of the angle between
different vectors:

sim(Ia, Ib) = cos(
→
a ,
→

b) =
∑m

i Ria ×Rib√∑m
i Ria2 ×

√∑m
i Rib

2
, (1)

where Ia identifies the a-th item in the item set, Ria represents the i-th user opinion on the a-th item. Ib
identifies the b-th item in the item set, and Rib represents the i-th user opinion on the b-th item.

The Pearson correlation coefficient standardizes the data and reduces the impact of user differences
on ratings [29]. The similarity between different items is measured as follows:

sim(Ia, Ib) =

∑m
i (Ria −Ri) × (Rib −Ri)√∑m

i (Ria −Ri)
2
×

√∑m
i (Rib −Ri)

2
, (2)

where Ri is the average of the i-th user’s rating.
Phase 3. Rating prediction. In this phase, the prediction of the rating for the given items can be

computed by applying the sum of the ratings of the user to items weighted by the similarity between
different items as follows:

Ri j =

k∑
c=1

Ri j × sim(I j, Ic)

k∑
c=1

sim(I j, Ic)

, (3)

where Ij identifies the j-th item, Ic identifies the nearest neighbors of it, Rij represents the i-th user’s
opinion on the j-th item, and Ric represents its opinion on the nearest neighbors.

3.2. Time-Sensitive Detection Algorithm

The key to the item-based CF recommendation algorithm is that it calculates similarities between
items, which are based on the user’s preference for items, that is, ratings. Some users’ interests and

Information 2020, 11, 4 5 of 16

preferences change dynamically with time and surroundings, which would lead to the change of
ratings, and thus affect the accuracy of the CF recommendation algorithm. To solve this problem, we
proposed a rating prediction algorithm based on users’ time-sensitive detection.

3.2.1. Time-Sensitive Detection

As shown in Table 2, each rating given by the user has a corresponding timestamp. Therefore, we
can construct the timestamp matrix T according to the rating matrix R.

Table 2. User-item timestamp matrix T.

I1 I2 I3 . . . In

U1 T11 T12 T13 . . . T1n
U2 T21 T22 T23 . . . T2n
U3 T31 T32 T33 . . . T3n
.
Um Tm1 Tm2 Tm3 . . . Tmn

Of these values, Tij indicates the timestamp that the i-th user rated the j-th item, and 0 indicates
that the user did not rate the corresponding item. We then ranked the timestamps in descending order,
divided the non-zero timestamps into K time windows, and calculated the prior probability of item
types within each time window. For example, Pa

T1
indicates the prior probability of type a within

time window T1; similarly, Pb
T1

indicates the prior probability of type b within T1. In our experiments,
we randomly selected a time-sensitive user i from the 100K MovieLens dataset and computed the
probability distribution of different types that the user watched in five time windows. As shown in
Figures 1–5, the x-axis represents the types of movies (there are 19 types of movies in the dataset), and
the y-axis represents the prior probability of each type in the time window, where its value ranges from
0 to 1.

Information 2020, 11, x FOR PEER REVIEW 5 of 17

3.2. Time-Sensitive Detection Algorithm

The key to the item-based CF recommendation algorithm is that it calculates similarities
between items, which are based on the user’s preference for items, that is, ratings. Some users’
interests and preferences change dynamically with time and surroundings, which would lead to the
change of ratings, and thus affect the accuracy of the CF recommendation algorithm. To solve this
problem, we proposed a rating prediction algorithm based on users’ time-sensitive detection.

3.2.1. Time-Sensitive Detection

As shown in Table 2, each rating given by the user has a corresponding timestamp. Therefore,
we can construct the timestamp matrix T according to the rating matrix R.

Table 2. User-item timestamp matrix T.

 I1 I2 I3 … In

U1 T11 T12 T13 … T1n

U2 T21 T22 T23 … T2n

U3 T31 T32 T33 … T3n

… … … … … …

Um Tm1 Tm2 Tm3 … Tmn

Of these values, Tij indicates the timestamp that the i-th user rated the j-th item, and 0 indicates
that the user did not rate the corresponding item. We then ranked the timestamps in descending
order, divided the non-zero timestamps into K time windows, and calculated the prior probability
of item types within each time window. For example,

1

a
TP indicates the prior probability of type a

within time window T1; similarly,
1

b
TP indicates the prior probability of type b within T1. In our

experiments, we randomly selected a time-sensitive user i from the 100K MovieLens dataset and
computed the probability distribution of different types that the user watched in five time
windows. As shown in Figures 1–5, the x-axis represents the types of movies (there are 19 types of
movies in the dataset), and the y-axis represents the prior probability of each type in the time
window, where its value ranges from 0 to 1.

Figure 1. The probability distribution of user i in T1. Figure 1. The probability distribution of user i in T1.

Information 2020, 11, 4 6 of 16Information 2020, 11, x FOR PEER REVIEW 6 of 17

Figure 2. The probability distribution of user i in T2.

Figure 3. The probability distribution of user i in T3.

Figure 4. The probability distribution of user i in T4.

Figure 2. The probability distribution of user i in T2.

Information 2020, 11, x FOR PEER REVIEW 6 of 17

Figure 2. The probability distribution of user i in T2.

Figure 3. The probability distribution of user i in T3.

Figure 4. The probability distribution of user i in T4.

Figure 3. The probability distribution of user i in T3.

Information 2020, 11, x FOR PEER REVIEW 6 of 17

Figure 2. The probability distribution of user i in T2.

Figure 3. The probability distribution of user i in T3.

Figure 4. The probability distribution of user i in T4. Figure 4. The probability distribution of user i in T4.

Information 2020, 11, 4 7 of 16Information 2020, 11, x FOR PEER REVIEW 7 of 17

Figure 5. The probability distribution of user i in T5.

From Figures 1–5, we can see that there are obvious differences in the probability distributions
within five time windows (T1 represents the timestamp closest to the current time, T2 represents the
next closest, and so on). Therefore, we planned to use cosine distance and relative entropy to
analyze the difference of probability distribution and utilized a voting strategy to judge whether the
user’s interests and preferences had changed significantly.

1) Cosine Distance

In geometry, the cosine is used to measure the difference between two vector directions. As
shown in Equation (4), in machine learning this concept is used to measure the difference between
sample vectors, and the probability distribution of item types within different time windows can be
regarded as sample vectors:

2 2

2 2

(,) 1 cos(,) a

a b a b

a b b

a b

T T T T
D T T T T

T T
− ∗

= − = , (4)

here, Ta and Tb respectively identify the probability distribution of item types within two time
windows a and b and (,)a bD T T represents the cosine distance of them. Table 3 shows the cosine
distance matrix, which represents the cosine distance of the probability distribution of item types
within different time windows.

Table 3. Cosine distance matrix of item type distribution.

 T1 T2 … Tk

T1 D(T1,T1) D(T1,T2) … D(T1,Tk)

T2 D(T2,T1) D(T2,T2) … D(T2,Tk)

… … … … …

Tk-1 D(Tk-1,T1) D(Tk-1,T2) … D(Tk-1,Tk)

Tk D(Tk,T1) D(Tk,T2) … D(Tk,Tk)

2) Relative Entropy

In probability theory and information theory, relative entropy is often used to describe the
difference between two probability distributions. If P(x), Q(x) are the probability distribution of
item types within different time windows, then the calculation formula of relative entropy can be
expressed as follows:

Figure 5. The probability distribution of user i in T5.

From Figures 1–5, we can see that there are obvious differences in the probability distributions
within five time windows (T1 represents the timestamp closest to the current time, T2 represents the
next closest, and so on). Therefore, we planned to use cosine distance and relative entropy to analyze
the difference of probability distribution and utilized a voting strategy to judge whether the user’s
interests and preferences had changed significantly.

(1) Cosine Distance

In geometry, the cosine is used to measure the difference between two vector directions. As shown
in Equation (4), in machine learning this concept is used to measure the difference between sample
vectors, and the probability distribution of item types within different time windows can be regarded
as sample vectors:

D(Ta, Tb) = 1− cos(Ta, Tb) =
‖Ta‖2‖Tb‖2 − Ta ∗ Tb

‖Ta‖2‖Tb‖2
, (4)

here, Ta and Tb respectively identify the probability distribution of item types within two time windows
a and b and D(Ta, Tb) represents the cosine distance of them. Table 3 shows the cosine distance matrix,
which represents the cosine distance of the probability distribution of item types within different
time windows.

Table 3. Cosine distance matrix of item type distribution.

T1 T2 . . . Tk

T1 D(T1,T1) D(T1,T2) . . . D(T1,Tk)
T2 D(T2,T1) D(T2,T2) . . . D(T2,Tk)
.

Tk−1 D(Tk−1,T1) D(Tk−1,T2) . . . D(Tk−1,Tk)
Tk D(Tk,T1) D(Tk,T2) . . . D(Tk,Tk)

(2) Relative Entropy

In probability theory and information theory, relative entropy is often used to describe the
difference between two probability distributions. If P(x), Q(x) are the probability distribution of item
types within different time windows, then the calculation formula of relative entropy can be expressed
as follows:

KL(P‖Q) =
∑

P(x) log
P(x)
Q(x)

. (5)

Relative entropy is a type of asymmetric measure. In general, KL(P‖Q) and KL(Q‖P) are not
equal, that is to say, they are asymmetric, which cannot be directly applied to distance measurements.

Information 2020, 11, 4 8 of 16

Therefore, as shown in (6), we used the average value of two-way relative entropy to construct a
distance calculation formula based on relative entropy:

KL(P, Q) =
KL(P‖Q) + KL(Q‖P)

2
. (6)

Table 4 is the relative entropy matrix, which represents the relative entropy of the probability
distribution of item types within different time windows.

Table 4. The relative entropy matrix of the item type distribution.

T1 T2 . . . Tk

T1 KL(T1,T1) KL(T1,T2) . . . KL(T1,Tk)
T2 KL(T2,T1) KL(T2,T2) . . . KL(T2,Tk)
.

Tk−1 KL(Tk−1,T1) KL(Tk−1,T2) . . . KL(Tk−1,Tk)
Tk KL(Tk,T1) KL(Tk,T2) . . . KL(Tk,Tk)

Using cosine distance as an example, and based on voting strategy, the voting method is used to
judge the users’ time sensitivities. First, we constructed (7) to calculate the threshold:

θ =

m∑
i=1

(D(Ta, Tb)max + D(Ta, Tb)min)

2m
, (7)

where D(Ta, Tb) represents the maximum value in any user’s cosine distance matrix, while D(Ta, Tb)min
represents the minimum value, and m represents the number of users. Then we judged the user’s
time-sensitivity according to the indicator function, as shown in Equation (8):

Su = f (λ) =

0, λ < 1

1, λ ≥ 1
, (8)

here

λ =
N+
θ

N −N+
θ

, (9)

where N represents the number of all elements in the distance matrix and N+
θ

represents the number of
D(Ta, Tb) ≥ θ. When N+

θ
is the majority, that is, λ ≥ 1, we considered the user to be a time-sensitive

user, which is marked as Su = 1. However, if we took the user to be preference stable, it is marked
as Su = 0. The method of calculating threshold and judging time-sensitivity with relative entropy is
similar to this and need not be discussed in detail.

3.2.2. Time Function

The above analysis shows that the interests and preferences of time-sensitive users always change
dynamically with time, and the closer to the current timestamp, the better the rating can reflect their
current interests and preferences.

Information 2020, 11, 4 9 of 16

The German psychologist Hermann Ebbinghaus, a pioneer in the study of memory, put forward
the Ebbinghaus forgetting curve, which indicates that people begin to forget knowledge after they
learn it, that the amount of knowledge that they can remember gradually decreases, and the forgetting
speed changes nonlinearly from fast to slow. Compared with the interest and preference change law of
time-sensitive users, the user’s interest decay law and forgetting curve law show some similarities.
Therefore, we simulated the attenuation rule of user interest by time weighting, that is, giving different
weights to the ratings. The corresponding time function is shown in Equation (10):

w(u, i, t) = e
tmax−tui

T0 , (10)

where tui indicates the timestamp of the rating that rated by the u-th user to the i-th item, w (u, i, t)
indicates the weight of it, and tmax indicates the timestamp of the u-th user’s latest rating. T0 is a
half-life parameter, indicates the weight reduction by one-half in T0 days. Therefore, we proposed a
time-weighted method for rating prediction, as shown in Equation (11):

Ri j =

k∑
c=1

Ri j × sim(I j, Ic) × f (Su)

k∑
c=1

sim(I j, Ic) × f (Su)

(11)

and

f (Su) =

{
w(u, i, t) Su = 1
1 Su = 0

. (12)

From Equation (12), it can be seen that for preference-stable users, the rating prediction result is
the same as that of the traditional CF algorithm, and for time-sensitive users, the smaller the distance
between the rating timestamp and the current timestamp, the greater the impact on the prediction
result and vice versa. This is consistent with the previous analysis.

4. Algorithm Design

4.1. Time-Sensitive Detection Algorithm

Our time-sensitive detection algorithm consists of two parts: one to detect the user’s
time-sensitivity, and the other to integrate the time context into the traditional CF algorithm.

(1) User time-sensitivity detection

First, we calculated the cosine distance matrix and the relative entropy matrix of probability
distributions of item types within different time windows according to Equations (4) and (6), calculated
the value of threshold through the given Equation (7), and then utilized Equation (8) to judge the
time-sensitivity of users.

(2) CF algorithm with time context

According to the above analysis, the interests and preferences of time-sensitive users would
change significantly with the passage of time. For our proposed algorithm, we first calculated the
attenuation of users’ interests with Equation (10), then predicted the ratings with Equation (11). The
proposed algorithm is shown in Algorithm 1:

Information 2020, 11, 4 10 of 16

Algorithm 1. Rating Prediction Algorithm Based on User Time-Sensitivity

Input: the ratings matrix R; the number of time windows, K; the number of neighbors, N; the half-life
parameter, T0.
Output: predicted rating,

_
r ui.

1: Initialization, and structure timestamp matrix T.
2: for u = 1, . . . , m do
3: for i = 1, . . . , n do
4: Calculating the similarity between items according to Equations (1) and (2).
5: End for
6: Ranking timestamps in descending order and dividing time windows.
7: for k = 1, . . . , K do
8: Calculating item types probability distribution.
9: Calculating cosine distance matrix according to Equation (4).
10: Calculating the relative entropy matrix according to Equations (5) and (6).
11: Judging the user’s sensitivity according to Equations (7)–(9).
12: End for
13: Predicting the rating

_
r ui according to Equations (10)–(12).

14: End for

4.2. Parameters Learning Algorithm

In the proposed algorithm, the number of time windows is K, the half-life parameter is T0 and
the number of neighbors is N. Because all three variables have a big impact on rating prediction, it
is necessary to find their appropriate values to obtain the optimal prediction results. Nevertheless,
because the consumption behavior of individual users is different and the number of historical records
of each user is limited, which leads to serious data sparsity, it is difficult to learn the optimal parameters
of individual users. Thus, we took the overall perspective into consideration and learned the global
optimal parameters that are suitable for specific datasets. If a set of optimal parameters are found, the
difference between predicted ratings and actual ratings will be minimal. Therefore, according to the
principle of mean absolute error (MAE), we constructed the following function:

f (K, N, T0) = argminMAE

s.t.

K ∈ {i|i = 2, 4, . . . , 10}
N ∈

{
j
∣∣∣ j = 1, 2, . . . , 20

}
T0 ∈ {k|k = 7, 30, . . . , 360}

(13)

and

MAE =

N′∑
i=1

∣∣∣∣rui −
_
r ui

∣∣∣∣
N′

, (14)

where N’ represents the number of predicted ratings, rui represents the actual ratings of the users,
and

_
r ui represents predicted ratings. Based on the observations of our previous experiments, there

should be at least two time windows and at most 10 time windows, at most 20 neighbors of items (user
consumption records display a long tail phenomenon, if the number of near neighbors is set too large,
the noise will be too large), and the half-life parameter T0 should be set to at most 365 days (based on
empirical evidence, the time span of users’ interests and preferences change is about one year, so the
half-life parameter is set at 7 days to nearly 1 year). The parameters learning algorithm is as shown in
Algorithm 2:

Information 2020, 11, 4 11 of 16

Algorithm 2. Parameters Learning Algorithm

Input: the ratings matrix R; training set of users, U’.
Output: the number of optimal time windows, fK; the number of optimal neighbors, fN ; the optimal half-life,
fT0 .
1: Initialization, K = 2, N = 1, T0 = 7, fk = fN = fT0 = 1, fmin = 10, MAE = 0
2: while K ≤ 10
3: while N ≤ 20
4: while T0 ≤ 360
5: For each Ui in U’
6: Call TSDCF(R, K, N, T0)//i.e., call Algorithm 1.
7: Get Prediction Rating
8: End for
9: Calculating MAE
10: If fmin > MAE then
11: Update fmin, fK = K, fT0 = T0

12: END if
13: T0++

14: End while
15: N++

16: End while
17: K++

18: End while
19: Return fK, fN , fT0

20: END

5. Experiments

5.1. Experiment Design

For this project, we performed experiments on the 100 K MovieLens dataset, which is available
from the MovieLens website. It contains 100,000 ratings from 943 users on 1682 movies (each user has
at least 20 rating records), and it also contains the rating information, timestamp information and item
type attribute information needed by our algorithm. We took the items that were rated by each user at
the last time as target items, and then predicted the ratings of them through the proposed algorithm.

In this study, we adopted the most popular metric, mean absolute error (MAE), to evaluate the
prediction accuracy of our proposed methods. MAE represents the error between the predicted ratings
and the real ratings. A smaller MAE indicates better prediction accuracy [29].

5.2. Experiment (1): The Validity of the Proposed Algorithm

To verify the effectiveness of the proposed algorithm, we compared the time-sensitivity detection
CF algorithm (TSDCF) with the traditional CF and the time-weighted CF algorithm (TWCF), which
did not take into consideration the difference in users’ time sensitivities. In our experiment, we made
K = 5, and T0 equal to 7 (one week), 30 (one month), 90 (one quarter), 183 (half a year) and 365 (one
year), respectively. In the case of the different number of neighbors (N is 5, 10, 15 and 20, respectively),
the experimental results with the changes in T0 are shown in Figures 6–9.

TSDCF-COS represents the result of the proposed algorithm with cosine distance, while TSDCF-KL
represents the result with relative entropy. From Figures 6–9, we can see that with different numbers of
neighbors, the MAEs of the three algorithms that took into consideration the influence of time context
are lower than those of the traditional CF algorithm. Moreover, the results of the proposed algorithm
are better than the TWCF algorithm, which does not take into consideration the time-sensitivity of users.
When the values of N and T0 are the same, the prediction error of using relative entropy to measure
users’ time sensitivities is slightly smaller than that of using cosine distance. In other words, with the

Information 2020, 11, 4 12 of 16

same parameters, the MAE of TSDCF-KL is generally smaller than that of TSDCF-COS. Accordingly, it
can be taken that TSDCF-KL is superior to TSDCF-COS. In addition, the MAE will increase with the
increase of N, which may be caused by the low similarity between items when N exceeds a certain
value or put another way if the number of neighbors is too large, the similarity noise will increase.Information 2020, 11, x FOR PEER REVIEW 12 of 17

Figure 6. Comparison of algorithms when N = 5.

Figure 7. Comparison of algorithms when N = 10.

Figure 6. Comparison of algorithms when N = 5.

Information 2020, 11, x FOR PEER REVIEW 12 of 17

Figure 6. Comparison of algorithms when N = 5.

Figure 7. Comparison of algorithms when N = 10. Figure 7. Comparison of algorithms when N = 10.

Information 2020, 11, 4 13 of 16
Information 2020, 11, x FOR PEER REVIEW 13 of 17

Figure 8. Comparison of algorithms when N = 15.

Figure 9. Comparison of algorithms when N = 20.

TSDCF-COS represents the result of the proposed algorithm with cosine distance, while
TSDCF-KL represents the result with relative entropy. From Figures 6–9, we can see that with
different numbers of neighbors, the MAEs of the three algorithms that took into consideration the
influence of time context are lower than those of the traditional CF algorithm. Moreover, the results
of the proposed algorithm are better than the TWCF algorithm, which does not take into
consideration the time-sensitivity of users. When the values of N and T0 are the same, the prediction

Figure 8. Comparison of algorithms when N = 15.

Information 2020, 11, x FOR PEER REVIEW 13 of 17

Figure 8. Comparison of algorithms when N = 15.

Figure 9. Comparison of algorithms when N = 20.

TSDCF-COS represents the result of the proposed algorithm with cosine distance, while
TSDCF-KL represents the result with relative entropy. From Figures 6–9, we can see that with
different numbers of neighbors, the MAEs of the three algorithms that took into consideration the
influence of time context are lower than those of the traditional CF algorithm. Moreover, the results
of the proposed algorithm are better than the TWCF algorithm, which does not take into
consideration the time-sensitivity of users. When the values of N and T0 are the same, the prediction

Figure 9. Comparison of algorithms when N = 20.

5.3. Experiment (2): Parameters Learning Experiments

In Experiment (1), we saw that the algorithm proposed in this paper is better than both the
traditional CF algorithm and the time-weighted CF algorithm that did not take the user’s time-sensitivity
into consideration. In our experiment, the values of K, T0, and N have a certain influence on rating
prediction. Table 5 displays the results of MAE with different parameters, in which the value of K is

Information 2020, 11, 4 14 of 16

respectively 3, 5, and 7, the value of T0 is, respectively, 7 (one week), 30 (one month), 90 (one-quarter),
183 (half a year), and 365 (one year), and the value of N is, respectively, 5, 10, 15, and 20.

Table 5. Mean absolute error (MAE) with different parameters.

K T0 N = 5 N = 10 N = 15 N = 20

3

7 0.7745 0.8090 0.8212 0.8398
30 0.7750 0.8063 0.8199 0.8392
90 0.7743 0.8056 0.8190 0.8396

183 0.7748 0.8055 0.8197 0.8402
365 0.7752 0.8056 0.8201 0.8406

5

7 0.7883 0.8131 0.8318 0.8440
30 0.7865 0.8102 0.8271 0.8401
90 0.7849 0.8072 0.8248 0.8388

183 0.7845 0.8065 0.8246 0.8388
365 0.7844 0.8062 0.8246 0.8389

7

7 0.7939 0.8158 0.8346 0.8499
30 0.7938 0.8162 0.8326 0.8471
90 0.7942 0.8158 0.8324 0.8465

183 0.7944 0.8161 0.8325 0.8467
365 0.7944 0.8163 0.8325 0.8467

From Table 5, it can be seen that with different parameter combinations, the value of MAE is
changing constantly. It is necessary to find the optimal parameter combinations with the minimum
MAE. Therefore, we further optimized the proposed algorithm and carried out parameters learning
experiments to obtain the optimal predictions. When T0 takes different values and MAE is the
minimum, the optimal K, N, and corresponding MAE will be as shown in Table 6.

Table 6. Optimal experiment results with different T0.

T0 K N MAE

7 3 5 0.7745
30 4 5 0.7714
90 4 5 0.7701
183 4 5 0.7739
365 4 5 0.7698

Bold figure: The minimum value of MAE.

From Table 6, we can see that when the half-life T0 = 365 (one year), the MAE receives the
minimum value of 0.7698and the corresponding K = 4, N = 5. That is to say, when the number of time
windows is 4 and the number of neighbors is 5, the minimum error of the proposed algorithm is 0.7698,
which is 14.6% lower than the value of the traditional CF algorithm (0.9015). That is to say, most users’
interests and preferences have changed after one year, at this time, the most suitable value of time
windows is 4, and the best number of neighbors is 5.

6. Conclusions and Future Research

Our work leveraged the traditional CF algorithm but took the influence of time context into
consideration. The differences in users’ time sensitivities were analyzed, and based on that, we
proposed a rating prediction algorithm. The proposed algorithm improved the accuracy of the
prediction results. To differentiate and quantify the time sensitivities of different users, we designed a
model of user time-sensitivity based on the rating timestamp matrix used to improve the traditional
item-based CF algorithms. Furthermore, a parameter learning algorithm was proposed to find the
optimal combination of parameters. We verified the effectiveness of the proposed algorithm and
obtained the optimal combination of parameters through many experiments on the standard dataset.

Information 2020, 11, 4 15 of 16

In the future, we will use more real datasets to test our algorithm in different fields and attempt to
incorporate online testing and application. At the same time, we will further study a strategy, which
can automatically select an effective range of values according to different datasets. For example,
considering the sparsity of the dataset, the size of time windows for all users was set to the same in
this algorithm. However, because, in fact, there are still differences between users, it will be necessary
to study the appropriate size of time windows for different users.

Author Contributions: Conceptualization, S.C.; methodology, S.C.; software, W.W.; validation, W.W.; formal
analysis, W.W.; investigation, W.W.; resources, S.C.; data curation, W.W.; writing—original draft preparation, W.W.;
writing—review and editing, S.C.; visualization, W.W.; supervision, S.C.; project administration, S.C.; funding
acquisition, S.C. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Natural Science Research Foundation of the Education, Department of
Anhui Province of China, Grant Number KJ2018A0382; the Outstanding Young Talents Program of Anhui Province,
Grant Number gxyqZD2018060; and the Program for Innovative Research Team in Anqing Normal University.

Acknowledgments: The authors also thank the anonymous reviewers for their valuable comments and suggestions.
We thank LetPub (www.letpub.com) for its linguistic assistance during the preparation of this manuscript.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Herlocker, J.L.; Konstan, J.A.; Terveen, L.G. Evaluating CF recommender systems. ACM Trans. Inf. Syst.
2004, 22, 5–53. [CrossRef]

2. Zhang, J.; Lin, Z.; Xiao, B.; Zhang, C. An optimized item-based collaborative filtering recommendation
algorithm. In Proceedings of the 2009 IEEE International Conference on Network Infrastructure and Digital
Content, Beijing, China, 6–8 November 2009; pp. 414–418.

3. Wang, X.D.; Sang, J. A Collaborative Filtering Recommendation Algorithm with Time-Adjusting Based on
Cloud Model. Comput. Eng. Sci. 2012, 34, 160–163.

4. Ma, X.; Wang, C.; Yu, Q.; Li, X.; Zhou, X. An FPGA-based accelerator for neighborhood-based collaborative
filtering recommendation algorithms. In Proceedings of the2015 IEEE International Conference on Cluster
Computing, Washington, DC, USA, 14–17 November 2015; pp. 494–495.

5. Bobadilla, J.S.; Ortega, F.; Hernando, A.; Bernal, J. A collaborative filtering approach to mitigate the new user
cold start problem. Knowl.-Based Syst. 2012, 26, 225–238. [CrossRef]

6. Goldberg, D.; Nichols, D.; Oki, B.M.; Terry, D. Using collaborative filtering to weave an information tapestry.
Commun. ACM 1992, 35, 61–71. [CrossRef]

7. Cheng, S.; Liu, Y. Time-aware and grey incidence theory based user interest modeling for document
recommendation. Cybern. Inf. Technol. 2015, 15, 36–52. [CrossRef]

8. Ding, Y.; Li, X.; Orlowska, M.E. Recency-based collaborative filtering. In Proceedings of the 17th Australasian
Database Conference, Hobart, Australia, 16–19 January 2006; Australian Computer Society, Inc.: Darlinghurst,
Australia, 2006; Volume 49, pp. 99–107.

9. Jin, R.; Si, L. A study of methods for normalizing user ratings in collaborative filtering. In Proceedings of the
27th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval,
Sheffield, UK, 25–29 July 2004; pp. 568–569.

10. Jin, R.; Chai, J.Y.; Si, L. An automatic weighting scheme for collaborative filtering. In Proceedings of the
27th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval,
Sheffield, UK, 25–29 July 2004; pp. 337–344.

11. Ahn, H.J. A new similarity measure for collaborative filtering to alleviate the new user cold-starting problem.
Inf. Sci. 2008, 178, 37–51. [CrossRef]

12. Bobadilla, J.; Ortega, F.; Hernando, A. A collaborative filtering similarity measure based on singularities.
Inf. Process. Manag. 2012, 48, 204–217. [CrossRef]

13. Polatidis, N.; Georgiadis, C.K. A dynamic multi-level collaborative filtering method for improved
recommendations. Comput. Stand. Interfaces 2017, 51, 14–21. [CrossRef]

14. Tao, L.; Cao, J.; Liu, F. Dynamic feature weighting based on user preference sensitivity for recommender
systems. Knowl.-Based Syst. 2018, 149, 61–75. [CrossRef]

www.letpub.com
http://dx.doi.org/10.1145/963770.963772
http://dx.doi.org/10.1016/j.knosys.2011.07.021
http://dx.doi.org/10.1145/138859.138867
http://dx.doi.org/10.1515/cait-2015-0027
http://dx.doi.org/10.1016/j.ins.2007.07.024
http://dx.doi.org/10.1016/j.ipm.2011.03.007
http://dx.doi.org/10.1016/j.csi.2016.10.014
http://dx.doi.org/10.1016/j.knosys.2018.02.019

Information 2020, 11, 4 16 of 16

15. Yu-pu, S.J.Y. Dynamic Collaborative Filtering Recommender Model Based on Rolling Time Windows and its
Algorithm. Comput. Sci. 2013, 40, 206–209.

16. Ding, Y.; Li, X. Time weight collaborative filtering. In Proceedings of the 14th ACM International Conference
on Information and Knowledge Management, Bremen, Germany, 31 October–5 November 2005; pp. 485–492.

17. Koren, Y. Collaborative filtering with temporal dynamics. In Proceedings of the 15th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, Paris, France, 28 June–1 July 2009; pp. 447–456.

18. Wei, S.; Ye, N.; Yang, X. Collaborative Filtering Algorithm Combining Item Category and Dynamic Time
Weighting. Comput. Eng. 2014, 6, 45.

19. Zhao, F.; Xiong, Y.; Liang, X.; Gong, X.; Lu, Q. Privacy-preserving collaborative filtering based on time-drifting
characteristic. Chin. J. Electron. 2016, 25, 20–25. [CrossRef]

20. Hu, Y.; Peng, Q.; Hu, X. A time-aware and data sparsity tolerant approach for web service recommendation.
In Proceedings of the 2014 IEEE International Conference on Web Services, Anchorage, AK, USA, 27 June–2
July 2014; pp. 33–40.

21. Xiao, Y.; Ai, P.; Hsu, C.H.; Wang, H.; Jiao, X. Time-ordered collaborative filtering for news recommendation.
China Commun. 2015, 12, 53–62. [CrossRef]

22. Meo, P.D. Trust Prediction via Matrix Factorisation. ACM Trans. Internet Technol. 2019, 19, 44. [CrossRef]
23. Liu, G.; Liu, A.; Wang, Y.; Li, L. An efficient multiple trust paths finding algorithm for trustworthy service

provider selection in real-time online social network environments. In Proceedings of the 2014 IEEE
International Conference on Web Services, Anchorage, AK, USA, 27 June–2 July 2014; pp. 121–128.

24. Campos, P.G.; Díez, F.; Cantador, I. Time-aware recommender systems: A comprehensive survey and analysis
of existing evaluation protocols. User Model. User-Adapt. Interact. 2014, 24, 67–119. [CrossRef]

25. Haydar, C.; Boyer, A.; Roussanaly, A. Time-aware trust model for recommender systems. In Proceedings of
the International Symposium on Web AlGorithms, Deauville, France, 2–4 June 2015.

26. Frikha, M.; Mhiri, M.; Zarai, M.; Gargouri, F. Time-sensitive trust calculation between social network friends
for personalized recommendation. In Proceedings of the 18th Annual International Conference on Electronic
Commerce: E-Commerce in Smart Connected World, New York, NY, USA, 17–19 August 2016; p. 36.

27. Kalaï, A.; Wafa, A.; Zayani, C.A.; Amous, I. LoTrust: A social Trust Level model based on time-aware social
interactions and interests similarity. In Proceedings of the 2016 14th Annual Conference on Privacy, Security
and Trust (PST), Auckland, New Zealand, 12–14 December 2016; IEEE: West Lafayette, IN, USA, 2016;
pp. 428–436.

28. Karahodza, B.; Supic, H.; Donko, D. An Approach to design of time-aware recommender system based
on changes in group user’s preferences. In Proceedings of the 2014 X International Symposium on
Telecommunications (BIHTEL), Sarajevo, Bosnia and Herzegovina, 27–29 October 2014; IEEE: West Lafayette,
IN, USA, 2014; pp. 1–4.

29. Li, K.; Zhou, X.; Lin, F.; Zeng, W.; Wang, B.; Alterovitz, G. Sparse online collaborative filtering with dynamic
regularization. Inf. Sci. 2019, 505, 535–548. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1049/cje.2016.01.004
http://dx.doi.org/10.1109/CC.2015.7385528
http://dx.doi.org/10.1145/3323163
http://dx.doi.org/10.1007/s11257-012-9136-x
http://dx.doi.org/10.1016/j.ins.2019.07.093
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Improvement of Similarity Calculating Methods
	Integration of Time Context
	Time Context Application for Trust-Based Social Recommendation

	Time-Sensitive Detection Algorithm
	Item-Based CF Algorithms
	Time-Sensitive Detection Algorithm
	Time-Sensitive Detection
	Time Function

	Algorithm Design
	Time-Sensitive Detection Algorithm
	Parameters Learning Algorithm

	Experiments
	Experiment Design
	Experiment (1): The Validity of the Proposed Algorithm
	Experiment (2): Parameters Learning Experiments

	Conclusions and Future Research
	References

