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Abstract: Sustainable development is crucial to humanity. Utilization of primary socio-
environmental data for analysis is essential for informing decision making by policy makers about 
sustainability in development. Artificial intelligence (AI)-based approaches are useful for analyzing 
data. However, it was not easy for people who are not trained in computer science to use AI. The 
significance and novelty of this paper is that it shows how the use of AI can be democratized via a 
user-friendly human-centric probabilistic reasoning approach. Using this approach, analysts who 
are not computer scientists can also use AI to analyze sustainability-related EPI data. Further, this 
human-centric probabilistic reasoning approach can also be used as cognitive scaffolding to educe 
AI-Thinking in the analysts to ask more questions and provide decision making support to inform 
policy making in sustainable development. This paper uses the 2018 Environmental Performance 
Index (EPI) data from 180 countries which includes performance indicators covering environmental 
health and ecosystem vitality. AI-based predictive modeling techniques are applied on 2018 EPI 
data to reveal the hidden tensions between the two fundamental dimensions of sustainable 
development: (1) environmental health; which improves with economic growth and increasing 
affluence; and (2) ecosystem vitality, which worsens due to industrialization and urbanization.  

Keywords: artificial intelligence; decision making support; sustainability; environmental 
performance index; Bayesian; predictive modeling; human-centric; human-in-the-loop; AI-
Thinking; explainable-AI; AI for good 

 

1. Introduction 

1.1. Gaining Insights from Unified Analysis of Data Related to the Environmental Performance Index (EPI) 
and the Sustainable Development Goals Index (SDGI) 

1.1.1. Environmental Performance Index (EPI) 

The world has partaken in a period of data-driven environmental policymaking. In this new era, 
stakeholders and policymakers are interested in utilizing evidence-based findings to support 
decision-making as environmental policy shifted away from its unsteady origins by the end of the 
20th century. The Environmental Performance Index (EPI) was developed and eventually recognized 
as the index of sustainability metric in response to these needs. The EPI was developed by researchers 
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and policy experts at the Yale Centre for Environmental Law and Policy (Yale University) and 
Columbia University’s Centre for International Earth Science Information Network (CIESIN) in 
collaboration with the World Economic Forum [1]. According to the official methodology of EPI, it 
provides a global view on the environmental performance of 180 countries on 24 performance 
indicators across ten issue categories covering environmental health and ecosystem vitality. 
Countries are scored on a scale of 0–100. Countries with long-standing commitments towards 
preserving natural resources, protecting public health and decoupling greenhouse gas (GHG) 
emissions from economic activity will exhibit high scores. On the other hand, countries with low EPI 
scores suggest the need for national sustainability efforts, especially in the protection of biodiversity, 
cleaning up air quality and reducing GHG emissions [2]. It is noteworthy that good governance 
emerges as the critical factor required to balance these distinct dimensions of sustainability. The EPI 
draws attention to the issues on which policymakers must take further action. These metrics thus 
give insights on best practices of well-performing countries and provide guidance for countries that 
aspire to be leaders in sustainability. 

1.1.2. Sustainable Development Goals Index (SDGI) 

A good EPI score [1] is a major contributor for a country to achieve the goals of United Nations’ 
Sustainable Development Goals (SDG) [2]. Progressively, governments are asked to justify their 
performance on sustainability management and pollution control with reference to EPI metrics in 
conjunction with the Sustainable Development Goals Index (SDGI). The SDGI illustrates this 
commitment, fixing metrics at the heart of the policy process in setting international targets and 
tracking progress toward SDG. Through rigorous data analytics, the EPI metrics in conjunction with 
SDGI, serve as a data-driven and empirical approach to environmental protection. These metrics 
allow policymakers to track trends, identify best practices, highlight policy successes and failures, 
and optimize the gains from investments in environmental protection. The SDGI and Dashboard 
Report is the first worldwide study to assess their positions to reach countries’ SDGs. The SDGI and 
Dashboard Report, prepared annually by Bertelsmann Stiftung and the Sustainable Development 
Solutions Network (SDSN), covered 156 countries’ current positions in terms of the 17 sustainability 
target items and provides indication from the ecological point of view, on the issues to be prioritized 
in the SDGs targets expected to be realized by 2030. Most of the data is furnished by international 
organizations (e.g., World Health Organization, World Bank, Food and Agriculture Organization, 
International Labor Organization, United Nations International Children’s Emergency Fund, 
Organization for Economic Co-operation and Development), non-governmental organizations (e.g., 
Oxfam, Tax Justice Network), household surveys (e.g., Gallup World Poll), and peer-reviewed 
journals. The findings showed that countries with good results of EPI also have the good positions 
on SDGI [3]. Moreover, the findings showed that GDP per capita and EPI are correlated; countries 
with higher GDP per capita have better positions on the EPI [4]. Combining data on environmental 
performance into composite scores and generating a global ranking of countries had proven to be 
influential in shaping policy agendas. Supporting stronger global data systems thus emerges as 
essential to better management of sustainable development challenges. It has led the way to today’s 
state of environmental policymaking that is more informed, focused and effective. 

1.2. How Unified Analytics of Sustainability Indicators Related to EPI and SDGI Can Inform Education and 
Policy-Making 

A data-driven and empirical approach to environmental policymaking is made possible with 
Environmental Performance Index (EPI), in which it ranks 180 countries on 24 performance indicators 
across ten issue categories: air quality, water and sanitation, heavy metals, biodiversity and habitat, 
forests, fisheries, climate and energy, air pollution, water resources, and agriculture [1]. Policymakers 
are able to measure themselves against these metrics, and determine how close or how far off they 
are from the desired environmental goals [5–7]. This empowers policymakers to identify trends, 
possible problems, best practices and maximize returns from environmental investments, in order to 
seek a balance between environmental health and ecosystem vitality. 
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In the current paper, a rudimentary AI-based approach will be illustrated to suggest how AI [8], 
and specifically, explainable-AI (XAI) [9] can assist in the intuitive use of human-centric probabilistic 
reasoning to interpret the counterfactual results generated by predictive models. AI-based analytics 
warrant a reasonably comprehensive source of information needed to determine regional health 
needs, assess the patterns of illness, and predict patterns of health care spending. AI-based analytics 
can achieve this by predicting knowledge on health trends, costs and the effectiveness, and quality 
of health care services. AI-based analytics can also contribute to improvements in quality of care by 
making information available to institutions and user groups for their use in quality improvement 
programs for regional health planning. AI-based analytics is useful in addressing policy questions 
and national debate related to health care reform. 

The latter part of this paper explores a predictive modeling approach based on AI to investigate 
how sustainability analysts can use AI-assisted probabilistic reasoning to interpret counterfactual 
scenarios that could theoretically be used to inform policy making. Instead of being unquestionably 
led by AI, humans should take the lead by thinking more discursively while using AI. The concept 
of human-centric AI-Thinking will be presented in the next section to facilitate this discussion. 

1.3. The Theoretical Basis of AI-Thinking 

Even without manual interventions by humans, AI-based machine learning is able to discover 
the seemingly hidden relations between variables in data sets. It does not mean, however, that human 
beings can be substituted by AI. It is important that humans take the lead in interpreting the results 
provided by the AI. With the cognitive ability that straddles both AI and human-centric realms, 
humans will continue to play a vital role. Zeng first offered the concept of this mode of understanding 
and thinking—AI-Thinking [10] as a conceptual framework that could be used to exploit cognitive 
computing data analytics, thus improving learning by challenging people to interpret new findings 
from the machine-learned discovery of hidden data patterns. It has been observed that the interplay 
of the use of artificial intelligence in education can educe (draw out) AI-Thinking in learners [11]. 
Educators are also involved in instilling AI-Thinking [10,12] in learners to help students create more 
questions when they discover the machine-learned hidden relationships between data variables [13]. 

AI-Thinking could be construed as follows: “AI” stands for machine-based artificial intelligence, 
while “Thinking” stands for human-in-the-loop (HuIL) [14] reasoning. AI-Thinking will allow 
sustainability professionals to recognize opportunities for applying AI and to collaborate with 
multidisciplinary experts to inform policymaking. To understand and interpret the technical results 
produced by AI into meaningful human-centric terms, stakeholders involved in sustainability must 
be sufficiently informed on how the AI processed the information. In the current context, for instance, 
they must learn how the Bayesian theorem’s mathematical algorithm operates. 

AI-Thinking is not a linear process of thinking. It can be regarded as a form of complex human 
cognition that involves the co-emergence of two concomitant forms of thoughts reaching a state of 
“vital simultaneities” [15], that is, in human-initiated AI analysis that informs human-focused 
reasoning, and conversely, in human-centric reasoning which informs more AI analysis, and so on. 
They are connected inextricably and cannot easily be separated from each other. However, the 
importance of educing AI-Thinking for humans to lead and guide AI cannot be overstated, because—
like it or not—the use of AI is gaining traction all over the world. 

1.4. The Democratization of the Use of AI by Analysts Who Are Not Computer Scientists 

AI has been more closely associated with university computer science departments than with 
departments involved with sustainability-related studies. It has been perceived as difficult to 
understand [16]. Nonetheless, AI has gained so much popularity across sectors in recent years, that 
it is referred to as Industry 4.0. It emphasizes the importance of training people not only to solve 
problems using knowledge that they know from any particular discipline, but also from AI. In the 
field of sustainability-related research, AI usage has also been steadily gaining traction [17]. The use 
of AI-Thinking as a form of educational scaffold for training analysts who are not computer scientists 
allows them to better understand AI and raise more questions for meaningful discussions with 



Information 2020, 11, 39 4 of 24 

stakeholders [18]. In addition to teachers of computer science, other educators in countless academic 
disciplines have also been trying to introduce common AI concepts to learners, such as machine 
vision, natural language processing (NLP), machine learning (ML), deep learning (DL) or 
reinforcement learning (RL) and, thereafter, train these learners to create artificial neural networks 
(ANN), recurrent neural networks (RNN), convolutional neural networks (CNN), or generative 
adversarial networks (GAN). However, Correa, Bielza and Pamies-Teixeira [19] point out that in 
these various forms of artificial neural networks, node-to-model relationships could be equivalent to 
black boxes. Either they are hidden from the user, or are far too complicated for human to 
comprehend. Researchers and analysts who may not be computer scientists also need to be trained 
in AI-improved data-driven human-centric reasoning skills, so that they can work in teams and 
interact intuitively to think about practical ideas. Therefore, in this paper we suggest another AI-
based approach which can facilitate human-centric reasoning. 

2. Research Problem and Research Questions 

2.1. Research Problem 

Data analytics has become a professional skill that potential employers expect their staff to have, 
regardless of whether they have been formally taught in school [20]. It is worth asking: is there any 
more practical approach to human reasoning that is easy-to-use for beginners, so that people who 
may not be so familiar with computer programming or advanced mathematics can also analyze data 
and interpret the results? In addition, is there any user-friendly AI-based software that could be used 
by beginners to experiment with different variables in different computational simulation scenarios? 
Would it be possible to communicate their ideas from the results of the analyzed data, using intuitive 
human-centric reasoning that can also be easily understood by colleagues who are not computer 
scientists or mathematicians (e.g., policymakers)? The current paper argues that there is one approach 
of this kind that might be worth considering. It is an AI-based Bayesian Network (BN) probabilistic 
reasoning approach [21–23], using an easy-to-use software that is suitable for beginners. Instead of 
trusting unquestionably in the results produced by AI, however, humans should and could take the 
lead, e.g., by carefully analyzing the models and results created by AI using the analytical notions of 
AI-Thinking. 

Logical reasoning, probabilistic reasoning and deep data-driven learning are the main 
theoretical paradigms that have influenced the conceptual framework of AI-Thinking [24]. The use 
of AI as a tool of analyses, representation of complex knowledge and development of AI are examples 
where AI-Thinking are cognitively involved [25]. With AI-Thinking, probabilistic reasoning through 
data-driven cognitive models is more intuitive for resolving complexities in real-world problems, as 
it is similar to human thought [12]. 

With this in mind, the examples in the current paper aim to provide ample opportunities for 
educing AI-Thinking. For example, AI-Thinking could be educed when pondering about how the 
prediction and subsequent re-adjustment of variables could potentially lead to better or worse levels 
of sustainability. AI-Thinking could also be educed in probabilistic reasoning (e.g., via the Bayesian 
probabilistic reasoning approach), and deep data-driven learning (e.g., discovery of hidden patterns 
of relationships between sustainability statistics variables using machine learning). 

BN’s primary advantage is that its strong probabilistic theory allows users to gain an intuitive 
understanding of the processes involved. It enables predictive reasoning because, given evidence 
observations, questions can be asked to determine the posterior probability of any variable. 
Nonetheless, the current paper does not plan to analyze the comparison of BN and ANN in predictive 
models, as this has already been well established by Correa, Bielza and Pamies-Teixeira [19]. They 
note that BN can explain the relationships that occur between the nodes in a model and offers more 
knowledge about the relationships. On the other hand, ANNs have been comparable to a black box. 
This is not an attempt to undermine the efforts of research studies that are focused on other 
approaches. Rather, it hopes to offer a more user-friendly multidisciplinary approach for predictive 
probabilistic reasoning. 
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The current paper demonstrates a supervised BN model. In the context of this paper, the BN 
model can be used to calculate how much the variables from the sustainability dataset might have 
direct and/or integrative influences on the probability of occurrences of different levels of the EPI. 
BN modeling has also been well known for its reliability in predictive applications of real-world 
scenarios [26,27]. 

2.2. Research Questions 

In order to study the “behavioral dynamics” of the informational motif of the system by 
analyzing the dataset, the three over-arching research questions that guide the current paper are: 

RQ1: From descriptive analytics of the dataset, what is the overall characterization of the 
sustainability variables and the EPI? 
RQ2: From predictive analytics of the dataset, what are the conditions in the best-case scenario 
that could result in high EPI? 
RQ3: From predictive analytics of the dataset, what are the conditions in the worst-case scenario 
that could result in low EPI? 

3. Methods 

3.1. Rationale for Using the AI-Based Bayesian Network Approach in Sustainability Research 

Among the vast amount of tools in AI-related research, the BN approach for analyzing statistical 
data is one of the easiest AI-based approaches for beginners as it uses human-centric probabilistic 
reasoning, which is similar to intuitive human thought [28]. Coupled with the advancement of 
processing power in affordable computer hardware, it has resulted in BN gaining traction in research 
in recent years [29]. The BN method is ideal for analyzing non-parametric data because it does not 
need the underlying parameters of the model to assume normal parametric distribution [30–32]. The 
Bayesian approach helps researchers to conduct simulations by allowing them to integrate prior 
knowledge into the analyses. Consequently, multiple rounds of null hypothesis testing become 
unnecessary when analysts are using Bayesian data-analytical techniques [33–35]. 

Researchers in the field of sustainability have also utilized the Bayesian approach [36,37]. This 
helps them to quantify mutual information, as espoused in Claude Shannon’s Information Theory 
[38], which measures the probabilistic amount of commonality between two distributions of data that 
may not be parametric. BN can also be used to predict the so-called rare and unexpected worst-case 
“black swan” scenarios [39], and for failure analysis in systems [40]. In particular, BN excels in the 
counterfactual simulations of the conditions and their outcomes when there is uncertainty [41]. In the 
current paper, BN will be used to predict the best-case scenario, and also the worst-case black swan 
scenario of the uncertain conditions that could potentially adversely affect the EPI. This form of 
predictive analytics is particularly helpful for informing sustainability stakeholders, such as policy-
makers and researchers who are trying to protect the environment, as they face ever-changing 
uncertainty. 

3.2. The Bayesian Theorem 

Presented here is a short introduction of the Bayesian theorem and BN. Readers who are 
interested to learn more about BN’s well-established corpus can peruse the works of Cowell et al. 
[42]; Jensen [43]; and Korb and Nicholson [44]. 

The mathematical formula upon which BN is based (see Equation (1)), was developed by 
Reverend Thomas Bayes, and posthumously published in 1763 [28]: ܲ(ܧ|ܪ) 	= .(ܪ|ܧ)ܲ	 (ܧ)ܲ(ܪ)ܲ  (1) 

In the Bayesian Theorem, (see Equation (1)), H represents the hypothesis, and E represents the 
observed evidence. P(H|E) represents the conditional probability of the hypothesis H, which analyzes 
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the likelihood of H occurring given the condition that the evidence E is true. It is also known as the 
posterior probability, which analyzes the probability of the hypothesis H being true by calculating 
how the evidence E influences the verity of the hypothesis H. 

P(H) and P(E) represent the independent probabilities of the likelihood of the hypothesis H being 
true, and of the likelihood of the evidence E being true. It is also known as the prior or marginal 
probability—P(H) and P(E), respectively. P(E|H) represents the conditional probability of the 
evidence E, that is, the likelihood of E being true, given the condition that the hypothesis H is true. 
The expression P(E|H)/P(E) represents the support which the hypothesis H is provided for by the 
evidence E. 

3.3. The Research Model 

The main objective of this paper is to illustrate one way for educing AI-Thinking when analysts 
use AI to analyze data. The purpose of these examples is not to advance the Bayesian Network as the 
best tool to educe AI-Thinking. Rather, it is to encourage researchers to reflect on the credibility of 
AI-based analytical techniques in general, as they use AI to discuss and ask further questions about 
sustainability-related issues with the stakeholders. In other words, raising questions and exploring 
the possibilities for problem-solving is far more important than trying to obtain a so-called correct 
answer. 

The probabilistic reasoning methods are based upon BN. The Bayesian approach was selected 
because it is a technique that has been used to model system performance where the concept of the 
Markov Blanket [45], in conjunction with Response Surface Methodology (RSM) [46–49] are utilized. 
It is a proven engineering technique for examining the optimization of the relationships between 
variables of theoretical constructs, even if they are not physically related. 

The current paper proffers an approach which enables the facilitation of discussions pertaining 
to AI and sustainability-related EPI statistics with the use of descriptive analytics as well as predictive 
simulations using the data from EPI hosted by the NASA Socioeconomic Data and Applications 
Center (SEDAC) [50]. 

In subsequent sections, the detailed BN models generated from sustainability-related EPI 
statistics will be presented. The current paper proposes a practical Bayesian approach to demonstrate 
how educators and researchers who are concerned with sustainability—other than computer 
scientists—could also utilize AI-based tools to explore any possible hidden motif in the data. To 
introduce the reader to a user-friendly form of AI, a supervised machine learning BN model will be 
illustrated to achieve the following: 

3.3.1. Descriptive Analytics of “What Has Already Happened?” 

Purpose: to use descriptive analytics to discover the motifs in the collected data. For descriptive 
analytics, BN modeling will use the parameter estimation algorithm to detect the data distribution of 
each column in the dataset automatically. More descriptive statistical methods which will be used to 
better understand the current baseline conditions of the sustainability-related variables include 
sensitivity analysis and Pearson correlations. 

3.3.2. Predictive Analytics Using “What-If?” Hypothetical Scenarios 

Purpose: to use predictive analytics to conduct in-silico experiments with completely 
controllable parameters in order to predict counterfactual results in the EPI. A Bayesian probabilistic 
approach will be used to model best-case and worst-case scenarios of EPI levels in order to better 
inform policy-makers. Counterfactual simulations will be used for predictive analytics to investigate 
the “behavior” or the “dynamics” of the informational motif. The BN model’s predictive efficiency 
will be assessed using evaluation techniques such as the gains curve, lift curve, mean reliability, Gini 
index, lift index, calibration index, the binary log-loss, the correlation coefficient R, the coefficient of 
determination R2, root mean square error (RSME) and normalized root mean square error (NRSME). 
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In the subsequent sections, the procedures taken in descriptive analytics to make sense of “what 
has already happened?” in the collected dataset, will be presented. 

3.4. Data Source 

The data file used in the current paper is a subset of the EPI’s publicly available sustainability-
related indicator statistics dataset [51]. The full dataset containing indicators of sustainability 
statistics was donated to the public domain by Yale University [52]. The dataset comprised 180 rows 
and represented data from 180 countries. The categorization of the data in the 2018 EPI dataset are 
summarized in Table 1. The EPI is a composite index made up of two policy objectives: environmental 
health and ecosystem vitality, which are in turn spread across ten issue categories. The issue 
categories of forests and fishery were excluded from the analysis in this paper, because not all 180 
countries have forests or fishery. The eight issue categories have 21 indicators among them. 

Table 1. Categorization of EPI variables. 

 Policy Objective Issue Category Indicator 

EPI 

Environmental Health 

Air Quality 
Household Solid Fuels 

PM2.5 Exposure 
PM2.5 Exceedance 

Water and Sanitation 
Drinking Water 

Sanitation 
Heavy Metals Lead Exposure 

Ecosystem Vitality  

Biodiversity and Habitat 

Marine Protected Areas 
Biome Protection (National) 
Biome Protection (Global) 
Species Protection Index 

Protected Area Representativeness Index 
Species Habitat Index 

Climate and Energy 

CO2 Emissions—Total 
CO2 Emissions—Power 

Methane Emissions 
N2O Emissions 

Black Carbon Emissions 

Air Pollution 
SO2 Emissions 
NOX Emissions 

Water Resources Wastewater Treatment 
Agriculture Sustainable Nitrogen Management 

3.5. AI-Based BN Software Used and Pre-Processing of the Data 

The software which will be utilized is Bayesialab [53]. Before continuing with the examples in 
the following sections, a highly recommended pre-requisite activity for the reader is to get acquainted 
with Bayesialab by downloading and reading the free-of-charge user guide. This provides 
explanations of the various Bayesialab software tools and functionalities which are too extensive to 
include in this paper. 

The dataset containing sustainability-related EPI indicators was imported into Bayesialab. The 
first step was to check the data for any irregularities or missing values. If there were missing values 
in the dataset, researchers could use Bayesialab to predict and fill in the missing values instead of 
discarding the affected row. Through machine learning, Bayesialab would be able to analyze the 
overall structural features of that entire dataset before generating the expected values. To predict the 
missing values, Bayesialab uses Structural EM and Dynamic Imputation algorithms [54]. To 
demonstrate the capability of how BN could be used for harnessing uncertainty and disorder (e.g., in 
a situation when there were missing values in a complex dataset), and transforming it to the analyst’s 
advantage [55], the data was first imported into Bayesialab, in preparation for machine learning 
analysis. Even though there were some missing values (3.08% of the data), they were predictively 
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filled in by Bayesialab. The Bayesialab program could automatically discretize the continuous data 
in multiple columns. The algorithm R2-GenOpt used in this example was the optimal discretization 
approach recommended by Bayesialab. It was a genetic discretization algorithm to maximize the R2 
determination coefficient between the discrete variable and its continuous variable [56]. 

3.6. Overview of the BN Approach Used to Machine-Learn the Data 

Before presenting the results of BN’s machine learning method, a brief description of the 
nomenclature used to describe the BN’s structure is provided here. Nodes (both round dots and 
round cornered rectangles displaying data distribution histograms) represent variables of interest. 
These nodes may correspond to symbolic/categorical variables, discrete numerical variables or 
discretized continuous variables. While BN can handle continuous variables, we are only discussing 
BN with discrete nodes in this paper because it is more relevant to classify the variables heuristically 
into high-, mid- and low levels to encourage discussions among stakeholders. 

BNs are the visual structures composed of nodes (variables) and arrows (probabilistic 
relationships). They also referred to as belief networks, causal probabilistic networks and 
probabilistic influence diagrams. Every node includes the corresponding variable’s data distribution. 
The arches and arrows between the nodes indicate the likelihood that the variables are associated 
[57]. 

Directed links (arrows) could represent information (statistical) or causal dependence among 
variables. Directions are used to define relationships between parent nodes and child nodes. 
However, it is important to note that, in the current paper, the presented Bayesian network is the 
result of probabilistic structural equation modeling (PSEM) that has been machine-learned by 
Bayesialab. It is not a causal model diagram and, therefore, arrows are not causal; they merely reflect 
probabilistic relational relationships between the parent nodes and the child nodes. 

BN can be used to evaluate the relationships between nodes (variable variables) and the manner 
(motif or pattern) in which initial probabilities of various input variables of sustainability measures 
may influence future outcome probabilities of EPI levels. 

Conversely, BN can also be used to perform counterfactual speculations on the initial data 
distribution status in the nodes (variables) given the final outcome. To explain how counterfactual 
simulations can be applied using BN, examples will be provided in the predictive analytics segments 
in the context of the current paper. For example, we can simulate these hypothetical scenarios in the 
BN if we want to find out the conditions of the initial states in the nodes (variables) that would lead 
to a high probability of achieving low-level EPI. 

The relationship between each pair of connected nodes (variables) is determined by their 
respective Conditional Probability Table (CPT), which is the probability of correlations between the 
parent node’s data distribution and the child node [58]. Bayesialab can automatically machine-learn 
the values in the CPT based on the data distribution of each column/variable/node in the dataset. 
However, if the human user wants to bypass the machine learning program, it is possible to manually 
input the probability values into the CPT. 

4. Results 

4.1. Descriptive Analytics: Current State of Global Environmental Performance 

Supervised machine learning through a naïve Bayes model (which the easiest for beginner users 
of AI to understand) is used in this section to examine how input variables could affect the output. 
To learn more about the characteristics of their pattern or motif, descriptive analytics is first 
performed on the collected data. Next, predictive analytics will use the motif machine-learned by 
descriptive analytics to generate simulations of scenarios in silico to predict counterfactual initial 
conditions. These counterfactual findings can inform stakeholders who are concerned with global 
sustainability about the conditions which they may like to achieve or avoid. The results of the 
descriptive analytics are presented in Figure 1 and Table 2. 
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Figure 1. Descriptive modeling of current state of 2018 EPI data. 

Table 2. Results of descriptive analysis of the 2018 EPI data. 

Variable 
Low Level  Mid-Level  High Level 

Range Probability Range Probability Range Probability 
Sustainable Development 

Goals Index (SDGI) 
≤56.7  25.19% 56.8–71.2 48.31% >71.2 26.49% 

Household Solid Fuels e.g., 27.18 27.78% 27.19–65.93 25.00% >65.93 47.21% 
PM2.5 Exposure e.g., 17.24 61.65% 17.25–53.43 30.00% >53.43 8.35% 

PM2.5 Exceedance e.g., 15.34 64.43% 15.35–51.8 28.89% >51.8 6.68% 
Drinking Water e.g., 34.9 35.00% 35.0–73.92 47.77% >73.92 17.23% 

Sanitization e.g., 34.43 35.55% 34.44–72.23 40.55% >72.23 23.89% 
Lead Exposure e.g., 24.64 18.34% 24.65–51.54 33.33% >51.54 48.33% 

Marine Protected Areas e.g., 33.89 8.16% 33.9–75.62 27.09% >75.62 64.74% 
Biome Protection 

(National) 
e.g., 36.2 23.34% 36.3–72.72 22.23% >72.72 54.43% 

Biome Protection 
(Global) 

e.g., 55.8 35.01% - - >55.8 64.99% 

Species Protection Index e.g., 40.04 19.42% 40.05–75.59 23.26% >75.59 57.32% 
Protected Area 

Representiveness Index 
e.g., 30.09 36.11% 30.1–62 35.55% >62 28.34% 

Species Habitat Index e.g., 46.05 9.71% 46.06–81.81 29.66% >81.81 60.63% 
CO2 Emissions (Total) e.g., 37.07 21.67% 37.08–64.62 51.66% >64.62 26.67% 

CO2 Emissions (Power) e.g., 22.72 11.02% 22.73–59.82 46.16% >59.82 42.82% 
Methane Emissions e.g., 21.38 21.12% 21.39–52.42  46.66% e.g., 52.42 32.33% 
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Variable 
Low Level  Mid-Level  High Level 

Range Probability Range Probability Range Probability 
N2O Emissions e.g., 30.66 27.78% 30.67–62.28 52.77% >62.28 19.45% 

Black Carbon Emissions e.g., 29.95 18.90% 29.96–63.27 46.10% >63.27 35.00% 
SO2 Emissions e.g., 29.78 23.89% 29.79–59.12 43.88% >59.12 32.22% 
NOX Emissions e.g., 30.19 19.45% 30.2–61.34 39.44% >61.34 41.11% 

Wastewater Treatment e.g., 26.32 25.56% 26.33–72.59 30.56% >72.59 43.88% 
Sustainable Nitrogen 

Management 
e.g., 19.83 27.23% 19.84–40.75 48.33% >40.75 24.45% 

The results are interpreted as follows. In terms of air quality, there is moderate likelihood 
(47.21%) of a high level of household solid fuels, low probability (6.68%) of high level of PM2.5 
exceedance, and low probability (8.35%) of high level of PM2.5 exposure. In terms of water and 
sanitation quality, there are higher probabilities of drinking water and sanitization quality (47.77% 
and 40.55% respectively) to be at the mid-level. However, high lead exposure is likely (48.33%) to 
occur. 

In the biodiversity and habitat category, the probability of having marine protected areas is high 
(64.74%). Biome protection at the global and national levels are also expected to be above average 
(with probabilities of 64.99% and 54.43%, respectively). There is no mid-level for biome protection 
(global) indicator due to the automatic clustering of the data by Bayesialab at the low and high levels 
only. The Species Habitat Index and Species Protection Index are expected to be at the moderate levels 
(60.63% and 57.32% probabilities respectively). The probability of Protected Area Representiveness 
Index is distributed more evenly than the other indicators at the low, mid-, and high levels (36.11%, 
35.55% and 28.34% respectively). 

In terms of climate and energy, CO2, methane, N2O, and black carbon emissions are most likely 
to be at the mid-levels (51.66% for CO2 (total), 46.16% for CO2 (power), 46.66% for methane, 52.77% 
for N2O, 46.10% for black carbon). However, NOX emission (39.44% and 41.11% for mid- and high 
levels, respectively) and SO2 emission (43.88% and 32.22% for mid- and high levels, respectively) is 
expected to be above the mid-level. Wastewater treatment (43.88% probability at the high level) is 
expected to be more prevalent than sustainable nitrogen management (48.33% probability at the mid-
level). 

The answer to RQ1 is as follows: The EPI indicators that performed well in the base case include 
low levels of PM2.5 exposure and exceedance, high number of marine protection areas, high biome 
protection levels (both global and national), high Species Habitat Index, high Species Protection Index 
and high prevalence of wastewater treatment. However, the usage of household solid fuels and lead 
exposure would call for the most attention, due to the high likelihood of high levels of occurrence in 
these two areas. Other areas that needed to be improved include drinking water and sanitization 
quality, harmful emissions (CO2, methane, black carbon emissions, NOX and SO2) and sustainable 
nitrogen management.  

4.2. Mean-Target Total Effects Analysis 

To exploratively visualize the influence of the variables on the target node in the BN, the Total 
Effects tool in Bayesialab can be used. As observed in Figure 2, the plots of the total effects of the 
sustainability-related variables on the target node (the outcome of the SDGI level) suggest that their 
relationships are either linear or curvilinear. Here is where BN excels in calculating the probabilities 
of how the linear or curvilinear data from the variables might influence the outcome of the percentage 
of number of people who are malnourished, because the concept of the Markov Blanket [45], in 
conjunction with Response Surface Methodology (RSM) [46–49] are utilized for examining the 
optimization of relations between variables in the computational model. 
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Figure 2. Target-mean analysis of the curves representing the parameters of environmental 
performance. 

4.3. Sensitivity Analysis 

Sensitivity analysis is used to reveal the variables that are most impacted under conditions of 
uncertainty, and the results enable the analyst to focus on the most important indicators. A tornado 
chart (see Figure 3) was generated by Bayesialab to visualize the factors that might drive the largest 
impact (either positively or negatively) towards achieving the SDGI. The red bars represent the 
sensitivity of the variables which contribute to low SDGI (defined as, e.g., 56.7); the green bars 
represent the sensitivity of the variables which contribute to mid-level SDGI (defined as between 56.7 
and 71.2); the blue bars represent the sensitivity of the variables which contribute to high SDGI 
(defined as ≥71.2). The longer horizontal bars require more attention while the shorter ones do not. 
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Figure 3. Tornado diagram of posterior probabilities analysis of the sustainability-related variables 
on the target: Sustainable Development Goals Index (SDGI). 

To make it easier for the analyst to see the factors that contributed the largest impact to a high 
SDGI, the focus is turned to only the blue bars (see Figure 4). The results suggest the quality of 
drinking water, sanitization and heavy metals exposure, which come under the environmental health 
policy objective, could potentially contribute to a high SDGI score. 

 
Figure 4. Sensitivity analysis of the sustainability-related variables on the target: high-level SDGI 
(>71.2). 
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Turning the focus to red bars only, the factors contributing the largest impact to a low SDGI can 
be observed (see Figure 5). The results suggest that priority attention should be given to improve the 
quality of drinking water, sanitization and heavy metals exposure, which are under the 
environmental health policy objective, as well as wastewater treatment under the ecosystem vitality 
policy objective. An interesting observation is the significance of the three indicators, the quality of 
drinking water, sanitization and heavy metals exposure, as they could contribute to both high and 
low SDGI. 

 
Figure 5. Sensitivity analysis of the sustainability-related variables on the target: low-level SDGI (e.g., 
56.7). 

4.4. Predictive Analytics: What If We Want to Achieve High-Level SGDI? 

To simulate the best-case scenario (see Figure 6), hard evidence was applied to the node 
Sustainable Development Goals Index (SDGI) in Bayesialab, so that 0% of the countries is at the low 
level (defined as e.g., 56.7) compared to the original 25.19%; 0% at the mid-level (defined as e.g., 71.2) 
compared to the original 48.31%; and 100% is at the high level (defined as >71.2) compared to the 
original 26.49%. The results of the best-case scenario are presented in Table 3. 
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Figure 6. Example of a best-case scenario. 

Table 3. Results of predictive analysis of the best-case scenario. 

Variable/Node 
Low Level  Mid-Level  High Level  

Base Best-Case Base Best-Case Base Best-Case 
Household Solid Fuels 27.78% 28.21% 25.00% 25.54% 47.21% 46.35% 

PM2.5 Exposure 64.43% 63.49% 30.00% 30.86% 8.35% 5.65% 
PM2.5 Exceedance 64.43% 66.35% 28.89% 29.13% 6.68% 4.52% 

Drinking Water 35.00% 4.50% 47.77% 45.31% 17.23% 50.19% 
Sanitization 35.55% 4.85% 40.55% 25.54% 23.89% 69.61% 

Lead Exposure 18.34% 54.57% 33.33% 36.31% 48.33% 9.13% 
Marine Protected Areas 8.16% 7.19% 27.09% 26.31% 64.74% 66.50% 

Biome Protection (National) 23.34% 19.28% 22.23% 21.87% 54.43% 58.85% 
Biome Protection (Global) 35.01% 30.68% - - 64.99% 69.32% 
Species Protection Index 19.42% 16.20% 75.59% 22.25% 57.32% 61.55% 

Protected Area 
Representiveness Index 

36.11% 32.80% 35.55% 36.96% 28.34% 30.24% 

Species Habitat Index 9.71% 9.89% 29.66% 30.11% 60.63% 60.00% 
CO2 Emissions (Total) 21.67% 23.13% 51.66% 53.59% 26.67% 23.28% 

CO2 Emissions (Power) 11.02% 11.08% 46.16% 47.60% 42.82% 41.33% 
Methane Emissions 21.12% 26.66% 46.66% 49.61% 32.33% 23.73% 

N2O Emissions 27.78% 36.90% 52.77% 52.64% 19.45% 10.46% 
Black Carbon Emissions 18.90% 22.27% 46.10% 50.73% 35.00% 27.00% 

SO2 Emissions 23.89% 31.17% 43.88% 38.32% 32.22% 30.51% 
NOX Emissions 19.45% 26.79% 39.44% 34.73% 41.11% 38.48% 

Wastewater Treatment 25.56% 5.70% 30.56% 31.94% 43.88% 62.36% 
Sustainable Nitrogen 

Management 
27.23% 29.50% 48.33% 35.76% 24.45% 34.74% 
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The results of the best-case scenario are interpreted as follows. Exposure to heavy metal is 
expected to reduce significantly (from 48.33% probability to 9.13% at the high level). Significant 
improvement is also expected on the quality of drinking water (from 17.23% to 50.19% probability) 
and sanitization (from 23.89% to 69.61%). Wastewater treatment and sustainable nitrogen 
management would have moderate improvements (10%–20% change in probabilities). 

There are only slight changes (less than 10% change in probabilities) in the household use of 
solid fuels, PM2.5 exposure and exceedance, marine protection areas, biome protection (global and 
national), Species Habitat Index, Protected Area Representiveness Index and emissions of CO2 (both 
total and from power), methane, black carbon, SO2, NOX and N2O. 

The answer to RQ2 is as follows: Under the best-case scenario, the EPI indicators that performed 
well (with probabilities above 50% at the high level) include drinking water, sanitization, marine 
protected areas, biome protection (global and national), Species Protection Index, Species Habitat 
Index and wastewater treatment. Exposure to lead and PM2.5 air particles would be minimal (with 
probabilities below 10% at the high level). At this juncture, instead of totally trusting the 
counterfactual results generated by the AI, it would be an example of an opportunity where AI-
Thinking can be educed. As a suggestion, sustainability analysts might like to consider asking further 
questions by perusing the works of other sustainability researchers (e.g., see [59–63]). 

4.5. Predictive Analytics: What Are the Conditions to Avoid in Order to Prevent the Worst-Case Scenario 
from Happening? 

To simulate the worst-case scenario, hard evidence was applied to the node Sustainable 
Development Goals Index (SDGI), so that 100% of the countries is at the low level (defined as, e.g., 
56.7) compared to the original 25.19%; 0% is at the mid-level (defined as, e.g., 71.2) compared to the 
original 48.31%; and 0% is at the high level (defined as >71.2) compared to the original 26.49%. Figure 
7 and Table 4 present the results of the worst-case scenario. 
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Figure 7. Example of a worst-case scenario. 

Table 4. Results of predictive analysis of the worst-case scenario. 

Variable/Node 
Low Level  Mid-Level  High Level  

Worst-Case Base  Worst-Case Base Worst-Case Base 
Household Solid Fuels 26.22% 27.78% 23.14% 25.00% 50.63% 47.21% 

PM2.5 Exposure 54.54% 61.65% 27.69% 30.00% 17.77% 8.35% 
PM2.5 Exceedance 57.00% 64.43% 28.78% 28.89% 14.22% 6.68% 

Drinking Water 84.04% 35.00% 15.16% 47.77% 0.80% 17.23% 
Sanitization 84.24% 35.55% 14.65% 40.55% 1.11% 23.89% 

Lead Exposure 0.70% 18.34% 10.36% 33.33% 88.93% 48.33% 
Marine Protected Areas 9.87% 8.16% 28.48% 27.09% 61.64% 64.74% 

Biome Protection (National) 30.52% 23.34% 22.86% 22.23% 46.61% 54.43% 
Biome Protection (Global) 42.68% 35.01% - - 57.32% 64.99% 
Species Protection Index 25.11% 19.42% 25.05% 75.59% 49.84% 57.32% 

Protected Area 
Representiveness Index 

41.96% 36.11% 33.06% 35.55% 35.55% 28.34% 

Species Habitat Index 9.40% 9.71% 28.86% 29.66% 61.74% 60.63% 
CO2 Emissions (Total) 19.09% 21.67% 48.23% 51.66% 32.68% 26.67% 

CO2 Emissions (Power) 10.93% 11.02% 43.61% 46.16% 45.46% 42.82% 
Methane Emissions 11.30% 21.12% 41.43% 46.66% 47.26% 32.33% 

N2O Emissions 11.62% 27.78% 53.00% 52.77% 35.38% 19.45% 
Black Carbon Emissions 12.93% 18.90% 37.91% 46.10% 49.16% 35.00% 

SO2 Emissions 11.01% 23.89% 53.74% 43.88% 35.26% 32.22% 
NOX Emissions 6.47% 19.45% 47.77% 39.44% 45.76% 41.11% 

Wastewater Treatment 60.72% 25.56% 28.11% 30.56% 11.17% 43.88% 
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Variable/Node 
Low Level  Mid-Level  High Level  

Worst-Case Base  Worst-Case Base Worst-Case Base 
Sustainable Nitrogen 

Management 
23.20% 27.23% 70.57% 48.33% 6.23% 24.45% 

The results of the worst-case scenario are interpreted as follows. The quality of drinking water 
and sanitization are very likely to be poor (84.04% and 84.24% probabilities, respectively), and lead 
exposure is likely high (88.93% probability). Moderate changes are expected for PM2.5 exposure and 
exceedance, biome protection (global and national), Species Protection Index, Protected Area 
Representiveness Index, harmful emissions (CO2 (total), methane, N2O, black carbon and NOx) and 
sustainable nitrogen management. Indicators that would have marginal changes (less than 10% 
change in probabilities) are the number of marine protected areas, Species Habitat Index, emissions 
of CO2 (power) and SO2. 

The answer to RQ3 is as follows. Under the worst-case scenario, the EPI indicators that 
performed poorly are quality of drinking water, sanitization and wastewater treatment (with 
probabilities above 50% at the low level). The usage of household solid fuels and lead exposure are 
expected to be the worst (with probabilities above 50% at the high level). 

In addition to sensitivity analysis, Table 5 shows the comparison of best- and worst-case for each 
of the three levels. 

Table 5. Comparison of worst- and best-case scenarios. 

Variable/Node 
Low Level  Mid-Level  High Level  

Worst-Case Best-Case  Worst-Case Best-Case Worst-Case Best-Case 
Household Solid Fuels 26.22% 28.21% 23.14% 25.54% 50.63% 46.35% 

PM2.5 Exposure 54.54% 63.49% 27.69% 30.86% 17.77% 5.65% 
PM2.5 Exceedance 57.00% 66.35% 28.78% 29.13% 14.22% 4.52% 

Drinking Water 84.04% 4.50% 15.16% 45.31% 0.80% 50.19% 
Sanitization 84.24% 4.85% 14.65% 25.54% 1.11% 69.61% 

Lead Exposure 0.70% 54.57% 10.36% 36.31% 88.93% 9.13% 
Marine Protected Areas 9.87% 7.19% 28.48% 26.31% 61.64% 66.50% 

Biome Protection (National) 30.52% 19.28% 22.86% 21.87% 46.61% 58.85% 
Biome Protection (Global) 42.68% 30.68% - - 57.32% 69.32% 
Species Protection Index 25.11% 16.20% 25.05% 22.25% 49.84% 61.55% 

Protected Area 
Representiveness Index 

41.96% 32.80% 33.06% 36.96% 35.55% 30.24% 

Species Habitat Index 9.40% 9.89% 28.86% 30.11% 61.74% 60.00% 
CO2 Emissions (Total) 19.09% 23.13% 48.23% 53.59% 32.68% 23.28% 

CO2 Emissions (Power) 10.93% 11.08% 43.61% 47.60% 45.46% 41.33% 
Methane Emissions 11.30% 26.66% 41.43% 49.61% 47.26% 23.73% 

N2O Emissions 11.62% 36.90% 53.00% 52.64% 35.38% 10.46% 
Black Carbon Emissions 12.93% 22.27% 37.91% 50.73% 49.16% 27.00% 

SO2 Emissions 11.01% 31.17% 53.74% 38.32% 35.26% 30.51% 
NOX Emissions 6.47% 26.79% 47.77% 34.73% 45.76% 38.48% 

Wastewater Treatment 60.72% 5.70% 28.11% 31.94% 11.17% 62.36% 
Sustainable Nitrogen 

Management 
23.20% 29.50% 70.57% 35.76% 6.23% 34.74% 

The results suggest significant differences for the quality of drinking water and sanitization, lead 
exposure (>70% at the low level), and wastewater treatment (around 50% at the high level). On the 
other hand, it is observed that there is negligible difference (less than 5% difference in probabilities) 
for these indicators: household solid fuels, the number of marine protected areas, Species Habitat 
Index and CO2 Emissions (power). Here would be another example of an opportunity to educe AI-
Thinking in the analysts. Rather than unquestioningly relying on the counterfactual results produced 
by the AI-based method, the analysts may like to peruse the work of other sustainability researchers 
or AI researchers (e.g., see [64–68]), and in turn, ask even more meaningful questions. 
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4.6. Evaluation of the Predictive Performance of the Bayesian Network Model 

4.6.1. Evaluation of the Predictive Performance Using Target Evaluation Cross-Validation by K-
Folds 

The predictive performance of a model can be evaluated using measurement tools, such as the 
gains curve, lift curve, and cross-validation by K-fold. In Bayesialab, these tools can be accessed in 
the “network performance” menu. 

As observed in Bayesialab after performing target evaluation cross-validation by K-folds on the 
data distribution of each node in the BN, the overall precision was 76.6667%; the mean precision was 
78.0459%; the overall reliability was 77.6984%; the mean reliability was 78.5714%; the Gini Index was 
68.1566%; the Relative Gini Index was 90.2072%; the Lift Index was 2.1790; the Relative Lift Index 
was 90.7851%; the receiver operating characteristic (ROC) Index was 95.1036%; the Calibration Index 
was 61.5214%; the binary log-loss was 0.2138; the correlation coefficient R was 0.7290; the coefficient 
of determination R2 was 0.5315; the root mean square error (RMSE) was 7.9261; and the normalized 
root mean square error (NRSME) was 16.2089%. 

A confusion matrix (for cross-validating the data by K-fold in every node) can provide additional 
information about the computational model’s predictive performance. The leftmost column in the 
matrix contained the predicted values, while the actual values in the data were presented in the top 
row. Three confusion matrix views would be available by clicking on the corresponding tabs. The 
occurrences matrix (see Figure 8) would indicate the number of cases for each combination of 
predicted versus actual values. The diagonal shows the number of true positives. 

 
Figure 8. Confusion matrix of occurrences. 

The reliability matrix (see Figure 9) would indicate the probability of the reliability of the 
prediction of a state in each cell. Reliability measures the overall consistency of a prediction. A 
prediction could be considered as highly reliable if the computational model produces similar results 
under consistent conditions. 

 
Figure 9. Confusion matrix of reliability. 

The precision matrix (see Figure 10) would indicate the probability of the precision of the 
prediction of a state in each cell. Precision is the measure of the overall accuracy which the 
computational model can predict correctly. 
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Figure 10. Confusion matrix of precision. 

4.6.2. Evaluation of the Predictive Performance Using the Gains Curve, Lift Curve and ROC Curve 

In the gains curve (see Figure 11), around 24% of the attributes were predicted to be most 
impactful towards high-level category in the node SDGI. The blue diagonal line represented the gains 
of a pure random policy, which is prediction without this predictive model. The red lines represented 
the gains using this predictive model. The Gini index of 68.16% and relative Gini index of 90.21% 
suggested that the gains of using this predictive model vis-à-vis not using it, was acceptable. 

 
Figure 11. Gains curve. 

The lift curve (see Figure 12) was generated from the results of the previous gain curve. The 
value of the best lift around 3.42, was interpreted as the ratio between 100% and 24% (optimal policy 
divided by random policy). The lift index of 2.179 and relative lift index of 90.79% suggested that the 
performance of this predictive model was acceptably good. 

 
Figure 12. Lift curve. 
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Together, the gains curve and the lift curve indicated that the predictive performance of the 
Bayesian network model in the current paper was good. 

4.6.3. Limitations of the Study 

The exploratory aspect of predictive analytics via BN in this research renders the theoretical 
counterfactual findings plausible for discussions and for educing AI-Thinking, but it is not definitive. 
For illustration purposes, the current paper used only one supervised machine learning approach. 
Further, it only applied to the BN models produced from the current dataset. Caution must therefore 
be exercised when evaluating the possible relationships between the variables (nodes) in the BN 
model. As in any simulation analysis, the results depend on the dataset that produced the 
computational model. The model of the Bayesian network used in the current study was based on 
the naïve Bayes algorithm because it is ideal for exploratory studies that do not presume causal 
relationships between nodes. Analysts should, however, be willing to consider alternative models 
that might characterize the dataset better. 

Thus far, methods of the AI-based BN approach, assessments of the BN’s predictive 
performance, and the limitations of the analysis have been described. Discussions and the conclusion 
will be presented in the next section. 

5. Discussion and Conclusions 

Policymakers might have preferred to use predictive analysis and simulations of alternative 
variables combinations to simulate in-silico what could not be easily accomplished in real-world. 
Using the AI-based BN approach provided in the current paper, a multitude of scenarios could be 
simulated to calculate the conditions for the best and worst outcomes of EPI levels at a global system 
level. The results of the predictive analysis consistently suggest four indicators that are most 
influential in both best- and worst-case scenarios—quality of drinking water, sanitization, lead 
exposure, and wastewater treatment. 

AI-Thinking can improve the learning processes of an individual by expanding and deepening 
the use of conceptual abstraction, problem-solving heuristics and data analysis [69]. Using user-
friendly applications, for example, Bayesialab [70] or other BN software, such as GeNie by 
BayesFusion [71] or Netica by Norsys [72] or Bayes Server [73], the examples in the current paper 
could be adapted by sustainability analysts using their own data at the regional, national or world 
level. 

The current paper significantly contributes to the literature by offering a user-friendly approach 
to democratize the use of AI. This approach enables beginner users of AI to conduct research analysis 
through probabilistic reasoning via AI-based BN. Sustainability analysts, researchers and 
policymakers—and not only computer scientists—may also use AI to provide decision support by 
designing predictive models using EPI or other environmental data related to sustainability. 
Controlled experiments could be conducted in computational models using this approach. Specific 
variables may be constant, while others may be altered to model various theoretical scenarios. This 
allowed simulations of “what-if” scenarios to predict the conditions for maximizing desirable 
outcomes and to predict “at-risk” conditions for avoiding undesirable results. 

Beyond sustainability-related research, the user-friendly AI-based approach offered in this 
paper can also democratize the use of AI by making it accessible to multidisciplinary analysts who 
may not be computer scientists. Moreover, AI-Thinking can transform how AI could be used 
cognitively and lead to more data explorations via AI and more human-centric insights for informing 
policymaking. 
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