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Abstract: Since fuzzy β-covering was proposed, few papers have focused on how to calculate the
reduct in fuzzy β-covering and how to update the reduct while adding and deleting some objects
of the universe. Here, we propose a matrix-based approach for computing the reduct in a fuzzy
β-covering and updating it dynamically using a matrix. First, matrix forms for computing the reduct
in a fuzzy β-covering are proposed. Second, properties of the matrix-based approaches are studied
while adding and deleting objects. Then, matrix-based algorithms for updating the reduct in a fuzzy
β-covering are proposed. Finally, the efficiency and validity of the designed algorithms are verified
by experiments.

Keywords: reduction computation; knowledge acquisition; decision making

1. Introduction

As generalized models of Palawk’s rough sets [1], covering-based rough sets [2]—which
were proposed by Zakowski in 1983—have been widely applied in some popular aspects such as
decision-making [3], attribute reduction [4], knowledge reduction [5], etc. Since covering-based rough
sets have been proposed, research on the lower and upper approximations of covering-based rough
sets and their properties attracts much attention, such as in [6–9]. In order to extend the application
field of covering-based rough sets, fuzzy computing [10–14], which can be applied to covering-based
rough sets, has been considered by scholars. Some generalized fuzzy rough approximation operators
based on fuzzy coverings were proposed by Li et al. [15] in 2008. Fuzzy covering is a generalized model
of covering; it extends the application of covering-based rough sets. Moreover, fuzzy neighborhood
systems and some virtual issues of fuzzy covering are discussed by D’eer et al. [16]; they proved
that only sixteen different fuzzy neighborhood operators can be obtained, and studied the partial
order relations among those sixteen operators. Based on fuzzy covering and its operators—including
fuzzy neighborhood operators—fuzzy β-covering was proposed by Yang et al. [17]. They investigated
some properties of a fuzzy β-covering and proposed an algorithm to compute the reduct of a fuzzy
β-covering.

Computing the reduct of a covering via a matrix approach is an efficient way to reduce its
computation time. From different viewpoints, scholars have introduced many algorithms that
focused on how to compute the reduct of a covering. Some matrix approaches for issues about
the minimal and maximal descriptions were proposed by Wang et al. [18]; similar works were done
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by Lin et al. [19]. Boolean matrix representations of approximation operators and approaches for
calculating the approximations in covering-based rough sets were investigated by Ma et al. [20]. There
always exists some variation in data sets which induces the variation of a covering, such as variation of
attributes [21,22], variation of attribute values [23], variation of universe [24], and variation of covering
cardinalities [25]. However, since fuzzy β-covering was proposed, few authors have considered how
to compute its reduct or how to update the reduct of a fuzzy β-covering. Correspondingly to the crisp
covering, we assume that there are there types of variation in fuzzy β-coverings, namely, variation of
granule size, variation of covering cardinalities, and variation of universe. In [17], there is an algorithm
to calculate the reduct of a fuzzy β-covering, but it is not efficient enough and cannot adapt to the
variation of fuzzy β-covering. In order to overcome these defects, we propose matrix-based approaches
for computing and updating the reduct in a fuzzy β-covering. Moreover, updating the reduct in a
fuzzy information system can be applied for some relevant aspects such as knowledge acquisition
and recommender systems [26,27], but in these applications, data sets often vary over time and need
algorithms to implemented in real-time or almost real-time. Incremental computation is required
in these applications. To reach these requirements, in this paper, we propose a matrix form of the
algorithm in [17], and then propose algorithms based on the improved algorithm, while adding some
objects into the universe or deleting some objects from the universe.

This paper is structured as follows: Some main results of fuzzy β-covering will be reviewed
in Section 2, as well as the improved matrix-based algorithm for computing the reduct of a fuzzy
β-covering. In Section 3, matrix-based approaches for updating the reduct of fuzzy β-covering while
adding and deleting some objects are proposed. Several experiments are conducted to verify the
efficiency and validity of our proposed algorithms in Section 4, then some conclusions will be given in
Section 5.

2. Preliminaries

In this section, we review several basic concepts of fuzzy β-covering, as well as the algorithm to
compute the reduct in it.

Fuzzy β-Covering

In this subsection, some basic concepts of fuzzy β-covering are reviewed.
First of all, based on the β-levels which were used for characterizations of fuzziness in metric

spaces in [28] to investigate some properties of cyclic fuzzy maps in metric spaces, fuzzy β-covering
approximation space can be defined.

Definition 1 ([17,28]). Let U be an arbitrary universal set, and F (U) be the fuzzy power set of U. For each
β ∈ (0, 1], we call Ĉ = {C1, C2, · · · , Cm, }, with Ci ∈ F (U) for any i ∈ {1, 2, · · · , m}, a fuzzy β-covering
of U = {x1, x2, · · · , xn}, if (∪m

i=1Ci)(x) ≥ β for each x ∈ U. We also call (U, Ĉ) a fuzzy β-covering
approximation space.

In a fuzzy β-covering approximation space, the reducible element of Ĉ can be defined as follows.

Definition 2 ([17]). Let (U, Ĉ) be a fuzzy β-covering of U and C ∈ Ĉ. If C is the union of some fuzzy sets in
Ĉ− {C}, we say that C is a reducible element of Ĉ; otherwise, C is an irreducible element.

For computing the reduct of a fuzzy β-covering, there are two properties of a fuzzy β-covering
approximation space.

Lemma 1 ([17]). Let (U, Ĉ) be a fuzzy β-covering of U and let C be a reducible element of Ĉ; then, Ĉ− {C} is
still a fuzzy β-covering of U.
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Lemma 2 ([17]). Let (U, Ĉ) be a fuzzy β-covering of U and let C be a reducible element of Ĉ; then, C1 is a
reducible element of Ĉ if and only if C1 is a reducible element of Ĉ− {C}.

Then, the reduct of a fuzzy β-covering can be defined as follows.

Definition 3 ([17]). Let (U, Ĉ) be a fuzzy β-covering of U and D̂ is a subset of Ĉ. If Ĉ− D̂ is the set of all
reducible elements of Ĉ, then D̂ is called the reduct of Ĉ, and is denoted as Γ(Ĉ).

A fuzzy β-covering of U can be denoted by a β-covering character matrix.

Definition 4 ([17]). Let (U, Ĉ) be a fuzzy β-covering approximation space of U; the β-covering character
matrix on U is denoted by PU = (pU

ij )n×m, where

pU
ij = Cj(xi) ∀i ∈ {1, 2, · · · , n} , ∀j ∈ {1, 2, · · · , m} .

Example 1. Let (U, Ĉ) be a fuzzy β-covering approximation space of U; the β-covering character matrix on U,
where U = {x1, x2, x3, x4, x5, x6}. According to Definition 5, the fuzzy β-covering character matrix on U is
as follows:

PU =



0.1 0.6 0.6 0.6 0.6
0.1 0.5 0.6 0.6 0.5
0.6 0.1 0.8 0.8 0.6
0.2 0.4 0.7 0.7 0.4
1.0 0.2 1.0 1 1.0
0.2 0.8 0.7 0.8 0.8


.

To transform the algorithm in [17] for computing the reduct of a fuzzy β-covering, we define a
containing relation character matrix on U.

Definition 5. Let (U, Ĉ) be a fuzzy β-covering approximation space of U; the containing relation character
matrix on U is denoted by QU = (qU

ij )m×m, where

qU
ij =

{
1 Ci ⊆ Cj ∧ i 6= j

0 Ci 6⊆ Cj ∨ i = j
i, j ∈ {1, 2, · · · , m} .

Example 2 (Continuation of Example 1). The containing relation character matrix on U is as follows:

QU =


0 0 1 1 1
0 0 0 1 1
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0

 .

By Definitions 4 and 5, we can change the algorithm for computing the reduct of a fuzzy β-covering
in [17] into a matrix form. The total time complexity of Algorithm 1 is O(m2|U|). Steps 1–6 are to
ensure that Ĉ is a fuzzy β-covering with time complexity O(m|U|), and Steps 8–16 are to compute Ĉ
with time complexity O(m2|U|).
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Algorithm 1: Algorithm to compute the reduct of a fuzzy β-covering.

Input: (1)Ĉ = {C1, C2, · · · , Cm, } (2)U = {x1, x2, · · · , xn}. (3)β ∈ (0, 1].
Output: Γ(Ĉ),QU .

1 for i = 1, 2, · · · , m do
2 C(xi)← 0;
3 for j = 1, 2, · · · , m do
4 C(xi)← C(xi) ∨ Cj(xi)

5 if C(xi) < β then
6 return Ĉ is not a fuzzy β-covering
7 Γ(Ĉ)← Ĉ;
8 for k = 1, 2, · · · , m do
9 T ← ∅;

10 for l = 1, 2, · · · , m do
11 if Ck ⊆ Cl then
12 qU

kl ← 1;
13 if qU

kl = 1 then
14 T ← T ∪ Ck;
15 if T = Cl then
16 Γ(Ĉ)← Γ(Ĉ)− {Cl};
17 return Γ(Ĉ)

3. Matrix-Based Approaches for Updating Reducts in Fuzzy β-Coverings While Adding or Deleting
Some Objects

3.1. Matrix-Based Approach for Updating Reducts in Fuzzy β-Coverings While Adding Some Objects into
the Universe

In this subsection, we present matrix-based dynamic approaches for updating the reduct in
a fuzzy β-covering while adding some objects into the universe. We denote (U, Ĉ) as a fuzzy
β-covering approximation space of U, where Ĉ = {C1, C2, · · · , Cm} and U = {x1, x2, · · · , xn}. We
denote (U , Ĝ) as a fuzzy β-covering approximation space of U , where Ĝ = {G1,G2, · · · ,Gm, } and
U = {x1, x2, · · · , xn, xn+1, · · · , xn+t}. In this paper, t denotes an integer greater than 1.

The next theorem indicates the containing relation before and after adding some objects into U.

Theorem 1. Let (U, Ĉ) be a fuzzy β-covering approximation space of U and let (U , Ĝ) be a fuzzy β-covering
approximation space of U ; the following result holds.

Gi ⊆ Gj ⇒ Ci ⊆ Cj.∀i, j ∈ {1, 2, · · · , m}.

Proof.
Gi ⊆ Gj ⇒ ∀x ∈ U,Gi(x) ≤ Gj(x)⇒ Ci(x) ≤ Cj(x)⇒ Ci ⊆ Cj. (1)
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Example 3 (Continuation of Example 1). If x7 and x8 are added into U, the changes are as follows. According
to Theorem 1, the new β-covering character matrix on U is as follows:

PU =



0.1 0.6 0.6 0.6 0.6
0.1 0.5 0.6 0.6 0.5
0.6 0.1 0.8 0.8 0.6
0.2 0.4 0.7 0.7 0.4
1.0 0.2 1.0 1 1.0
0.2 0.8 0.7 0.8 0.8
0.5 0.3 0.1 0.2 0.5
0.1 0.7 0.4 0.6 0.7


.

By Definition 2, we have G5 = G1 ∪ G2 and C5 = C1 ∪ C2.

Theorem 2. Let (U, Ĉ) be a fuzzy β-covering approximation space of U and let (U , Ĝ) be a fuzzy β-covering
approximation space of U . If the relation character matrix on U is denoted by QU = (qU

ij )m×m, the relation

character matrix on U is denoted by QU = (qUij )m×m, where i, j ∈ {1, 2, · · · , m}, the following result holds.

qUij = 1⇔ qU
ij = 1∧ ∀l ∈ {n + 1, n + 2, · · · , n + t} ,Gi(xl) ≤ Gj(xl).

Proof. qUij = 1 ⇔ Gi ⊆ Gj ⇔ ∀x ∈ U ,Gi(x) ≤ Gj(x) ⇔ ∀k ∈ {1, 2, · · · , n} ,Gi(xk) ≤ Gj(xk) ∧ ∀l ∈
{n + 1, n + 2, · · · , n + t} ,Gi(xl) ≤ Gj(xl) ⇔ Ci(x) ≤ Cj(x) ∧ ∀l ∈ {n + 1, n + 2, · · · , n + t} ,Gi(xl) ≤
Gj(xl)⇔ qU

ij = 1∧ ∀l ∈ {n + 1, n + 2, · · · , n + t} ,Gi(xl) ≤ Gj(xl).

Example 4 (Continuation of Example 3). By Theorem 2, the containing relation character matrix on U can
be calculated as follows.

Because qU
1,3 = 1 and pU7,1 > pU7,3 we have qU1,3 = 0; because qU

1,4 = 1 and pU7,1 > pU7,4 we have qU1,4 = 0;
because qU

2,4 = 1 and pU7,2 > pU7,4 we have qU2,4 = 0; because qU
3,4 = 1 and pU7,3 ≤ pU7,4 ∧ pU8,3 ≤ pU8,4 we

have qU3,4 = 1; because qU
1,5 = 1 and pU7,1 ≤ pU7,5 ∧ pU8,1 ≤ pU8,5 we have qU1,5 = 1; because qU

2,5 = 1 and
pU7,2 ≤ pU7,5 ∧ pU8,2 ≤ pU8,5 we have qU2,5 = 1. From the above and from Theorem 2, we have

QU =


0 0 1 0 1
0 0 0 0 1
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0

 .

Through Theorems 1 and 2, we can propose Algorithm 2 for updating the reduct in a fuzzy
β-covering while adding some objects into the universe. If N+ = ∑m

(i=1) ∑m
(j=1) qU

ij , the total time

complexity of Algorithm 2 is O(N+(|U| + t)). Steps 2–9 are to update QU with time complexity
O(N+t), and Steps 11–17 are to compute Γ(Ĝ) with time complexity O(N+(|U| + t)). The time
complexity of Algorithm 2 is smaller than the time complexity of Algorithm 1, so Algorithm 2 can be
applied in real-time data sets. When some objects are added into a data set, we can use Algorithm 2 to
update the reduct rather than compute the reduct by Algorithm 1 again on the new data set.
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Algorithm 2: Algorithm to update the reduct of a fuzzy β-covering while adding some objects
into the universe.

Input: (1)Ĝ = {G1,G2, · · · ,Gm} (2)U = {x1, x2, · · · , xn, xn+1, · · · , xn+t}. (3)β ∈ (0, 1],(4)QU .
Output: Γ(Ĝ).

1 QU ← QU ;
2 for i = 1, 2, · · · , m do
3 for j = 1, 2, · · · , m do
4 if qUij = 1 then
5 s← 1;
6 for k = n + 1, n + 2, · · · , n + t do
7 if Gi(xk) > Gj(xk) then
8 s← 0;
9 qUij ← s;

10 Γ(Ĝ)← Ĝ;
11 for k = 1, 2, · · · , m do
12 T ← ∅;
13 for l = 1, 2, · · · , m do
14 if qUkl = 1 then
15 T ← T ∪ Ck;
16 if T = Gl then
17 Γ(Ĝ)← Γ(Ĝ)− {Gl};
18 return Γ(Ĝ)

3.2. Matrix-Based Approach for Updating Reducts in Fuzzy β-Coverings While Deleting Some Objects from
the Universe

In this subsection, we present matrix-based dynamic approaches for updating the reduct in
a fuzzy β-covering while deleting some objects from the universe. We denote (U, Ĉ) as a fuzzy
β-covering approximation space of U, where Ĉ = {C1, C2, · · · , Cm} and U = {x1, x2, · · · , xn}.
We denote (U , Ĝ) as a fuzzy β-covering approximation space of U , where Ĝ = {G1,G2, · · · ,Gm, }
and U = {x1, x2, · · · , xn−t}.

The next theorem indicates the containing relation before and after deleting some objects from U.

Theorem 3. Let (U, Ĉ) be a fuzzy β-covering approximation space of U and let (U , Ĝ) be a fuzzy β-covering
approximation space of U ; the following result holds.

Ci ⊆ Cj ⇒ Gi ⊆ Gj.

Proof. The proof is similar to that of Theorem 1.
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For any reducible element in Ĉ, whether it is reducible or not can be decided by the next theorem.

Theorem 4. Let (U, Ĉ) be a fuzzy β-covering approximation space of U and let (U , Ĝ) be a fuzzy β-covering
approximation space of U . If Cj is a reducible element of Ĉ, the following result holds.

Cj is reducible⇒ Gj is reducible.

Proof. Cj is reducible ⇔ ∀qU
ij = 1, ∀s ∈ {1, 2, · · · , n} , ∨m

i=1Ci(xs) = Cj(xs) ⇒ ∀qU
ij = 1,

∀s ∈ {1, 2, · · · , n− t} , ∨m
i=1Ci(xs) = Cj(xs)⇔ Gj is reducible.

Example 5 (Continuation of Example 1). If x5 and x6 are deleted from U, the changes are as follows.
According to Theorem 1, the new β-covering character matrix on U is as follows:

PU =


0.1 0.6 0.6 0.6 0.6
0.1 0.5 0.6 0.6 0.5
0.6 0.1 0.8 0.8 0.6
0.2 0.4 0.7 0.7 0.4

 .

By Definition 2, C4 and C5 are reducible. By Theorem 4, G4 and G5 are still reducible.

Theorem 5. Let (U, Ĉ) be a fuzzy β-covering approximation space of U and let (U , Ĝ) be a fuzzy β-covering
approximation space of U . If the relation character matrix on U is denoted by QU = (qU

ij )m×m and the relation

character matrix on U is denoted by QU = (qUij )m×m, the following result holds.

qUij = 1⇔ qU
ij = 1∨ (qU

ij = 0∧ Gi(xl) ≤ Gj(xl), ∀l ∈ {1, 2, · · · , n− t}).

Proof. The proof is similar to that of Theorem 2.

Example 6 (Continuation of Example 5). The containing relation character matrix on U is as follows.
By Theorem 5, for qU

1,3 = 1, qU
1,4 = 1, qU

1,5 = 1, qU
2,4 = 1, qU

2,5 = 1, and qU
3,4 = 1, the corresponding

positions of QU still hold. For qU
3,2 = 0 and ∀l ∈ {1, 2, 3, 4, 5}, G3(xl) ≤ G2(xl), qU3,2 = 1. For qU

4,3 = 0 and
∀l ∈ {1, 2, 3, 4, 5}, G4(xl) ≤ G3(xl), qU4,3 = 1.

QU =


0 0 1 1 1
0 0 1 1 1
0 0 0 1 0
0 0 1 0 0
0 0 0 0 0

 .

Using Theorems 3 and 5, we can propose Algorithm 3 for updating the reduct in a fuzzy β-covering
while deleting some objects from the universe. If N− = m2−∑m

(i=1) ∑m
(j=1) qU

ij , the total time complexity

of Algorithm 3 is O(N−(|U| − t)). Steps 2–9 are to update QU with time complexity O(N−(|U| − t)),
and Steps 11–17 are to compute Γ(Ĝ) with time complexity O(N−(|U| − t)). Similarly, the time
complexity of Algorithm 3 is smaller than the time complexity of Algorithm 1, so Algorithm 3 can be
applied in real-time data sets. When some objects are deleted from a data set, we can use Algorithm 3
to update the reduct rather than compute the reduct by Algorithm 1 again on the new data set.
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Algorithm 3: Algorithm to update the reduct of a fuzzy β-covering while deleting objects from
the universe

Input: (1)Ĝ = {G1,G2, · · · ,Gm} (2)U = {x1, x2, · · · , · · · , xn−t}. (3)β ∈ (0, 1],(4)QU .
Output: Γ(Ĝ).

1 QU ← QU ;
2 for i = 1, 2, · · · , m do
3 for j = 1, 2, · · · , m do
4 if qUij = 0 then
5 s← 1;
6 for k = 1, 2, · · · , n− t do
7 if Gi(xk) > Gj(xk) then
8 s← 0;
9 qUij ← s;

10 Γ(Ĝ)← Ĝ;
11 for k = 1, 2, · · · , m do
12 T ← ∅;
13 for l = 1, 2, · · · , m do
14 if qUkl = 1 then
15 T ← T ∪ Ck;
16 if T = Gl then
17 Γ(Ĝ)← Γ(Ĝ)− {Gl};
18 return Γ(Ĝ)

4. Constructing Data Sets and Experiments

In this section, we construct some fuzzy β-covering character matrices and run several
experiments on them. The procedure of constructing the matrices is as follows: We construct
some elements of a partial matrix; the elements of the partial matrix are randomly chosen from
{0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. The remaining elements can be obtained by randomly union
5% of the element in the fuzzy β-covering. Several experiments were conducted and the results are
shown in Figure 1. We compared the computational time of Algorithm 1 (SA), 2 (IA) and 3 (DA) with
different universe sizes, different covering sizes, and different reducible element percentages. All of
the experiments were carried out on a personal computer with 64-bit Windows 10, Inter(R) Core(TM)
i7 6700HQ CPU @2.60GHz, and 16GB memory. The programming language was Matlab r2015b.

To compare the computation time of the three algorithms with different reducible percentages,
we set the size of U to 500 and the size of covering to 1000. We conducted the test with different
reducible percentage ranges from 0.05% to 0.95%, gradually increasing by a step of 0.05%.

In Figure 1, we can see that with the gradual increase in the reducible percentage, IA is more
efficient with a lower reducible percentage, and DA is more efficient with a higher reducible percentage.
The different performances with the same reducible percentage are caused by different searching
strategies to find out which element of fuzzy β-covering is reducible.
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Figure 1. Comparison of Algorithms 1–3 with different reducible percentages.

To compare the computational time of the three algorithms with different sizes of universe, we set
the size of covering to 500 and the percentage of reducible element to 5%, 50%, and 95%, respectively.
The size of the universe was increased gradually with a step of 500. The results of the experiments are
shown in of Figure 2.

In Figure 2, we can see that with the gradual increase in the size of the universe, the computational
time of the three algorithms increases corresponding to the addition to the universe. IA and DA are
more efficient than SA. IA is the most efficient with a reducible percentage of 95% DA is the most
efficient with a reducible percentage of 0.05%; according to Figure 1, it is within the expected range.

0 0.2 0.4 0.6 0.8 1

Size of U, reducibal precentage=0.05

0.6

0.8

1

1.2

C
o
m

p
u
ta

ti
o
n
 t
im

e
(l
o
g
(s

))

SA

IA

0 0.2 0.4 0.6 0.8 1

Size of U, reducibal precentage=0.50

0

0.5

1

1.5

C
o
m

p
u
ta

ti
o
n
 t
im

e
(l
o
g
(s

))

SA

IA

0 0.2 0.4 0.6 0.8 1

Size of U, reducibal precentage=0.95

-1

0

1

2

C
o
m

p
u
ta

ti
o
n
 t
im

e
(l
o
g
(s

))

SA

IA

0 0.2 0.4 0.6 0.8 1

Size of U, reducibal precentage=0.05

-2

-1

0

1

2

C
o
m

p
u
ta

ti
o
n
 t
im

e
(l
o
g
(s

))

SA

DA

0 0.2 0.4 0.6 0.8 1

Size of U, reducibal precentage=0.50

0

0.5

1

1.5

C
o
m

p
u
ta

ti
o
n
 t
im

e
(l
o
g
(s

))

SA

DA

0 0.2 0.4 0.6 0.8 1

Size of U, reducibal precentage=0.95

0.5

1

1.5

2

C
o
m

p
u
ta

ti
o
n
 t
im

e
(l
o
g
(s

))

SA

DA

Figure 2. Comparison of Algorithms 1–3 with different sizes of data sets.

To compare the computational time of the three algorithms with different sizes of fuzzy β-covering,
we set the size of universe to 500 and the percentage of reducible elements to 5%, 50%, and 95%,
respectively. The size of the fuzzy β-covering increases gradually with a step of 500. The results of
experiments are shown in Figure 3.

In Figure 3, we can see that with the gradual increase in the size of the covering, the computational
time of the three algorithms increases. The computational time of IA and DA are less than that of SA,
but IA has a great advantage when the size of the covering is small and IA has a great advantage when
the size of the covering is big. In Figure 3, we can also observe that IA and DA are more efficient than
SA, but have a difference with the variation of the covering size.
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Figure 3. Comparison of Algorithms 1–3 with different sizes of covering.

5. Conclusions

Variation of data sets induce variation of fuzzy β-covering. In this paper, we investigate how
to compute and update the reduct of a fuzzy β-covering while the universe increases or decreases.
Three algorithms have been proposed to ensure that the time complexity of the incremental algorithms
is less than that of the static algorithm. Experimental results showed that the computation time of
the incremental algorithms is less than that of the static algorithm, which shows that the incremental
algorithms are more efficient than the static algorithm. Peiqiu Yu and Weikang Li helped perform the
analysis with constructive discussions.

Computing the reduct is a virtual issue of fuzzy β-covering. In the future, we will further
investigate how to compute the reduct via an incremental approach.
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