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Abstract: With the development and popular application of Building Internet of Things (BIoT)
systems, numerous types of equipment are connected, and a large volume of equipment data
is collected. For convenient equipment management, the equipment should be identified and
labeled. Traditionally, this process is performed manually, which not only is time consuming but
also causes unavoidable omissions. In this paper, we propose a k-means clustering-based electrical
equipment identification toward smart building application that can automatically identify the
unknown equipment connected to BIoT systems. First, load characteristics are analyzed and electrical
features for equipment identification are extracted from the collected data. Second, k-means clustering
is used twice to construct the identification model. Preliminary clustering adopts traditional k-means
algorithm to the total harmonic current distortion data and separates equipment data into two to
three clusters on the basis of their electrical characteristics. Later clustering uses an improved k-means
algorithm, which weighs Euclidean distance and uses the elbow method to determine the number of
clusters and analyze the results of preliminary clustering. Then, the equipment identification model
is constructed by selecting the cluster centroid vector and distance threshold. Finally, identification
results are obtained online on the basis of the model outputs by using the newly collected data.
Successful applications to BIoT system verify the validity of the proposed identification method.

Keywords: Building Internet of Things; equipment identification; K-means clustering; euclidean
distance

1. Introduction

With the increasing integration of industrialization and informatization, Internet of Things
(IoT) technology has become an important means of interconnection between the human society
and physical systems [1]. In several application scenarios of Building Internet of Things (BIoT),
generally, the electrical parameter acquisition terminal and the equipment under test have no data
interaction [2]. Therefore, the type information of the equipment under test cannot be directly obtained
from the platform side and should be manually labeled [3]. With the increasing demand for the remote
monitoring and refined management of building electrical equipment, automatically identifying the
types of equipment connected to the platform is important [4]. Data-driven equipment identification
does not just considerably save labor but also timely adapts to the rapid change of equipment states [5];
it lays the foundation for equipment intellectualization [6].

Many experts and scholars studied the identification of electrical equipment mainly by acquiring
the relevant rules and mode information of user equipment [7,8]. Data-driven algorithms, such as
Markov chain [9], decision tree [10], probabilistic neural network [11], deep learning [12], support
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vector machine [13], greedy kernel principal components analysis [14] and hidden Markov model [15],
were applied to construct equipment identification models by mining the potential characteristics
of electrical equipment parameter data [16,17]. An equipment identification model that combines
k-means clustering and kNN classification techniques is constructed to identify the low-voltage DC
electrical load [18]. A k-means Bayes algorithm is used to analyze big data sets for identifying the types
of equipment failures [19]. Uncorrelated spectral components of active power consumption signal are
used to identify residential appliances [20], wherein Karhunen-Loeve expansion is used to breakdown
the active power signal into subspace components to construct appliance signatures. Ghosh et al. [21]
proposed an improved nonintrusive load monitoring technique for identifying different loads.

However, most of the current models are based on the analysis of specific electrical
equipment [22,23]. They have strong pertinence and weak robustness, cannot be flexibly applied to
certain electrical equipment, and cannot accurately identify data with unclear features. The equipment
identification method for analyzing historical data has poor timeliness. Although the method can
achieve equipment identification, it is extremely slow when the equipment states change rapidly.

To solve the abovementioned problems, a novel method for identifying the electrical equipment
in BIoT environment is proposed in this paper. First, the real-time and historical data of the equipment
are collected using smart sockets, and electrical parameters for equipment identification are extracted
through the analysis of load characteristics. Second, k-means clustering algorithm is used twice to
construct the identification model. Preliminary clustering adopts the traditional k-means algorithm to
total harmonic current distortion (THDi) data and separates equipment data into two to three clusters
on the basis of their electrical characteristics. Later clustering uses an improved k-means algorithm,
which weighs Euclidean distance and uses the elbow method to determine the number of clusters and
analyze the results of preliminary clustering. Then, the equipment identification model is constructed
by selecting the cluster centroid vector and distance threshold. Finally, identification results are
obtained online on the basis of the model outputs by using the newly collected data. The model
is applied to BIoT platform to establish a library-type equipment. Equipment identification can be
used to create user portraits and is important for accurate billing, anomaly detection, and demand
response programs.

Our main contribution is an equipment identification with improved k-means clustering algorithm
that: (1) integrates two clusters in a cascaded way to analyze and use different characteristics of
electrical equipment and improves the performance of equipment identification; (2) decomposes
the identification procedure to two stages which effectively reduces the amount of calculation and
implements online identification with real-time data collecting by the IoT; and (3) demonstrates
statistically significant superiority in both standard deviation and performance measures for clustering
tasks in comparison with traditional K-means clustering.

The remainder of this paper is organized as follows: Section 2 analyzes the BIoT platform
and electrical equipment characteristics. Section 3 describes the identification method, including
data preprocessing, feature extraction, construction of equipment identification model, and real-time
equipment identification. Section 4 presents and discusses the identification results. Finally, Section 5
draws the conclusions.

2. Analysis of BIoT Platform and Electrical Equipment

2.1. BIoT Platform and Data Collection

The BIoT platform includes application services, cloud server, intelligent gateways, smart sockets,
and equipment. Figure 1 shows the structure of the BIoT system. The smart socket consists of parameter
acquisition and data transmission modules. The parameter acquisition module can collect various
electrical parameters of the electrical equipment, such as current, voltage, and power. The collected data
are uploaded to the intelligent gateway through the data transmission module. The intelligent gateway
aggregates data into the unified BIoT platform through a network protocol, such as TCP/IP [24].
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The data required for data mining algorithms, such as equipment identification, can be accessed from
the BIoT platform.

TCP/IP

Database

Application

Rule-bank

...

...

Smart socket

 Intelligent 
gateway 

PC Floodlight Water dispenserLED Printer

...Equipment

LED

TCP/IPTCP/IP

Cloud server
Application 

services

Figure 1. Structure of the BIoT system.

2.2. Analysis of Equipment Characteristics

Considering the unique internal structure mechanism [10], electrical equipment has specific
operating parameters and load characteristics. The electrical parameters of the equipment include the
harmonics, current RMS, periodic current, power, and energy consumption, which vary in different
operation stages.

2.2.1. Analysis of Load Characteristics

With the rapid development of power electronics technology, various rectifiers, frequency
converters, and electrical equipment with nonlinear characteristics are emerging, which cause high
harmonics in grid current [25,26]. Nonlinear components exist in household and office equipment,
such as TV sets, energy-saving lamps, washing machines, and medical instruments. The survey of
harmonics shows [8–10] that common electrical equipment mainly produces odd harmonics of no
more than 13 orders [27,28], and a small number of electrical appliances produce harmonics of more
than 20 orders, but the content of harmonics is extremely small. The harmonics of 1–32 orders can
almost reflect the complete harmonics of equipment. Depending on the component, the equipment
can be divided into different types on the basis of the electrical load characteristics, which are key
parameters for equipment identification. Table 1 presents the load characteristics of equipment.

Table 1. Load characteristics of equipment.

Load Characteristics Harmonics Power Example

Resistive load Absent Generally larger Water dispenser
Capacitive load Larger Not too large Desktop computer
Inductive load Large Irregular Air conditioner
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As shown in Table 1, the load characteristics of the equipment include resistive (R), capacitive (C),
and inductive (L) loads. The R load operates through resistive components, and its power varies greatly.
However, the harmonics of R load are almost absent, and current waveform is close to sinusoidal
wave. The C load has AC/DC converter module; thus, it produces large waveform distortion and even
relatively high harmonics, but the power is not extremely large. The L load has the characteristic of
load current lagging behind load voltage with a phase difference, and certain equipment will consume
reactive power when consuming active power, which will cause large harmonics.

2.2.2. Analysis of Power and Working Characteristics

Users generally use the equipment in a certain time pattern. For example, several household
electrical appliances will show the approximate frequency of use when the user returns home from
work. The power of the equipment generally fluctuates in a small range around the rated power in
a particular working state. However, the power will change significantly when the working state
changes. The information shown in Table 2 can be obtained by analyzing the working states of specific
electrical equipment.

Table 2. Analysis of working electrical equipment.

Operation Status Characteristics Example Work Time

Self-varying
multiple-state
switching
operation

Specific
time use

It can automatically switch between
multiple states in normal operation,
and each state has a fixed step size
and constant power.

Electric cooker
11:00–13:00 and
17:00–19:00

Uncertain
time use

Each state will have an uncertain
step size due to human intervention,
but the power is constant.

Air conditioner
and
water dispenser

- - - -

Long-term
use

The normal operation will
automatically switch the operation
state, and the power and time period
of each state are fixed.

Refrigerator Whole day

Man-
controlled
multiple-state
switching
operation

Specific
time use

When the state changes, the power
changes accordingly and is constant
in a specific state.

1. Range hood and
2. water heater

1. 11:00–13:00 and
17:00–19:00
2. 19:00–8:00
(next day)

Uncertain
time use

Man Controls the transition between
multiple states during normal
operation.

Notebook and
desktop PC - - - -

Stateless
switching
operation

Specific
time use

Only one each of the running state
and fixed power are present in
normal operation.

1. LED and
2. microwave oven

1. 18:00–23:00
2. 11:00–13:00 and
17:00–19:00

Uncertain
time use

Generally, only one each of
operating state and fixed power
are present.

TV and
air heater - - - -

2.3. Feature Extraction

Electrical equipment of the same type has similar internal structure, operation rules, load
characteristics, and powers. These characteristics cause the current waveforms to have similar
shape, and the power changes of different states present similar regularity. Hence, the current
waveform and power of electrical equipment are selected as the reference standard for equipment
confirmation. Figures 2 and 3 show the working current waveforms and power models of typical
electrical equipment, respectively.

An oscilloscope is used to measure the current waveforms of equipment with a similar type under
a normal operation in a certain state. The current waveforms over two periods are abstracted, as shown
in Figure 2. Figure 3 displays the power models, which are obtained from the equipment living in
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full cycle. Different types of equipment, such as desktop PC and TV, show similar power variations.
These types of equipment present two states, namely, a fixed and nearly zero power when on standby
and a high power when in use.

(a) TV (b) Light (c) Electric cooker

(d) Air conditioner(heater) (e) Microwave oven (f) Water dispenser(heater)

(g) Air heater (h) Air cooler (i) Refrigerator

Figure 2. Working current waveforms of typical electrical equipment.
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Figure 3. Power models of typical electrical equipment.
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Harmonic characteristics can be converted from current signal in time domain to spectrum signal
in frequency domain via fast Fourier transform [29]. The more abundant the harmonic content,
the greater the THDi. Therefore, the load characteristics of the electrical equipment can be roughly
judged by the THDi. Generally, the total harmonic distortion rates of R, C, and L loads have the
following relationship: THDiC>THDiL>THDiR.

3. Proposed Method

The proposed method for electrical equipment identification can be divided into four stages,
as shown in Figure 4. At the first stage, the historical data of electrical equipment, which include
harmonics and power, are collected by the smart socket and transmitted to the BIoT platform.
The second stage preprocesses data to obtain the valid data needed by the clustering algorithm.
The third stage analyzes the processed data by using clustering algorithm twice and constructs the
model. Finally, identification result is obtained online on the basis of the model outputs by using the
newly collected real-time data at the fourth stage. The details are presented as follows:

Electric equipment

Smart socket

11010101001101100010110111

Identification result

Model

Historical data

Preliminary/Later clustering Data preprocessing

Real-time identification

Real-time data

1
1
0
1
0
0
1
1
1
0
1
1
1

BIoT platform

Valid data

Figure 4. Equipment identification flow chart.

3.1. Data Preprocessing

To ensure the correctness, consistency, integrity, and minimum value of the data, we fill the
missing value and process outliers of the valid data [30]. Figure 5 illustrates the data preprocessing
flow chart. The data preprocessing of preliminary k-means clustering and later improved k-means
clustering includes two sections. First, THDi is extracted for preliminary k-means clustering and
separates equipment data into two to three clusters on the basis of their electrical characteristics.
Second, the subsets of the preliminary clustering results are normalized and used to later improved
k-means clustering.
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Figure 5. Data preprocessing flow chart.

3.1.1. THDi Extraction

The THDi of a signal is a measurement of the harmonic distortion present and defined as the ratio
of the sum of the powers of all harmonic components to the power of the fundamental frequency [31],
which is expressed as follows:

THDi =
1
I1

√√√√ 32

∑ I2
i

i=2
× 100% (1)

The THDi of current is extracted as a feature. The sample data are 32D. After extracting the
feature, the sample data become 1D.

3.1.2. Data Normalization

For a dataset with M records, a M×32 matrix N can be constructed as follows:

N =


N1,1 N1,2 ... N1,32

N2,1 N2,2 ... N2,32

... ... ... ...
NM,1 NM,2 ... NM,32

 (2)

To make the harmonics of different load characteristics comparable, we conduct the normalization
process that transforms the element of the matrix N to the range of (0,1] [32], as shown in
Equations (3)–(5), where ε is a positive real number close to 0 and avoids the occurrence of data
with 0.

nmin = min
1≤i≤M,1≤j≤32

Nij (3)

nmax = max
1≤i≤M,1≤j≤32

Nij (4)

N′ij =

{ Nij−nmin
nmax−nmin

, Nij > nmin

ε, Nij = nmin
(5)
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The normalized matrix N’ is expressed as follows:

N’ =


N′1,1 N′1,2 ... N′1,32
N′2,1 N′2,2 ... N′2,32
... ... ... ...

N′M,1 N′M,2 ... N′M,32

 (6)

Normalization is performed on the later clustering basis instead of the entire method.

3.2. Construction of Equipment Identification Model

In k-means clustering, cluster centroids are initialized randomly. Data samples are assigned to the
closest cluster, which is determined by the distances between the corresponding centroid and sample
data. The centroid of each cluster is updated by calculating the mean value of all sample data within
the respective cluster. Then, the process of partitioning data samples into the corresponding clusters is
repeated on the basis of the updated cluster centroids until the specified termination criteria are met.

The identification model constructed by this method includes two cascaded clustering processes:

(1) Preliminary clustering: Preliminary clustering uses the data of the equipment harmonic index
THDi and divides the equipment valid data on the basis of the clustering results. The electrical
characteristics of equipment cannot be fully reflected from the harmonics. The divided sample
data are clustered by later k-means, and an improved similarity measurement method is proposed.

(2) Later clustering: The sample data of equipment with the same type are divided by improved
k-means clustering. By comparing the source data with the current waveforms and power
models of the above mentioned common electrical equipment, the equipment type labels at the
centroid are marked, and the clustering results are evaluated to complete the establishment of the
equipment identification model.

3.2.1. Preliminary Clustering

The harmonic indices {THDi1, THDi2, · · · , THDin} of the equipment are extracted after selecting
valid data from source data. K-means clustering can accurately cluster these source data because of their
small dimension and evident characteristics. On the basis of the load characteristics of the equipment,
the number of clustering categories K is set to no more than 3, and the centroid {A1, · · · , Ak, · · · , AK}
can be obtained. On the basis of the centroid, the valid data are divided into K subsets, namely,
{a1, · · · , ak, · · · , aK}.

3.2.2. Later Clustering

K-means clustering algorithm selects the K′ centroid. This algorithm adjusts the centroid location
on the basis of the similarity measure distance (Euclidean distance) between the centroid
{C1, · · · , Ck′ , · · · , CK′} and sample data and iteratively selects the centroid. The obtained clustering
centroid {C1, · · · , Ck′ , · · · , CK′} is the standard value of an equipment type [33].On the basis of the
centroid, subset ak is divided into K’ cluster, namely, {c1, · · · , ck′ , · · · , cK′}.

• Improvement of similarity measurement method

Euclidean distance is the most commonly used similarity measurement method [34] in k-means
algorithm. However, the method only calculates the absolute distance among sample data [35].
To enhance the accuracy of this model, we introduce a weight parameter wi by finding the maximum
and minimum power from the sample data that fall in each cluster obtained from the preliminary
clustering process and centroid that is obtained from the last iteration. wi can be described as follows:

wi =
max {Pi, Pk′}
min {Pi, Pk′}

(7)
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where Pk′ is the power of cluster ck′ sample data and Pi is the power of the sample data of subset ak
that is obtained from the preliminary clustering process.

Similarity measurement can be written as follows:

d
(

N′i , Ck′
)
= wi

√(
N′i1 − Ck′1

)2
+
(

N′i2 − Ck′2
)2

+ · · ·+
(

N′i32 − Ck′32
)2 (8)

where N′i is the harmonic of 32D sample data, which is from the subset ak that is obtained from
preliminary clustering.

• Determination of K′ value via elbow method

In contrast to the 1D sample data set of the preliminary clustering, which are obvious differences
in load characteristics, the sample data of the later clustering has more dimensions and the data
features are more complex. Therefore, the value of K′ needs to be determined before later clustering.

The core indicator sum of the squared errors (SSEs) of the elbow method can be expressed
as follows:

SSE = ∑K′
j=1∑O∈ck′

∣∣O− Cj
∣∣2 (9)

where O is the sample point in ck′ and Cj is the centroid of ck′ (mean of all samples in ck′ ).
We observe the change of SSE as the K′ value increases. With the increase in clustering number

K′, the sample partition is increasingly precise, and the SSE gradually decreases [36]. The K′ value is
selected when the relative change of SSE reaches the maximum.

• Label and threshold determination for final clusters

Using the improved similarity measurement method (weighted Euclidean distance) and elbow
method for the k-means clustering to cluster the sample data, final clusters are obtained and the optimal
centroid {C1, · · · , Ck′ , · · · , CK′} are selected. Combined with final clusters, the historical source data
collected in BIoT platform with timestamp are used to plot the curves. These data are compared to the
characteristic curves of the library-type equipment, which is extracted in Section 2.3, and the clustering
centroids {C1, · · · , Ck′ , · · · , CK′} are labeled as the real equipment.

Then, the variance σ2 of the sample data for subset ck′ is calculated. On the basis of the Gauss
theorem that the error (approximately) obeys the principle of normal distribution, 3σ2 principle of
normal distribution can cover more than 99% of the data. Considering that the distance is not negative,
the distance threshold ζ is selected, as follows:

ζ = 3σ2 (10)

3.3. Real-Time Equipment Identification

The real-time equipment identification mainly includes preprocessing data, calculating the
weighted Euclidean distance with centroid, comparing to threshold, selecting the cluster label,
and identifying the equipment type. Figure 6 exhibits the flow chart of the real-time identification.

The BIoT platform collects source real-time data when the equipment is running. First, the
real-time data are preprocessed, as mentioned in Section 3.1, and THDi is extracted to predict
the nearest cluster Ai of the preliminary clustering. Then, weighted Euclidean distance between
preprocessed data and each centroid of the later clustering is calculated, and the cluster label is selected
as the label of the specific record when the distance is the smallest one within the threshold. The process
of calculating weighted Euclidean distance and labeling is executed once every record. Hence, all the
real-time data collected are repeatedly used to identify the equipment. The principle of minority
obeying majority [37] is adopted to determine the equipment type, and the real-time identification is
completed. If no qualified value is found in the distance threshold comparison, then a new equipment
may be detected, and the equipment identification model should be updated.
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Figure 6. Real-time identification flow chart.

4. Case Studies

4.1. Description of Dataset

The dataset was generated from the BIoT platform deployed in the Laboratory Building of
Shandong Jianzhu University. We selected the data of the five types of equipment (i.e., water dispenser,
desktop computer, air heater, electric cooker, and microwave) in a room. Considering the operation
characteristics of the experimental equipment, we set the acquisition frequency of the smart socket
to once a minute, so as to avoid losing valid data and to save storage space. In addition to, when
a change in the state of the equipment is detected (the difference between the rms currents of two
adjacent collection is greater than 0.1 A), the changed equipment parameters will also be reported.
The data are collected from 1 January 2019 to 27 January 2019, and the total number of records is 10,533.
The collected electrical parameters include cycle current waves, power, and 1–32 orders of harmonic
values. Several invalid sample data in the dataset because the sample data are uploaded roughly at
minute intervals regardless of whether the equipment is working or in a standby state. On the basis
of the powers and timestamps, 8357 data are selected as the valid sample data. Table 3 presents the
quantity of data from experimental equipment, and Table 4 lists the valid sample data.

Table 3. Statistical of experimental equipment data.

Equipment Name Equipment 1 Equipment 2 Equipment 3 Equipment 4 Equipment 5

Quantity of source data 1955 3070 4555 419 533
Quantity of valid data 1955 1389 4169 419 425
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Table 4. Valid sample data.

No. FHG SHG THG ... Power(W) Time

1 5.41 0.03 0.43 ... 1665.1 2019/1/1 8:18:16
2 5.38 0.00 0.38 ... 1663.4 2019/1/1 8:19:44
3 5.36 0.00 0.39 ... 1667.5 2019/1/1 8:20:12
4 5.35 0.00 0.41 ... 1661.5 2019/1/1 8:21:07
...

...
...

...
...

...
...

8356 2.5 0.00 0.33 ... 540.3 2019/1/26 11:18:50
8357 2.54 0.00 0.35 ... 539.8 2019/1/26 11:19:45

FHG is the fundamental wave.
SHG is the 2-order harmonics.
THG is the 3-order harmonics.
... is the 4-order to 32-order harmonics.

4.2. Model Training

The THDi is calculated on the basis of the harmonics of the valid data, as follows:

THDi = {8.90%, 9.47%, · · · , 17.87%} (11)

In view of the type and quantity of the actual data in this experiment, the number of cluster K for
preliminary clustering is set at 2. Then, the centroid value of the clusters is {0.08082377, 1.06512096}
and the number of the clusters data is {4188, 4169}. Figure 7 presents the scatter plot of
clustering results.

Figure 7. Scatter plot of THDi based on clustering results.

Figure 7 shows that the THDi data are divided into two clusters by k-means clustering.
The dividing point of the THDi data is 0.5, and the x-coordinate is the number shown in Table 4.
The green points are labeled as 0, and the blue points are labeled as 1. The cluster centroids differ
considerably, and the scatter plots show remarkable results. The cluster with label 0 contains the data
of equipment 1, 2, 4, and 5; the cluster with label 1 only contains equipment 3.

Valid data sets are divided on the basis of the results of preliminary clustering, as follows:
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a1 =


5.41 0.03 0.43 0.01 · · ·
5.38 0.00 0.38 0.00 · · ·
· · · · · · · · · · · · · · ·
2.54 0.00 0.35 0.01 · · ·

 (12)

a2 =


0.18 0.00 0.14 0.00 · · ·
0.14 0.00 0.10 0.01 · · ·
· · · · · · · · · · · · · · ·
0.18 0.00 0.17 0.00 · · ·

 (13)

The normalization of each sample data ak construct matrix N′k is shown as follows:

N′1 =


0.8769 0.0050 0.0698 · · ·
0.8721 0.0001 0.0617 · · ·
· · · · · · · · · · · ·

0.4118 0.0001 0.0568 · · ·

 (14)

N′2 =


1.0001 0.0041 0.0721 · · ·
0.9981 0.0038 0.0724 · · ·
· · · · · · · · · · · ·

0.0241 0.0001 0.0241 · · ·

 (15)

When clustering the sample data of a1, the effects of different K′ values on SSE are shown
as follows:

Figure 8 shows that the K′ value corresponding to elbow is 4 (the curvature is the highest),
and the optimal number of clusters K′ for later clustering is set to 4. The K′ value is selected for
later improved k-means clustering. Data set a2 is processed in the same way, and the K′ value is 1.
Therefore, only the sample data in a1 are clustered for later clustering. In order to avoid the local
optimization problem, we adopt the method of randomly selecting the clustering centroid during
multiple clustering processes, and the maximum number of clustering processes is set to 100. Figure 9
exhibits the distribution of sample data in each cluster.

1 2 3 4 5 6 7 8
K'

100

200

300

400

SS
E

Figure 8. Effects of different K’ values on SSE size.
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Figure 9. Distribution of sample data in each cluster at K′ = 4.

The results of the improved clustering can be obtained from this model, as shown in Table 5.

Table 5. Results of improved cluster.

Cluster Label Quantity σ2 Threshold Centroid Power Equipment Type (Number) Accuracy
0 1956 0.0092 0.0276 1653.89 1 (1956)

99.45%1 1407 0.0114 0.0341 293.61 2 (1398), 5 (9)
2 433 0.0041 0.0124 735.62 4 (419), 5 (14)
3 392 0.0022 0.0067 521.04 5 (392)

Table 6 presents the centroid vector of each cluster. The second column “Cluster centroid vector”
is the centroid vector of the cluster which consists of 32D data.

Table 6. The cluster centroid vector of the clustering result.

Cluster Label Cluster Centroid Vector

0 0.9845 0.0851 0.0016 ...
1 0.0314 0.0005 0.0254 ...
2 0.1681 0.0003 0.0025 ...
3 0.0008 0.0003 0.0003 ...

Table 7 displays the clustering results of sample data a1 by traditional k-means clustering.

Table 7. Information of traditional cluster results.

Cluster Label Quantity σ2 Threshold Equipment Type (Number) Accuracy

0 1962 0.0582 0.1745 1 (1956), 5 (6)

96.54%1 1432 0.0484 0.1453 2 (1398), 5 (34)
2 505 0.0671 0.2014 4 (419), 5 (86)
3 289 0.0613 0.1838 5 (289)

For the sample set of the same clustered shown in clustering results, it may contain data from two
different type of equipment which is an error clustering result. In Tables 5 and 7, the second column
represents the quantity of data for the corresponding cluster which contains the sample data sets of
the collected data from equipment 1 to equipment 5. The number of the clustered sample data that
belongs to each equipment type is shown in the “Equipment type (Number)” column. For example,
in the second row of Table 5, “2 (1398), 5 (9)” means in the sample data with label 1, 1398 sample data
belongs to equipment 2 and 9 sample data belongs to equipment 2. To evaluate the clustering results,
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accuracy is calculated by dividing the correct number of clustering data by the total number of data,
as follows:

acc = T/total (16)

T is the correct number of clustering data and total is the total number of sample data.
In the data comparison of Tables 5 and 7, the accuracy of the improved clustering method is

higher than that of the traditional one for the same dataset, which the threshold has a more accurate
value and the clusters of the same type sample data of equipment has a more correct set. By extracting
the square root and weighting the average variance σ2 of each cluster, the mean standard deviation of
the improved cluster is calculated as 0.0917 and the mean standard deviation of the traditional cluster
is calculated as 0.2366. From the mean standard deviation, the improved clustering effect is better than
the traditional.

4.3. Identification Results

In comparison with the current waveform and power curve of typical electrical equipment, the
results show high similarity. We compare several aspects, such as the peak current in the operation
cycle, the shape of the current waveform, and the shape of the power in the operation for a long time.
For example, as shown in Figure 10a, the current waveform shape is similar to the waveform of the
air heater, water dispenser, and electric cooker, and the final choice is the air heater because of the
maximum value. The power curve of (a) shows a fluctuation value of approximately 1650, and its
middle right part is slightly higher than 1650. In the power models of typical electrical equipment,
the power models of desktop PC, TV, and air header conform to the characteristics. The current
waveform and power curve of air heater are similar to equipment 1. Therefore, equipment 1 is
identified as air heater. Table 7 shows the identification results.

(a) Equipment 1 (b) Equipment 2

(c) Equipment 3 (d) Equipment 4

Figure 10. Cont.
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(e) Equipment 5

Figure 10. Similarity contrast between the current or power curves and extracted curves.

The data from the water dispenser connected to the platform at 8:03 a.m. on 22 March 2019,
and 23 real-time data were collected at 8:03–8:22 a.m. for equipment identification. Table 8 presents
the quantity of 23 source real-time data, which include the harmonics and power collected by the
BIoT system.

Table 8. Comparative analysis of identification results.

Equipment Sample Set Equipment Type

Equipment 1 Air heater
Equipment 2 Water dispenser
Equipment 3 Desktop computer
Equipment 4 Electric cooker
Equipment 5 Microwave oven

THDi {3.4%, 4.2%, 3.7%, · · · , 4.2%} is extracted from source real-time data; it is close to A1 and
clusters to data set a1. Prediction data are obtained by 32D harmonics data preprocessing of source
real-time data. The average weighted Euclidean distance is calculated between the full predicted data
and the centroids of the equipment identification model after data preprocessing, which is weighed by
the power of real-time data. The results shown in Table 9 can be obtained by calculating the average
weighted Euclidean distance.

Table 9. Source real-time data.

No. FHG SHG THG ... Power (W)

1 0.92 0.01 0.02 ... 294.2
2 0.91 0.01 0.00 ... 290.0
3 0.93 0.00 0.00 ... 292.1
4 0.89 0.00 0.41 ... 293.3
...

...
...

...
...

...
22 0.87 0.00 0.00 ... 293.5
23 0.96 0.00 0.00 ... 291.9

As shown in Table 10, the minimum distance is the centroid corresponding to label 1, and the
distance is within the distance threshold of label 1 (ζ = 0.0341). Therefore, this equipment can be
identified as water dispenser in the range of the allowable error.

Table 10. Average weighted Euclidean distance.

Label 0 1 2 3

Distance 0.8141 0.0089 0.1468 0.0561
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5. Conclusions

A k-means clustering-based method for electrical equipment identification toward smart building
applications was proposed. First, we built a BIoT platform to collect electrical parameters of certain
typical equipment. Second, k-means clustering was used twice to establish the equipment identification
model. Third, the identification result was obtained online on the basis of the model outputs by using
the real-time collected data. Finally, a case study showed that this method can effectively identify the
typical equipment in building application with high accuracy. This method is suitable for the real-time
identification of typical electrical equipment with different harmonic characteristics. The constructed
model can be continuously refined in an incremental manner to enable real-time identification of
several types of equipment.

Limited by the electrical parameter acquisition and calculation capabilities of the measurement
terminal, we only use a few types of characteristic parameters, such as THDi and harmonics,
for equipment identification. Many other electrical parameters, such as V-I trajectory and
high-frequency EMI, can be used to identify equipment. Future work will focus on the comprehensive
use of other feature types to improve the accuracy of equipment identification and extend the range of
equipment types that can be identified.

Author Contributions: Conceptualization, G.Z. and X.D.; funding acquisition, G.Z.; methodology, Y.L. and X.D.;
project administration, G.Z.; writing–original draft, Y.L.; writing–review and editing, X.D. and Y.L. All authors
have read and agreed to the published version of the manuscript.

Funding: This work was financially supported by the National Natural Science Foundation of China (Grant Nos.
61573225 and 619032226) and the Key Research and Development Program of Shandong Province (Grant No.
2019GGX101072)

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Deng, X.; Peng, J.; Peng, X.; Mi, C. An intelligent outlier detection method with one class support tucker
machine and genetic algorithm towards big sensor data in internet of things. IEEE Trans. Ind. Electron. 2018,
66, 4672–4683. [CrossRef]

2. Villari, M.; Celesti, A.; Fazio, M.; Puliafito, A. A secure self-identification mechanism for enabling iot devices
to join cloud computing. In Internet of Things. IoT Infrastructures; Springer: Cham, Switzerland, 2015;
pp. 306–311.

3. Zhiying, F.; Wenhu, T.; Qinghua, W. Users’consumption behavior clustering method considering longitudinal
randomness of load. Electr. Power Autom. Equip. 2018, 38, 39–44.

4. Bauerle, F.; Miller, G.; Nassar, N.; Nassar, T.; Penney, I. Context sensitive smart device command recognition
and negotiation. In Internet of Things. User-Centric IoT; Springer: Cham, Switzerland, 2015; Volume 150,
pp. 314–330.

5. Jia, M.; Komeily, A.; Wang, Y.; Srinivasan, R.S. Adopting internet of things for the development of smart
buildings: A review of enabling technologies and applications. Autom. Constr. 2019, 101, 111–126. [CrossRef]

6. Tu, Y.; Zhang, Z.; Li, Y.; Wang, C.; Xiao, Y. Research on the internet of things device recognition based on
rf-fingerprinting. IEEE Access 2019, 7, 37426–37431. [CrossRef]

7. Rashid, K.M.; Louis, J. Times-series data augmentation and deep learning for construction equipment activity
recognition. Adv. Eng. Inform. 2019, 42, 100944. [CrossRef]

8. Huang, Y.; Zhan, J.; Luo, C.; Wang, L.; Wang, N.; Zheng, D.; Fan, F.; Ren, R. An electricity consumption
model for synthesizing scalable electricity load curves. Energy 2019, 169, 674–683. [CrossRef]

9. Arif, A.; Wang, Z.; Wang, J.; Mather, B.; Bashualdo, H.; Zhao, D. Load modeling—A review. IEEE Trans.
Smart Grid 2018, 9, 5986–5999. [CrossRef]

10. Rashid, H.; Singh, P.; Stankovic, V.; Stankovic, L. Can non-intrusive load monitoring be used for identifying
an appliance’s anomalous behaviour? Appl. Energy 2019, 238, 796–805. [CrossRef]

11. Mohd Rosdi, N.A.; Nordin, F.H.; Ramasamy, A.K. Identification of electrical appliances using non-intrusive
magnetic field and probabilistic neural network (PNN). In Proceedings of the 2014 IEEE International
Conference on Power and Energy (PECon), Kuching, Malaysia, 1–3 December 2014; pp. 47–52.

http://dx.doi.org/10.1109/TIE.2018.2860568
http://dx.doi.org/10.1016/j.autcon.2019.01.023
http://dx.doi.org/10.1109/ACCESS.2019.2904657
http://dx.doi.org/10.1016/j.aei.2019.100944
http://dx.doi.org/10.1016/j.energy.2018.12.050
http://dx.doi.org/10.1109/TSG.2017.2700436
http://dx.doi.org/10.1016/j.apenergy.2019.01.061


Information 2020, 11, 27 17 of 18

12. Hou, R.; Pan, M.; Zhao, Y.; Yang, Y. Image anomaly detection for iot equipment based on deep learning.
J. Vis. Commun. Image Represent. 2019, 64, 102599. [CrossRef]

13. Chicco, G.; Ilie, I.-S. Support vector clustering of electrical load pattern data. Power Syst. IEEE Trans. 2009,
24, 1619–1628. [CrossRef]

14. Chen, G.; Chen, J.; Zi, Y.; Pan, J.; Han, W. An unsupervised feature extraction method for nonlinear
deterioration process of complex equipment under multi dimensional no-label signals. Sens. Actuators
A Phys. 2018, 269, 464–473. [CrossRef]

15. Liu, J.; Zhang, L.; Chen, X.; Niu, J. Facial landmark automatic identification from three dimensional (3D)
data by using hidden markov model (HMM). Int. J. Ind. Ergon. 2017, 57, 10–22. [CrossRef]

16. Mets, K.; Depuydt, F.; Develder, C. Two-stage load pattern clustering using fast wavelet transformation.
IEEE Trans. Smart Grid 2016, 7, 2250–2259. [CrossRef]

17. Ran, L.; Li, F.; Smith, N.D. Multi-resolution load profile clustering for smart metering data. IEEE Trans.
Power Syst. 2016, 31, 4473–4482.

18. Quek, Y.; Woo, W.; Logenthiran, T. DC equipment identification using k-means clustering and KNN
classification techniques. In Proceedings of the IEEE Region 10 Annual International Conference (TENCON),
Singapore, 22–25 November 2016; pp. 777–780.

19. Chen, G.; Liu, Y.; Ge, Z. K-means bayes algorithm for imbalanced fault classification and big data application.
J. Process Control 2019, 81, 54–64. [CrossRef]

20. Dinesh, C.; Nettasinghe, B.W.; Godaliyadda, R.I.; Ekanayake, M.P.B.; Ekanayakem, J.; Wijayakulasooriya, J.V.
Residential appliance identification based on spectral information of low frequency smart meter
measurements. IEEE Trans. Smart Grid. 2016, 7, 2781–2792. [CrossRef]

21. Ghosh, S.; Chatterjee, A.; Chatterjee, D. Improved non-intrusive identification technique of electrical
appliances for a smart residential system. IET Gener. Transm. Distrib. 2019, 13, 695–702. [CrossRef]

22. Jagtap, H.P.; Bewoor, A.K. Development of an algorithm for identification and confirmation of fault in
thermal power plant equipment using condition monitoring technique. Procedia Eng. 2017, 181, 690–697.
[CrossRef]

23. Yuan, Y.; Peng, L. Wireless Device Identification Based on Improved Convolutional Neural Network Model.
In Proceedings of the 2018 IEEE 18th International Conference on Communication Technology (ICCT),
Chongqing, China, 8–11 October 2018; pp. 683–687.

24. Peng, W.; Li, C.; Zhang, G.; Yi, J. Interval type-2 fuzzy logic based transmission power allocation strategy for
lifetime maximization of wsns. Eng. Appl. Artif. Intell. 2020, 87, 103269. [CrossRef]

25. Wang, Y.; Luo, D.; Xiao, X.; Li, Y.; Xu, F. Review and development tendency of research on 2∼150 khz
supraharmonics. Power Syst. Technol. 2018, 42, 353–365.

26. Zhou, M.; You, X.; Wang, C.; Li, Q. Harmonic analysis of selected harmonic elimination pulse width
modulation. Trans. China Electrotech. Soc. 2013, 28, 11–20.

27. Yazdani-Asrami, M.; Gholamian, S.A.; Mirimani, S.M.; Adabi, J. Experimental investigation for power loss
measurement of superconducting coils under harmonic supply current. Measurement 2019, 132, 324–329.
[CrossRef]

28. Liu, Q.; Kamoto, K.M.; Liu, X.; Sun, M.; Linge, N. Low-complexity non-intrusive load monitoring using
unsupervised learning and generalized appliance models. IEEE Trans. Consum. Electron. 2019, 65, 28–37.
[CrossRef]

29. Lin, S.; Zhao, L.; Liu, Q.; Li, D.; Fu, Y. A nonintrusive load identification method based on quadratic 0-1
programming. Power Syst. Prot. Control 2016, 44, 85–91.

30. Yang, L.; Ban, X.; Chen, Z.; Guo, H. A new data preprocessing technique based on feature extraction and
clustering for complex discrete temperature data. Procedia Comput. Sci. 2018, 129, 78–80. [CrossRef]

31. Meng, F.; Xu, X.; Gao, L.; Man, Z.; Cai, X. Dual passive harmonic reduction at dc link of the double-star
uncontrolled rectifier. IEEE Trans. Ind. Electron. 2019, 66, 3303–3309. [CrossRef]

32. Jain, S.; Shukla, S.; Wadhvani, R. Dynamic selection of normalization techniques using data complexity
measures. Expert Syst. Appl. 2018, 106, 252–262. [CrossRef]

33. Qi, J.; Yu, Y.; Wang, L.; Liu, J.; Wang, Y. An effective and efficient hierarchical k-means clustering algorithm.
Int. J. Distrib. Sens. Netw. 2017, 13. [CrossRef]

34. Li, B.; Fan, Z.-T.; Zhang, X.-L. Robust dimensionality reduction via feature space to feature space distance
metric learning. Neural Netw. 2019, 112, 1–14. [CrossRef]

http://dx.doi.org/10.1016/j.jvcir.2019.102599
http://dx.doi.org/10.1109/TPWRS.2009.2023009
http://dx.doi.org/10.1016/j.sna.2017.12.009
http://dx.doi.org/10.1016/j.ergon.2016.11.001
http://dx.doi.org/10.1109/TSG.2015.2446935
http://dx.doi.org/10.1016/j.jprocont.2019.06.011
http://dx.doi.org/10.1109/TSG.2015.2484258
http://dx.doi.org/10.1049/iet-gtd.2018.5475
http://dx.doi.org/10.1016/j.proeng.2017.02.451
http://dx.doi.org/10.1016/j.engappai.2019.103269
http://dx.doi.org/10.1016/j.measurement.2018.03.042
http://dx.doi.org/10.1109/TCE.2019.2891160
http://dx.doi.org/10.1016/j.procs.2018.03.050
http://dx.doi.org/10.1109/TIE.2018.2844840
http://dx.doi.org/10.1016/j.eswa.2018.04.008
http://dx.doi.org/10.1177/1550147717728627
http://dx.doi.org/10.1016/j.neunet.2019.01.001


Information 2020, 11, 27 18 of 18

35. Bu, F.; Chen, J.; Zhang, Q.; Tian, S.; Ding, J.; Zhu, B. A controllable refined recognition method of electrical
load pattern based on bilayer iterative clustering analysis. Dianwang Jishu/Power Syst. Technol. 2018,
42, 903–910.

36. Kwedlo, W. A clustering method combining differential evolution with the k-means algorithm. Pattern
Recognit. Lett. 2011, 32, 1613–1621. [CrossRef]

37. Liu, Z.; Xiao, S.L.; Chen, J. Household load identification method based on feature similarity. J. Chongqing
Univ. Technol. Nat. Sci. 2018, 187, 174–180.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.patrec.2011.05.010
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Analysis of BIoT Platform and Electrical Equipment 
	BIoT Platform and Data Collection
	Analysis of Equipment Characteristics
	Analysis of Load Characteristics
	Analysis of Power and Working Characteristics

	Feature Extraction 

	Proposed Method
	Data Preprocessing 
	THDi Extraction
	Data Normalization

	Construction of Equipment Identification Model
	Preliminary Clustering
	Later Clustering

	 Real-Time Equipment Identification

	Case Studies 
	Description of Dataset
	Model Training
	Identification Results

	Conclusions
	References

