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Abstract: Providing accessibility information about sidewalks for people with difficulties with moving
is an important social issue. We previously proposed a fully supervised machine learning approach
for providing accessibility information by estimating road surface conditions using wheelchair
accelerometer data with manually annotated road surface condition labels. However, manually
annotating road surface condition labels is expensive and impractical for extensive data. This paper
proposes and evaluates a novel method for estimating road surface conditions without human
annotation by applying weakly supervised learning. The proposed method only relies on positional
information while driving for weak supervision to learn road surface conditions. Our results
demonstrate that the proposed method learns detailed and subtle features of road surface conditions,
such as the difference in ascending and descending of a slope, the angle of slopes, the exact
locations of curbs, and the slight differences of similar pavements. The results demonstrate that the
proposed method learns feature representations that are discriminative for a road surface classification
task. When the amount of labeled data is 10% or less in a semi-supervised setting, the proposed
method outperforms a fully supervised method that uses manually annotated labels to learn feature
representations of road surface conditions.

Keywords: weakly supervised learning; convolutional neural network; sidewalk accessibility; human
activity recognition

1. Introduction

Providing accessibility information about sidewalks for people with difficulties with moving, such
as older, mobility-impaired, and visually impaired people, is an important social issue. One solution to
this issue using information and communication technology (ICT) is to develop an accessibility map as an
extensive geographic information system (GIS) that provides accessibility information on sidewalks [1,2].
The concept of a personalized accessibility map (PAM) was proposed, which recommends an optimal
route for people with difficulties in moving, considering accessibility information [3]. To collect
accessibility information, Ponsard and Snoeck proposed a method where experts evaluate accessibilities
of sidewalks from their images for each case [4]. Crowdsourcing methods to recruit information from
volunteers were proposed by Hara [5] and Cardonha et al. [6]. These methods, however, depend on
human labor and are impractical when collecting accessibility information in a huge area. Demir
et al. summarized the state-of-the-art satellite image understanding approaches that recognize ground
surface conditions [7]. Automatic approaches to detect unusual road conditions, such as potholes,
using vehicle sensing data have also been reported [8,9]. Since these methods use satellite images or
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vehicle data, collecting sidewalk accessibility information, including subtle steps and slopes, is difficult.
The development of a large-scale accessibility map requires an automated method that collects detailed
road surface accessibility information.

Due to the further development of intelligent gadgets, such as smartphones and wristwatch-shaped
vital sensors, the ability to sense human activities is improving [10,11]. Human activities measured
by body-mounted vital sensors are recognized by applying machine learning [12,13]. Motivated by
this background, we proposed a system that evaluates road surface conditions by applying machine
learning to wheelchair accelerometer data [14]. Notably, wheelchair driving data can be collected
extensively and are influenced by subtle road surface conditions.

In the conventional machine learning method, a large dataset with ground-truth labels is required
to learn road surface conditions from accelerometer data. Manual annotation of the dataset depends
on human labor, which is both expensive and impractical to collect extensively. This paper proposes
and evaluates a novel method for estimating road surface conditions without human annotation by
applying weakly supervised learning [15]. Our method uses positional information obtained while
driving as low-cost weak supervision and does not depend on conventional human annotations.
The positional information can be automatically collected with acceleration data during wheelchair
driving and is semantically related to road surface conditions. As far as we know, no study has
applied weakly supervised learning to collect information on road surface conditions, and the collected
information represents detailed road surface conditions. The major contributions of this paper are as
follows:

• This paper proposes a novel method for evaluating road surface conditions via weakly supervised
learning that uses wheelchair acceleration data and its positional information as weak supervision.

• The proposed method is evaluated using actual wheelchair driving data. We applied a weak
supervision design and visually demonstrate that the proposed method learns subtle and detailed
representations of road surface conditions.

• The representations that the proposed method learns were found to be discriminative for a road
surface classification task. In a semi-supervised setting, the proposed method outperforms a
fully supervised method that uses manually annotated labels to learn representations of road
surface conditions.

The remainder of the paper is organized as follows: Section 2 summarizes the related work of this
research. Section 3 describes the proposed system, the collection of the wheelchair driving dataset,
and the methodology of the proposed weakly supervised learning design. In Section 4, we outline
qualitative and quantitative evaluations of feature representations learned by the proposed model.
Finally, Section 5 discusses the proposed method and concludes this paper.

2. Related Work

Various mobility support systems for people with difficulties moving have been proposed.
Zimmermann-Janschitz provided a comprehensive synopsis of GIS applications for impaired people [16].
In Japan, Yairi and Igi proposed a GIS prototype to provide accessibility information for pedestrians [17].
This GIS consists of walking space network data. The network is composed of links and nodes; the
links include information such as width, step, and transverse gradient of a walking route; the nodes
connect the links with latitude/longitude information [18]. They expanded their research for practical
use through on-site surveys in the community of the target area [19] and finally proposed a ubiquitous
system to provide collected information on road conditions to users’ mobile terminals [20]. In the
context of a navigation system for wheelchair users, Koga et al. developed a navigation system on
smartphones using on-site surveys [21]. Although these mobility support systems are useful for
impaired people, these systems depend on human labor, and collecting information on road surface
conditions in a huge area is impractical. The following studies evaluated road surface conditions
using automatic processing. High-resolution satellite images were used for land cover classification
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according to the physical condition of the ground surfaces such as agricultural land, grazing land,
and barren areas [7,22,23]. Eriksson et al. applied a simple machine learning approach to detect
potholes on road surfaces using accelerometer and geographical positioning system (GPS) sensor data
of taxies [8]. Allouch et al. applied machine learning to detect depressions in road surfaces using the
accelerometer and gyroscope data of vehicles [9]. Abnormal traffic conditions in cities were detected
using rich sensor data such as accelerometer, GPS, and voice data from smartphones [24,25]. These
methods can automatically collect information on road conditions; however, collecting subtle road
surface conditions of sidewalks, such as slopes, curbs, and the roughness of a road surface, remains
difficult. Therefore, we focused on wheelchair driving data that can be automatically collected and are
influenced by the subtle condition of road surfaces.

The following research focuses on human activity recognition (HAR) and applies machine learning
to human behavior data. Plötz et al. implemented feature learning based on principle component
analysis (PCA) and the autoencoder model to extract features from human behavior acceleration
data [12]. Zeng et al. and Yang et al. applied convolutional neural network (ConvNet) to recognize
human activities using a dataset including daily activities and assembly work at a factory [26,27].
Jiang and Yin improved the learning efficiency of ConvNet by imaging the time-series data of human
activities [28]. Rad and Furlanello used ConvNet to distinguish involuntary body vibrations due
to illness from voluntary exercise [29]. Although various deep learning models, such as echo state
networks (ESNs) and residual networks (ResNets), were proposed for the time-series classification
task [30], ConvNet is one of the most effective models for HAR [13].

The weakly supervised learning [15] method and the unsupervised feature learning [31,32]
method have been applied to various machine learning tasks to avoid human annotations. Oquab et al.
proposed a weakly supervised method for object classification and object localization tasks that relies
only on image-level labels for weak supervision, yet can learn from cluttered scenes containing multiple
objects [33]. Agrawal et al. proposed a self-supervised visual feature learning method that trains a
ConvNet model to predict the camera transition between pairs of images [34]. Owens et al. proposed a
method that trains a ConvNet model to predict the statistical summary of the sound associated with a
video frame [35]. Gidaris et al. also proposed a method that trains a ConvNet model to predict the
two-dimensional (2D) rotation applied to the input image [36].

The following research applied weakly supervised learning or unsupervised learning to time-series
data. You et al. analyzed weakly supervised dictionary learning that only relies on weak supervision
that describes presence or absence in a set of data points [37]. Zhang et al. proposed a weakly supervised
method to detect involuntary body vibrations due to illness from voluntary exercise [38]. Logeswaran
and Lee proposed an unsupervised method to learn sentence representation by training a classifier
that takes a sentence as input and predicts the context sentences from a sentence group [39]. Dau et al.
introduced a semi-supervised technique to set the optimal parameter, w (warping window width),
in dynamic time warping (DTW) on time-series clustering [40]. Although various research focused
on weakly supervised and self-supervised feature learning methods, to the best of our knowledge,
no research has applied positional information for weak supervision to human behavior data.

As Lara et al. and Liu et al. reported, extracting the influence of road surface conditions from raw
acceleration data is challenging [41,42]; the observed wheelchair acceleration data must be converted
into an index that represents the road surface condition. Fukushima et al. attempted to extract the user’s
subjectivity to road surface conditions by converting wheelchair acceleration data into the vibration
acceleration level (VAL) [43]; however, interpreting raw acceleration data is hard, and designing an
index that represents only the factor of road surface conditions from raw data is extremely difficult.
Nagamine et al. focused on the rowing action of manual wheelchair users and evaluated the degree of
burden on the wheelchair users from the correlation between the peak-to-peak value of the acceleration
data and the heartbeat data [44]. Iwasawa et al. proposed a machine learning method to represent
road surface conditions in several discrete classes by classifying wheelchair acceleration data [45–47].
Takahashi et al. proposed a method to collect more detailed feature representations of road surface
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conditions than manually annotated labels from wheelchair acceleration data [48]. They trained a
ConvNet model using wheelchair acceleration data with annotations of four classes of road surface
conditions and extracted internal representation learned by the network. These methods were aimed
at collecting road accessibility information from wheelchair acceleration data; however, these methods
require human annotations. Takahashi et al. also focused on improving the efficiency of human
annotations and proposed a method to automatically create ground-truth labels using map data and
positional information while driving [49]. This method requires the manual creation of the information
on road surface conditions linked to positional information, and the provision of large-scale accessibility
information remains difficult. This paper proposes a weakly supervised learning approach to estimate
road surface conditions without human annotations using wheelchair acceleration data and positional
information while driving. The proposed method can provide road accessibility information in a huge
area because wheelchair driving data can be automatically collected and are influenced by subtle road
surface conditions.

3. Methodology

3.1. Proposed System

The simplest type of accessibility visualization using human sensing is the use of wheelchair
trails [50]. Wheelchair trails provide practical information for wheelchair users regarding wheelchair
accessible roads and facilities. Although the information is useful, it is not sufficient for all wheelchair
users. The trail approach indicates if someone could travel in a location; however, wheelchair users
may have different mobility and accessibility requirements. The physical abilities of wheelchair users
are more diverse than generally imagined; some users are trained like Paralympic athletes, whereas
others may damage their bodies with only a few wheelchair vibrations. Critical information for
wheelchair users includes the physical state of the road surface, such as the angle of a slope, the height
of a curb, and the roughness of a road surface. This information about the physical state of the road
surface helps all people with mobility difficulties as well as wheelchair users to make decisions about
access/avoidance of a road according to their physical conditions and abilities. The information about
the physical state of the road is therefore the foundation of road accessibility. We hereafter refer to the
physical state of a road as road surface condition and the information about the physical state of a road
as road accessibility information.

Figure 1 shows an overview of the proposed system. Acceleration data and positional data
of a wheelchair are measured by a sensing application downloaded on the user’s mobile device or
installed in the wheelchair. Road surface condition labels, which are the conventional supervision,
are manually annotated based on videos recorded while driving, and positional labels, which are
the proposed weak supervision, are automatically computed from positional data. After training a
ConvNet model, feature representations corresponding to the acceleration data are extracted from
the network. ConvNet is one of the deep learning models [51] that effectively recognizes human
activity data, including acceleration data [27]. The extracted features are analyzed and accumulated as
accessibility information. Accessibility information is visualized on a map to create an accessibility
map, and, finally, the accessibility map is provided on the mobile devices of users. The proposed
method does not depend on road surface condition labels; our method uses only positional labels to
train a ConvNet model.
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Figure 1. Overview of the proposed system. This system extensively collects acceleration data and
positional data of wheelchairs. The convolutional neural network (ConvNet) model is trained using a
weakly supervised method, and feature representations of road surface conditions are extracted from
the trained network. The information on road surface conditions is visualized on a map and provided
to all users as an accessibility map. The system can provide large-scale and detailed information on
road surface conditions because wheelchair driving data can be collected extensively and is influenced
by a slight state of road surfaces.

3.2. Dataset

The actual wheelchair driving data were collected to evaluate the proposed method. A total of
nine wheelchair users, including six manual wheelchair users (M1–M6) and three electric wheelchair
users (E1–E3), participated in the experiment. The participants traveled about 1.4 km of the specified
route (shown in Figure 2) around Yotsuya station in Tokyo. This route was carefully designed to
include various road surface conditions to evaluate the generalization performance of the proposed
method for common roads. Wheelchair movements were measured by a three-axis accelerometer (iPod
touch 4th generation, Apple Inc., Cupertino, CA, USA) installed in the lower part of the wheelchair seat,
and positional data were measured using the quasi-zenith satellite system (QZSS). One quasi-zenith
satellite was under experimental operation when the experiment was conducted from November to
December 2012. Acceleration data of the x, y, and z axes of the accelerometer were sampled at 50 Hz,
and a total of 1,341,602 samples (about 7.5 h) were obtained. To confirm the circumstances when the
acceleration data were measured, a video was recorded for both participants’ driving state and the
road surface conditions. Most of the entire route was a standard sidewalk, and a part of the course
was a crosswalk. If a user did not experience problems when moving up and down wheelchair ramp
slopes, an excessive burden on the body and risk of an accident were considered minimal.

Each participant drove the route in three laps; they drove clockwise from the start point to the
goal point for the first and third laps and drove counterclockwise for the second lap. The slope and the
gentle slope that were ascending clockwise in Figure 2 were ascending for the first and third laps and
descending for the second lap. The route consisted of following 11 general road surface conditions:
gravel pavement (GRAV), tile pavement (TILE), block pavement-1 (BLK-1), block pavement-2 (BLK-2),
concrete pavement-1 (CONC-1), concrete pavement-2 (CONC-2), curb (CURB), ascending slope
(ASC-SLP), descending slope (DESC-SLP), gentle ascending slope (GENT-ASC-SLP), and gentle
descending slope (GENT-DESC-SLP). These surfaces contained transverse gradients, local pavement
irregularities, and intermittent slopes. Since the experiment was conducted in an ordinary environment,
random external influences existed other than road surface conditions, such as pedestrians, passing
bicycles, and traffic signals.



Information 2020, 11, 2 6 of 23Information 2020, 11, 2 6 of 22

(a) Road surface conditions (b) Pictures of general road surface conditions

Figure 2. (a) The driving route was generally divided into six road surface conditions: gravel

pavement (blue), tile pavement (green), block pavement (orange), concrete pavement (black), slope

(purple), and curb (red). The slope was short and had a gentle gradient. A total of 12 curbs existed 

along the route. The points of curbs are marked with a red circle in the figure. All the curbs were 

similar, but their height and gradient differed slightly. (b) The block pavement was categorized into 

two types: Block pavement-1 and Block pavement-2. The concrete pavement was categorized into two 

types: Concrete pavement-1 and Concrete pavement-2. Concrete pavement-2 was slightly smoother 

than Concrete pavement-1. 
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Figure 2. (a) The driving route was generally divided into six road surface conditions: gravel pavement
(blue), tile pavement (green), block pavement (orange), concrete pavement (black), slope (purple),
and curb (red). The slope was short and had a gentle gradient. A total of 12 curbs existed along the
route. The points of curbs are marked with a red circle in the figure. All the curbs were similar, but
their height and gradient differed slightly. (b) The block pavement was categorized into two types:
Block pavement-1 and Block pavement-2. The concrete pavement was categorized into two types:
Concrete pavement-1 and Concrete pavement-2. Concrete pavement-2 was slightly smoother than
Concrete pavement-1.

3.3. Generating Weak Supervision from Positional Information

This section describes the methodology to generate a positional label set for weak supervision.
In the task of weakly supervised feature learning, determining what information to use for supervision
is an important factor that affects the learning performance. We attempted to use a novel method
incorporating positional information during wheelchair driving as weak supervision. The major
reasons we chose positional information are as follows: Positional information while driving can be
automatically collected, enabling the low-cost generation of a label set. Since adjacent road surfaces
have similar conditions, our model effectively learns feature representations of road surface conditions
by being trained to predict the position of the input acceleration data. For the positional information in
this paper, we confirmed the position where the acceleration data were measured by visually observing
the experiment video and provided positional data (latitude, longitude) for each acceleration data
sample using Google Maps (Google LLC, Mountain View, CA, USA). Although the QZSS positional
data were measured in the experiment, we used these manual positional data to correct errors included
in the QZSS positional data. The procedure for generating weak supervision from positional data is
explained, from Steps 1 to 3.

Step 1: Dividing the earth’s surface into a mesh shape. The earth’s surface was divided into a
mesh shape, as shown in Figure 3a. The objectives of dividing the earth’s surface are to aggregate
adjacent road surfaces into one group and to create discrete classes to formulate our position prediction
task as a classification problem. The method for dividing the earth’s surface into a mesh shape is seen
in an attempt to construct a new GIS [52]. The width of each grid created by the mesh is uniform in
both the vertical and horizontal dimensions; hence, the area of each grid is the square of the grid width.
The grid width was adopted as 3, 4, and 5 m because a grid width under 5 m can distinguish sidewalks
on both sides of a road with two or more lanes based on the Road Structure Ordinance prescribed in
Article 29 of the Road Act in Japan [53]. The comparison of grid width conditions is shown in Section 4.
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Figure 3. (a) Dividing the earth’s surface into a mesh shape. The dotted line in the figure denotes the
traveled route. The mesh divides the earth’s surface and creates multiple grids. (b) Targeting only
the grids that cover the driving route. The grey-colored area denotes the target grids. (c) Assigning a
unique number to each grid. A unique number is assigned to each grid, and an assigned number is
assigned to all acceleration data samples.

Step 2: Targeting only the grids that cover the driving route. Only the grids that covered the
driving route were used as target grids, as shown in Figure 3b. The target grids were the sidewalks or
crosswalks that were driven by any participant during the experiment.

Step 3: Assigning positional label to all acceleration data sample. A unique number was assigned
to each grid of the target grids, as shown in Figure 3c. These assigned numbers are the identification
(ID) of each grid. Then, these IDs were assigned to all acceleration data samples. The grid to which
each sample belonged was identified by its positional data. These assigned IDs are the positional label
set and are used as weak supervision for acceleration data. Through these steps, the same class is
assigned to the adjacent road surface; therefore, the ConvNet model is considered to effectively learn
feature representations of road surface conditions.

3.4. Training ConvNet to Predict the Position from Acceleration Data

3.4.1. Preprocessing

As a denoising preprocess, a simple moving average (SMA) with a length of five was processed for
the entire acceleration dataset. Then, the acceleration dataset was normalized to have a zero mean and
unit standard deviation in each axis. To input acceleration data to a ConvNet model, the acceleration
data were segmented into 29,727 examples using a sliding window [54]. The window size was fixed
to 450 (about nine seconds) with 90% overlap. The window size and the overlapping percentage
were selected to be adapted for the dataset following the procedure published previously [49], which
applied machine learning for wheelchair acceleration data. As shown in Table 1, the number of classes
and the positional label set vary according to the grid width condition. The true positional label of
each segmented example was determined by the most-frequently occurring label in the example.
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Table 1. The number of classes in each grid width condition.

Grid Width (m) 3 4 5

Number of classes 581 403 310

The smaller the grid width, the larger are the number of grids generated, and the larger the number of classes.

3.4.2. The Proposed ConvNet Model

Figure 4 shows the network architecture of the proposed ConvNet model. The network is
composed of seven layers: an input layer, four convolution layers, one fully connected layer, and an
output layer. The convolution layer consists of a convolution, a rectified linear unit (ReLU) function,
and max-pooling processing. The fully connected layer consists of 500 units fully connected and a
ReLU function. The output layer is governed by a SoftMax function that has N classes. The network
has dropout layers after every convolution layer and fully connected layer. The dropout percentage is
set to 20%, 30%, 30%, 40%, and 50% from the top to the bottom layer. This network follows the relevant
research for recognizing human activity acceleration data [18] and is based on prior work [50] that
used wheelchair acceleration data. For other settings, the adaptive moment estimation (ADAM) [55]
was used as an optimizer, and the learning rate was set to 0.0001. The training dataset was divided
into 90% training data and 10% validation data using stratified splitting. The network was trained
until the categorical cross-entropy loss of validation data stopped decreasing. We hereafter refer to this
ConvNet model trained on the weakly supervised task to predict position as the PosNet model.

Information 2020, 11, 2 8 of 22 

 

Figure 4 shows the network architecture of the proposed ConvNet model. The network is 

composed of seven layers: an input layer, four convolution layers, one fully connected layer, and an 

output layer. The convolution layer consists of a convolution, a rectified linear unit (ReLU) function, 

and max-pooling processing. The fully connected layer consists of 500 units fully connected and a 

ReLU function. The output layer is governed by a SoftMax function that has N classes. The network 

has dropout layers after every convolution layer and fully connected layer. The dropout percentage 

is set to 20%, 30%, 30%, 40%, and 50% from the top to the bottom layer. This network follows the 

relevant research for recognizing human activity acceleration data [18] and is based on prior work 

[50] that used wheelchair acceleration data. For other settings, the adaptive moment estimation 

(ADAM) [55] was used as an optimizer, and the learning rate was set to 0.0001. The training dataset 

was divided into 90% training data and 10% validation data using stratified splitting. The network 

was trained until the categorical cross-entropy loss of validation data stopped decreasing. We 

hereafter refer to this ConvNet model trained on the weakly supervised task to predict position as 

the PosNet model. 

Figure 4. The network architecture that is trained on the weakly supervised task to predict position. 

The network is composed of an input layer (Input), four convolution layers (CONV + Max POOL), 

one fully connected layer (FC), and an output layer (Output). The output has N classes; N varies 

according to the grid width condition. The rectified linear unit (ReLU) and dropout layers are not shown 

due to space limitations. 

3.4.3. Position Prediction 

The result of the position prediction task of PosNet was compared to that using another machine 

learning method. The grid width was temporarily fixed to 5 m. The accuracy of the proposed model 

was 11.2%. As a comparison of the proposed model, fast Fourier transform (FFT) frequency 

components of each axis of each example were calculated and classified by logistic regression using 

a lbfgs solver. The regularization parameter, C, was chosen in the range of 10–5 to 105 using five-fold 

cross-validation to maximize the accuracy. The accuracy of the logistic regression was 5.86%. The 

pure chance was 0.32% in this case. The accuracy of these models is the mean of the total of nine trials 

obtained using a leave-one-subject-out (LOSO) methodology [56]. LOSO verifies the performance for 

unknown users by evaluating a model with a dataset of a user who was not included in the training 

data. Because wheelchair acceleration data reflect user characteristics, including physical abilities and 

rowing patterns, it is crucial to evaluate the generalization performance of the model for unknown 

users. In this study, the model was trained repeatedly with a dataset of eight users as a training 

dataset, and the trained model was tested with the dataset of the remaining one user. Although the 

score is low, the purpose of training the PosNet model with weak supervision was to learn feature 

representations of road surface conditions and accumulate them in the network. This absolute score 

is not important for evaluating the model. 

4. Results 

4.1. Qualitative Evaluation of the Learned Representation 

4.1.1. Evaluation Procedure 

 

Figure 4. The network architecture that is trained on the weakly supervised task to predict position.
The network is composed of an input layer (Input), four convolution layers (CONV + Max POOL), one
fully connected layer (FC), and an output layer (Output). The output has N classes; N varies according
to the grid width condition. The rectified linear unit (ReLU) and dropout layers are not shown due to
space limitations.

3.4.3. Position Prediction

The result of the position prediction task of PosNet was compared to that using another machine
learning method. The grid width was temporarily fixed to 5 m. The accuracy of the proposed
model was 11.2%. As a comparison of the proposed model, fast Fourier transform (FFT) frequency
components of each axis of each example were calculated and classified by logistic regression using a
lbfgs solver. The regularization parameter, C, was chosen in the range of 10−5 to 105 using five-fold
cross-validation to maximize the accuracy. The accuracy of the logistic regression was 5.86%. The pure
chance was 0.32% in this case. The accuracy of these models is the mean of the total of nine trials
obtained using a leave-one-subject-out (LOSO) methodology [56]. LOSO verifies the performance for
unknown users by evaluating a model with a dataset of a user who was not included in the training
data. Because wheelchair acceleration data reflect user characteristics, including physical abilities and
rowing patterns, it is crucial to evaluate the generalization performance of the model for unknown
users. In this study, the model was trained repeatedly with a dataset of eight users as a training dataset,
and the trained model was tested with the dataset of the remaining one user. Although the score is low,
the purpose of training the PosNet model with weak supervision was to learn feature representations
of road surface conditions and accumulate them in the network. This absolute score is not important
for evaluating the model.
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4. Results

4.1. Qualitative Evaluation of the Learned Representation

4.1.1. Evaluation Procedure

This section provides a qualitative and quantitative evaluation of the representations of road
surface conditions learned by the proposed model. The learned representation is first qualitatively
evaluated. The qualitative evaluation procedure is explained, from Steps 1 to 4.

Step 1: Obtaining feature representations learned by PosNet. The PosNet model was trained with
the training dataset. The test dataset was input to the trained network, and the activation of 500 units
of the fully connected layer was obtained. This activation is a set of feature vectors and is the internal
representation learned by the model from the input acceleration data. Since PosNet was trained using
LOSO, nine results of nine trials were obtained. Each trial used a dataset of each wheelchair user
(M1–M6 and E1–E3) as a test dataset; M1–M6 were manual wheelchair users and E1–E3 were electric
wheelchair users. We hereafter refer to each result of the trials as M1–M6 and E1–E3.

Step 2: Clustering analysis of the obtained feature representations. The clustering was performed
for each feature vector set to evaluate how well the learned representation conveys the road surface
condition information. The 500-dimensional feature vectors were reduced to the dimension where
the cumulative contribution ratio exceeded 80% using principal component analysis (PCA) [57].
The k-means algorithm was used as a clustering method. The number of clusters, k, is arbitrary in
the k-means algorithm, and the clustering result changes depending on the specified parameter, k.
In this study, the number of clusters was specified in the range of 3 to 20, and each clustering result
was observed.

Step 3: Visualizing the clustering result on a map. The clustering results were color-coded for
each cluster. The color-coded feature vector was plotted on the position of the input acceleration
example on Google Maps (Google LLC, Mountain View, CA, USA) to be compared with the actual road
surface conditions. Since input acceleration examples were dense, every third acceleration example
was plotted on the map. The plot results were visually observed to analyze the type of road surface
condition represented by each cluster. Table 2 shows the correspondence of a title and a color code of
the main colors.

Table 2. Correspondence table of hexadecimal color code and its title defined in this paper.

Color Title Blue Green Light
Blue

Light
Green Purple Grey Light

Purple Yellow-Green Orange

Color code #3333FF #339933 #66CCFF #66FF33 #993399 #999999 #CC6699 #DDFF00 #FF6700

Only the main colors are shown due to space limitations.

Step 4: Exploring the quality of the learned representation. The quality of the learned representation
under each grid width condition was analyzed by comparing the plot results of Step 3, and the most
suitable grid width was selected. The plot result with the best grid width condition was compared with
the result of a fully supervised ConvNet model that was trained with conventional manual annotations.

4.1.2. Analysis of Grid Width Condition

The clustering results under the grid widths of 3, 4, and 5 m were evaluated by visually observing
their plots. Figure 5 shows the visualization of the first lap of the clustering result of M1. The number
of clusters, k, was set to 16. ASC-SLP and part of GENT-ASC-SLP were clearly grouped into the purple
cluster when the grid width was 4 or 5 m. When the grid width was 3 m, ASC-SLP was not grouped as
clearly as under the other grid width conditions. For every grid width condition, the exact locations of
curb points were grouped into specific clusters. With the 3 m grid width condition, eight curb points
were grouped into the yellow-green cluster or the light blue cluster. With the 4 m grid width condition,
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nine curb points were grouped into the yellow-green cluster. With the 5 m grid width condition, nine
curb points were grouped into the yellow-green cluster or the light blue cluster. For other pavement
types, GRAV was grouped into the green and blue clusters; BLK-1 and CONC-1 were grouped into the
green cluster; CONC-2a and part of CONC-2b were grouped into the orange cluster; most of BLK-2
was grouped into the grey cluster. TILE was grouped into one cluster with grid widths of 3 and 4 m
and was separated into two clusters with the 5 m grid width condition. CONC-2b was divided into
two clusters by the T-junction under any grid width condition, and the assigned clusters were different
for the different grid widths. This overall clustering tendency was observed in all nine dataset patterns.
The visualization of E1 is shown in Figure A1.
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Figure 5. The clustering visualization of the first lap of a manual wheelchair user (M1) when the grid
width condition was (a) 3 m, (b) 4 m, and (c) 5 m. The number of clusters was set to 16. Only the
recognized curb points are marked with a red circle. The areas of ascending slope (ASC-SLP) and
gentle ascending slope (GENT-ASC-SLP) are marked with a black circle.

The most crucial difference was observed for ASC-SLP with different grid width conditions.
One cluster was assigned to ASC-SLP when the grid width condition was 4 or 5 m, whereas multiple
clusters were assigned under the 3 m grid width condition. This observation demonstrates that when
the grid width is narrow, the changes in wheelchair driving state in a small area are precisely learned.
Two clusters were assigned to TILE only when the grid width was 5 m. This demonstrates that the
proposed model precisely learns slight changes in the unevenness of the tile pavement and transverse
gradients of the road when the grid width is large. Wheelchair driving state is affected by a variety of
external factors, including road surface conditions, pedestrians, passing bicycles, and passing cars.
When the M1 participant was driving on ASC-SLP, they meandered to avoid a car coming from the
front. When the grid width is narrow, the small state changes caused by factors other than road
surface conditions are learned in detail. When the grid width is large, slight differences in road surface
conditions are precisely learned because the road surface conditions are continuous and generally in a
similar state in an adjacent range. Although changes in road surface conditions within a small range,
such as curbs, are expected to be difficult to learn when the grid width is large, more curb points were
captured under the 5 m grid width condition because the whole wheelchair movements, including
areas around a curb point, are effectively learned since wheelchair users decelerate and accelerate
before and after a curb.
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The clustering results under the 5 m grid width condition were evaluated in detail by visually
observing their plots for each lap. Figure 6 shows the visualization of the clustering result of M2 under
the 5 m grid width condition. The number of clusters, k, was set to 16. The ASC-SLP of both the first
and third laps were clearly grouped into the purple cluster, and GENT-ASC-SLP in both the first and
third laps were grouped into the light purple cluster. DESC-SLP and part of GENT-DESC-SLP for the
second lap were grouped into the light green cluster. The exact locations of the most curb points were
grouped into the yellow-green cluster on every lap. For other pavement types, GRAV and CONC-1
were grouped into the blue cluster for every lap, and most parts of CONC-2b were grouped into
the green cluster for every lap. Although the clustering result of GRAV and CONC were similar for
every lap, the clustering tendency of TILE, BLK-1, and BLK-2 were different depending on the driving
direction. This overall clustering tendency was observed in all nine dataset patterns.

Information 2019, 10, x FOR PEER REVIEW 11 of 22 

grouped into the green cluster for every lap. Although the clustering result of GRAV and CONC were 
similar for every lap, the clustering tendency of TILE, BLK-1, and BLK-2 were different depending 
on the driving direction. This overall clustering tendency was observed in all nine dataset patterns. 

These observations demonstrate that the PosNet model learns feature representations of subtle 
and detailed road surface conditions. ASC-SLP and DESC-SLP were grouped into separate 
independent clusters, although the same position label was assigned to the adjacent road regardless 
of the driving direction. This result shows that the model effectively learned representations of the 
differences between the ascending gradient and the descending gradient. ASC-SLP and GENT-ASC-
SLP were grouped into separate clusters. This result shows that the model learned representations of 
slight differences in gradient. The exact points of most CURB were grouped into the same cluster for 
any lap. This result shows that the model learned representations of wheelchair driving patterns over 
curbs. As a summary of the clustering results of three laps, all 12 curb points were detected. The same 
pavement types were roughly grouped into the same cluster, and the different pavements tended to 
be grouped into different clusters. This result shows that the model learned representations of 
detailed differences in the road surfaces. 

(a) (b) (c) 

Figure 6. The clustering visualization of the result of a manual wheelchair user (M2) of (a) the first, 
(b) second, and (c) third laps. The grid width condition was 5 m, and the number of clusters was set
to 16. Only the recognized curb points are marked with a red circle. The areas of ASC-SLP, descending 
slope (DESC-SLP), GENT-ASC-SLP, and gentle descending slope (GENT-DESC-SLP) are marked
with a black circle.

4.1.3. Comparison with Fully Supervised Method 

The representations learned by the PosNet model on the weakly supervised task and the 
representations learned by a fully supervised ConvNet model were compared. To ensure the 
comparison was as fair as possible, the same ConvNet architecture was trained, except the fully 
supervised ConvNet used manually annotated road surface condition labels. Road surface condition 
labels have four classes: moving on slopes, climbing on curbs, moving on tactile indicators, and 
others. Each category represents typical road surface conditions: a continuous gradient, an abrupt 
step, a continued unevenness, and other conditions, respectively. These labels were created by 
visually observing the participants and the road surface conditions over the whole experiment video. 
To predict the road surface condition labels, the output layer of the fully supervised ConvNet model 
was replaced to predict four classes. 

Figure 7 shows the visualization of the clustering result of M3 of the PosNet model and the fully 
supervised ConvNet model. The number of clusters, k, was set to 16. The overall results show a 

Figure 6. The clustering visualization of the result of a manual wheelchair user (M2) of (a) the first, (b)
second, and (c) third laps. The grid width condition was 5 m, and the number of clusters was set to
16. Only the recognized curb points are marked with a red circle. The areas of ASC-SLP, descending
slope (DESC-SLP), GENT-ASC-SLP, and gentle descending slope (GENT-DESC-SLP) are marked with a
black circle.

These observations demonstrate that the PosNet model learns feature representations of subtle and
detailed road surface conditions. ASC-SLP and DESC-SLP were grouped into separate independent
clusters, although the same position label was assigned to the adjacent road regardless of the driving
direction. This result shows that the model effectively learned representations of the differences
between the ascending gradient and the descending gradient. ASC-SLP and GENT-ASC-SLP were
grouped into separate clusters. This result shows that the model learned representations of slight
differences in gradient. The exact points of most CURB were grouped into the same cluster for any
lap. This result shows that the model learned representations of wheelchair driving patterns over
curbs. As a summary of the clustering results of three laps, all 12 curb points were detected. The same
pavement types were roughly grouped into the same cluster, and the different pavements tended to be
grouped into different clusters. This result shows that the model learned representations of detailed
differences in the road surfaces.
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4.1.3. Comparison with Fully Supervised Method

The representations learned by the PosNet model on the weakly supervised task and the
representations learned by a fully supervised ConvNet model were compared. To ensure the
comparison was as fair as possible, the same ConvNet architecture was trained, except the fully
supervised ConvNet used manually annotated road surface condition labels. Road surface condition
labels have four classes: moving on slopes, climbing on curbs, moving on tactile indicators, and others.
Each category represents typical road surface conditions: a continuous gradient, an abrupt step,
a continued unevenness, and other conditions, respectively. These labels were created by visually
observing the participants and the road surface conditions over the whole experiment video. To predict
the road surface condition labels, the output layer of the fully supervised ConvNet model was replaced
to predict four classes.

Figure 7 shows the visualization of the clustering result of M3 of the PosNet model and the fully
supervised ConvNet model. The number of clusters, k, was set to 16. The overall results show a similar
clustering tendency; however, notable differences were observed on the slope road surface condition.
For the weakly supervised result, ASC-SLP and GENT-ASC-SLP were grouped into the purple and
the light purple cluster, respectively, and DESC-SLP was grouped into the light green cluster. For the
fully supervised result, both ASC-SLP and GENT-ASC-SLP were grouped into the purple cluster, and
DESC-SLP was not grouped into a specific cluster. This observation demonstrates that the weakly
supervised method effectively learned representations of slight differences in the degree of ascending
gradient. The weakly supervised method learned representations of descending gradients but the fully
supervised method did not. Tactile indicators that were manually annotated in the fully supervised
method were not grouped into a specific cluster in both methods. This overall clustering tendency was
observed in all nine dataset patterns, and no significant difference was found in the clustering tendency
of curb points. The visualization of E2 is shown in Figure A2. These observations demonstrate that the
weakly supervised method learned rich representations of road surface conditions, such as degree of
slope. This result validates the effectiveness of the positional labels. The reason the weakly supervised
method learned rich representations of road surface conditions is that the simple assumption that
adjacent road surface conditions are in the same state enabled the network to flexibly learn various
road surface conditions. The result also suggests the difficulty of defining road surface condition labels
using human annotation because road surface conditions are diverse and consecutively transition
along a road.
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Figure 7. The clustering comparison of a manual wheelchair user (M3) between the conventional fully
supervised (SUP) method and the proposed weakly (WEAK) supervised method. (a) The first, (b)
second, and (c) third lap visualizations of the fully supervised method. (d) The first, (e) second, and
(f) third lap visualizations of the weakly supervised method. The grid width condition of the weakly
supervised method was 5 m. The number of clusters was 16 for both methods. Only the recognized
curb points are marked with a red circle. The areas of ASC-SLP, DESC-SLP, GENT-ASC-SLP, and
GENT-DESC-SLP are marked with a black circle.

4.2. Quantitative Evaluation of the Learned Representation

The PosNet model was found to learn rich feature representations of subtle and detailed road
surface conditions through clustering evaluations. This section quantitatively evaluates the usefulness
of the learned representation for recognizing general road surface conditions.

4.2.1. Implementation Details

The feature representation learned by PosNet was evaluated on a road surface classification task
and compared with other machine learning methods. Four road surface condition classes—moving on
slopes (Slope), climbing on curbs (Curb), moving on tactile indicators (TI), and others (Oths)—were
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predicted during the classification task. Since the fully connected layer of the PosNet model has
500 units, 500-dimensional feature vectors of each input example of acceleration data were obtained.
This feature set was normalized to have a zero mean and unit standard deviation. A support vector
machine (SVM) with radial basis function (RBF) kernel and a multilayer perceptron (MLP) model were
used to classify the feature set to the four classes. The regularization parameter, C, in the range of
10−2 to 104 and the kernel coefficient parameter, γ, in the range of 10−4 to 102 of SVM were chosen
using five-fold cross-validation to maximize the macro F-score. Since Oths represented nearly 77%
of the dataset, the parameter, C, for each class was adjusted to inversely proportional weight to class
frequencies in the training data to handle the class imbalance problem. The MLP model was composed
of four layers: an input layer, two fully connected layers, and an output layer. The fully connected
layer consisted of 500 units fully connected and a ReLU function. The output layer was governed by a
SoftMax function and had four classes. The network had 50% dropout layers after every fully connected
layer. The network was trained until the categorical cross-entropy loss of validation data stopped
decreasing. The loss function was adjusted to inversely proportional weight to class frequencies in the
training data. These classifiers were trained on the obtained feature vectors over the training data of
the PosNet model and then tested with the feature vectors of the test data predicted by the trained
PosNet model.

For comparisons with the proposed method, we evaluated six other methods. The first method
(Raw + k-NN) used raw acceleration data as a feature set and used a k-nearest neighbor (k-NN)
as a classifier. Segmented three-axis acceleration examples were concatenated to 1350-dimensional
vectors and were input to the classifier. The second method (MV + k-NN) used the mean and the
standard deviation (MV) of each axis of each segment as a feature set and used k-NN as a classifier.
The parameter, k, of k-NN of these two methods was chosen in the range of 1 to 30 using five-fold
cross-validation to maximize the macro F-score. The third and fourth methods used rich heuristic
features as a feature set. The following 12 type of values of each axis of each segment were computed
as heuristic features: mean, standard deviation, maximum, minimum, zero crossing, mean of the
difference, standard deviation of the difference, maximum of the difference, minimum of the difference,
FFT frequency component, energy of the FFT frequency component, and entropy of the FFT frequency
component. FFT was implemented with a sampling frequency of 50 Hz. The heuristic features were
classified by SVM (Heuristic + SVM) and MLP (Heuristic + MLP). The final comparison methods used a
ConvNet model. The hyperparameters, the architecture, and all other settings except for the dimension
of the output layer were the same as the PosNet model to ensure the fairness of the comparison.
The fully connected layer of the trained model was activated and was normalized to have a zero
mean and unit standard deviation. This activation was classified by SVM (ConvNet + SVM) and MLP
(ConvNet + MLP). The method of hyperparameter searching for SVM, the architecture of MLP, and all
other settings of the classifiers of the third, fourth, and final comparison methods were the same as the
experiment of the proposed method to facilitate comparison. The methods were evaluated using the
LOSO method, and the mean macro F-score and the mean accuracies of the nine trials were compared.

Motivated by previous research [18,58], a simple smoothing method was implemented to
post-process the predicted labels to enhance the prediction performance of the classifiers. Since
the adjacent road surface conditions are in a similar state, the sample labels have a smooth trend.
This smoothing method employs a low-pass filter to remove the impulse noise and maintain the edges.
The impulse noise is a potential incorrect prediction, and the edges, in this case, are the transition in
the road surface conditions. For the ith example, a smoothing filter with length, u, was applied on the
sequence whose center was the ith example. The predicted probabilities of the sequence were averaged
for each class, and the class with the highest probability was assigned to the ith example.

4.2.2. Comparison Result

Table 3 compares the classification performance of the proposed models against the other methods.
For the setting without smoothing, the proposed methods outperformed the four machine learning
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methods, including rich heuristic feature methods. Comparing two classifiers, SVM and MLP, MLP
always outperformed SVM in terms of F-score. Only the accuracy of Heuristic + SVM outperformed
Heuristic + MLP. The proposed method (PosNet + MLP) performed better than Raw + k-NN, MV + k-NN,
and Heuristic + MLP in terms of both F-score and accuracy. PosNet + MLP outperformed Heuristic +

MLP by 3.7 points in F-score and 2.2% in accuracy. The deep model (ConvNet + MLP) outperformed all
other methods in terms of both F-score and accuracy. Comparing the prediction results of manual
wheelchair data and electric wheelchair data, the electric wheelchair data tended to be classified more
accurately in terms of both F-score and accuracy in every method.

Table 3. Road surface classification performance with/without smoothing post-processing.

Method
F-score Accuracy (%) F-score Accuracy (%)

Without Smoothing With Smoothing

Raw + k-NN 28.2 75.5 26.4 74.9
MV + k-NN 45.0 69.9 45.6 73.2

Heuristic + SVM 51.9 80.3 51.8 80.7
Heuristic + MLP 56.5 78.2 56.3 78.9

(Ours) PosNet + SVM 57.7 80.4 59.8 82.1
(Ours) PosNet + MLP 60.2 80.4 61.2 82.4

ConvNet + SVM 62.6 82.5 67.4 85.2
ConvNet + MLP 68.7 84.7 71.3 86.4

The performance was evaluated using macro F-score and accuracy. Macro F-score is the key performance indicator
since the classes are imbalanced. A support vector machine (SVM) with radial basis function (RBF) kernel and a
multilayer perceptron (MLP) model were used to classify the feature set learned by the proposed model (PosNet
+ SVM and PosNet + MLP). Six other methods were evaluated for comparisons with the proposed method. The
first method (Raw + k-NN) used raw acceleration data as a feature set and used a k-nearest neighbor (k-NN) as a
classifier. The second method (MV + k-NN) used the mean and the standard deviation (MV) of each axis of each
segment as a feature set and used k-NN as a classifier. The third and fourth methods used 12 type of rich heuristic
features of each axis of each segment as a feature set. The heuristic features were classified by SVM (Heuristic +
SVM) and MLP (Heuristic + MLP). The final comparison methods used a ConvNet model. The feature set learned by
the ConvNet model was classified by SVM (ConvNet + SVM) and MLP (ConvNet + MLP). The PosNet model of the
proposed method was trained with weakly supervised learning with positional information as weak supervision,
whereas the ConvNet model was trained with fully supervised learning with road condition labels.

The filter length, u, of the smoothing method was chosen in the range of 3 to 11 by evaluating
its effect on PosNet + MLP. The per-class F-scores of Oths and Curb most improved when u was nine.
The per-class F-score of Slope was most improved when u was 11. When u was three, the per-class
F-score of TI was the most improved. The macro F-score, which is an unweighted mean of the per-class
scores, was highest when u was seven. This result shows that a long filter is effective for predicting
road surface conditions that are continuous over a long distance, whereas a short filter is useful for
predicting road surface conditions that appear intermittently. The with-smoothing scores in Table 3
show the results when u is seven. The smoothing filter improved both of F-score and accuracy of most
methods. In particular, the F-score and the accuracy of PosNet + MLP improved by one point and 2%,
respectively. The F-score and the accuracy of ConvNet + MLP were improved by 2.6 points and 1.7%,
respectively. When the base scores were not sufficient as Raw + k-NN, Heuristic + SVM, and Heuristic +

MLP, the smoothing filter did not improve their F-score values.
Table 4 shows the per-class classification performance of the proposed models against comparison

methods without smoothing post-processing. The scores of the dominant class Oths were the highest
amongst the four classes. The proposed method (PosNet + MLP) outperformed the other machine
learning baseline methods: Raw + k-NN, MV + k-NN, and Heuristic + MLP, in Slope, Curb, and Oths in
terms of F-score. In terms of precision, the proposed method (PosNet + MLP) outperformed the other
machine learning baseline methods: Raw + k-NN, MV + k-NN, and Heuristic + SVM, in Slope, Curb, and
Oths. The deep model (ConvNet + MLP) received the highest scores in all classes in terms of F-score.
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The F-scores and the precision scores in Slope and Oths of the proposed method (PosNet + MLP) were
close to those of the deep model (ConvNet + MLP).

Table 4. Per-class road surface classification performance.

Method
Per-Class F-Score Per-Class Precision (%)

Slope Curb TI Oths Slope Curb TI Oths

Raw + k-NN 15.8 7.93 3.10 86.1 31.2 59.8 14.2 76.2
MV + k-NN 35.8 42.9 18.8 82.5 40.9 42.5 18.8 82.9

Heuristic + SVM 19.6 63.2 35.8 89.1 49.1 70.2 46.9 85.1
Heuristic + MLP 26.7 65.6 46.4 87.3 43.3 66.6 48.9 88.7

(Ours) PosNet + SVM 41.2 68.5 32.5 88.7 59.0 73.6 44.0 84.9
(Ours) PosNet + MLP 49.6 67.9 34.1 88.9 52.4 71.6 38.9 87.2

ConvNet + SVM 43.6 71.3 44.4 90.8 61.4 65.2 49.1 90.4
ConvNet + MLP 51.1 77.8 54.2 91.6 55.5 78.1 58.0 90.9

Four road surface condition classes—moving on slopes (Slope), climbing on curbs (Curb), moving on tactile indicators
(TI), and others (Oths)—were predicted during the classification task. The PosNet model of the proposed methods
(PosNet + SVM and PosNet + MLP) was trained using weakly supervised learning with positional information as
weak supervision, whereas the ConvNet model of ConvNet + SVM and ConvNet + MLP was trained with fully
supervised learning with road condition labels.

4.2.3. Semi-Supervised Setting

Motivated by the high performance of the proposed model, the classification task of road surface
conditions was evaluated in a semi-supervised setting. A common scenario for a semi-supervised
setting is that a large amount of data is available and only a small fraction is labeled. This scenario
is realistically expected for wheelchair data because acceleration data and positional information of
wheelchairs can be extensively collected, and manual annotation to all acceleration data is expensive
and impractical. Since the positional information can be automatically collected, the PosNet model
was trained with the entire dataset. Then a classifier was trained with a subset of road surface
condition labels and their corresponding feature set, which was obtained from the trained PosNet
model. The dataset of eight users using the LOSO method was first divided into 90% training data and
10% validation data via stratified splitting. Then, the subset was created by randomly dividing the
training data by stratified splitting. Heuristic + MLP and ConvNet + MLP were selected for comparison
to the proposed method (PosNet + MLP). In the case of ConvNet + MLP, the ConvNet model was
trained only with the subset of the training data because the ConvNet model was trained with road
surface condition labels.

Figure 8 shows the transition of the classification performance under the semi-supervised setting.
The 100% subset is the extreme case of using the entire dataset. The performance of ConvNet + MLP
decreases rapidly as the amount of labeled data decreases. The proposed model (PosNet + MLP)
exceeds the performance of the fully supervised method (ConvNet + MLP) when the amount of labeled
data decreases below 10%. The performance gap between PosNet + MLP and ConvNet + MLP increased
as the amount of labeled data decreased. The proposed method (PosNet + MLP) always outperformed
Heuristic + MLP on any subset proportion. This result demonstrates the usefulness of the proposed
method in a practical environment. When more extensive wheelchair driving data are collected than
the experiment conducted in this paper, the performance of the proposed method improves even if the
amount of labeled data is limited, providing a highly practical model.
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Figure 8. The classification performance in a semi-supervised setting. The classification was
implemented under 100%, 60%, 20%, 10%, 5%, and 2% subsets. The x-axis is logarithmic scale
percentage of the amount of data with road surface condition labels. The y-axis is the macro F-score of
the four classes. The PosNet model of the proposed method (PosNet + MLP) was trained in weakly
supervised learning with positional information as weak supervision, whereas the ConvNet model
(ConvNet + MLP) was trained in fully supervised learning with road condition labels. The performance
of PosNet + MLP exceeded that of ConvNet + MLP when the amount of labeled data decreased below
10%. The performance gap between them increased as the amount of labeled data decreased.

5. Discussion

This paper proposed a novel method for estimating road surface conditions without manual
annotation by applying weakly supervised learning. Positional information during wheelchair driving
was used as weak supervision to learn road surface conditions using three-axis wheelchair acceleration
data. In the weak supervision design in this paper, the adjacent road surfaces generally have similar
conditions, and the model effectively learns feature representations of road surface conditions by being
trained to predict the position of the input acceleration data. The sidewalks that the wheelchair drove
were divided into a mesh shape to aggregate adjacent road surfaces into a category, and the position
prediction task was formulated as a classification problem.

This result demonstrated that positional information helps with learning rich representations
of road surface conditions, and the learned representations were discriminative for a road surface
classification task. The learned representations were visualized using a clustering method and were
demonstrated to provide subtle and detailed representations of road surface conditions, such as the
difference of ascending and descending of a slope, the angle of slopes, the exact locations of curbs,
and the slight differences of similar pavements. The learned representations were found to be more
useful than calculated rich heuristic features for the road surface classification task. When the amount
of labeled data was 10% or less in a semi-supervised setting, the proposed method outperformed a
conventional fully supervised method that used manually annotated labels to learn representations
of road surface conditions. When the amount of labeled data was 20% or more, the fully supervised
method performed better than the proposed method. The fully supervised method is generally
better than weakly supervised or self-supervised methods when a large amount of labeled data is
available. However, the proposed method is useful in a practical environment because most wheelchair
acceleration data are not annotated with their ground-truth labels.

Our future work will be directed towards the design of supervisions that can be automatically
collected with wheelchair driving data and are beneficial to learn feature representations of road
surface conditions. The findings here demonstrated that the proposed method of generating positional
labels helps the proposed model to learn various representations of road surface conditions. However,
the classification result experienced difficulty when recognizing continuous road surfaces and
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intermittent road surfaces simultaneously. This paper proposed a simple but effective method
for uniformly dividing all road surfaces into a mesh shape of a same grid size. The future prospective
method involves dividing road surfaces more flexibly. One approach is to segment road surfaces by
intersections or corners of roads. This approach is considered to be beneficial for learning representations
of road surface conditions because the transitions of road surface conditions are generally observed
at intersections or corners, and the positional information of these points can be easily collected.
The formulation of the position prediction task can be designed in another approach to enhance the
performance for learning feature representations of road surface conditions. One method is to predict
the next position given the last several positions and corresponding acceleration data. This method
considers the temporal features of acceleration data and can be beneficial to learn sequential road
surface conditions. Another future direction is the architecture of the deep model. In this study,
a ConvNet model was used to recognize wheelchair acceleration data. To learn the temporal correlation
of acceleration data, the recurrent neural network model is expected to be useful [13].
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Appendix A

The clustering visualization results for users that are not placed in the main text are shown in the
appendix. Since wheelchair rowing patterns are different between manual and electric wheelchairs, the
visualizations for users whose wheelchair type is not shown in the main text are exhibited. Figure A1
compares the clustering with different grid width conditions of 3, 4, and 5 m. Significant differences
among grid width conditions were observed on ASC-SLP and CURB. ASC-SLP was clearly grouped
into a specific cluster when the grid width condition was 4 or 5 m. When the grid width condition was
3 m, ASC-SLP was not grouped as clearly as under other grid width conditions. When the grid width
was large, more curb points were captured. This tendency of curb points was significant for electric
wheelchair users. Figure A2 compares the clustering between the proposed weakly supervised method
and the manually annotated fully supervised method. The most notable differences were observed on
slopes. For the weakly supervised result, ASC-SLP and part of GENT-ASC-SLP of the first and third
laps were grouped into an independent cluster. On the fully supervised result, the cluster that was
assigned to the ascending slopes was observed on other pavement types, including GENT-DESC-SLP,
even when the number of clusters was higher. DESC-SLP was clearly grouped into a specific cluster
on the fully supervised method, although the assigned cluster was slightly observed on other roads.
For the weakly supervised result, DESC-SLP was separated from CONC-2b, but it was not grouped
into a specific cluster. This result suggests that the acceleration of an electric wheelchair does not reflect
the influence of slopes compared with that of a manual wheelchair because an electric wheelchair
climbs slopes quietly. Between the weakly supervised and the fully supervised results, no significant
difference was found in the clustering tendency of curb points, and similar curb points were captured
in both manual and electric wheelchairs.
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visualizations of the fully supervised method. (d) The first, (e) second, and (f) third lap visualizations
of the weakly supervised method.
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