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Abstract: This paper presents a new approach to estimate the consensus in a data set. Under the
framework of RANSAC, the perturbation on data has not been considered sufficiently. We analysis the
computation of homography in RANSAC and find that the variance of its estimation monotonically
decreases when the size of sample increases. From this result, we carry out an approach which
can suppress the perturbation and estimate the consensus set simultaneously. Different from other
consensus estimators based on random sampling methods, our approach builds on the least square
method and the order statistics and therefore is an alternative scheme for consensus estimation.
Combined with the nearest neighbour-based method, our approach reaches higher matching precision
than the plain RANSAC and MSAC, which is shown in our simulations.
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1. Introduction

The random sample consensus (RANSAC) [1] has been broadly applied to obviate outliers
with the nearest neighbour-based approach (NNA) for matching features. It prominently increases
the precision-recall rate of matches. Under the framework of RANSAC, many improved versions
have been studied. Using maximum likelihood estimation (MLE) instead of counting inliers,
MLESAC introduces a likelihood function to evaluate a consensus set [2]. AMLESAC also exploits
the MLE technique in consensus estimation but, other than MLESAC, only estimating outlier share
in its procedure, AMLESAC estimates outlier share and inlier noise simultaneously [3]. To speed
up the computation of RANSAC, R-RANSAC applies a preliminary test procedure, which evaluates
the hypotheses by a small-sized sample to reduce some unnecessary verifications against all data
points [4]. Exploiting Wald’s sequential probability test (SPRT), the optimal R-RANSAC also employs
the preliminary test scheme to improve RANSAC [5]. Rather than the “depth-first” scheme in
RANSAC, the preemptive RANSAC adopts the “breadth-first” strategy, which first generates all
hypotheses and then compares them [6]. Guided-MLESAC uses a distribution constructed by the
prior information instead of the uniform distribution, which generates hypotheses with a higher
probability for searching the largest consensus set [7]. Unlike the plain RANSAC uniformly generating
hypotheses, PROSAC non-uniformly draws samples from a sequence of monotonically increasing
subsets, which are ordered by some “quality” valued by the element with the worst likely score in
each subset. This scheme enables uncontaminated correspondences to be drawn as early as possible,
thus reducing computational cost [8]. SEASAC further improves PROSAC through updating samples
with only one data point at a time, replacing the worst one, whereas any such points in PROSAC will
not be removed [9]. Cov-RANSAC employs SPRT and covariance test to form a set of potential inliers,
on which the standard RANSAC run afterwards [10]. Before the procedure of RANSAC, DT-RANSAC
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constructs a refined set from putative matches based on topological information [11]. Since the scale
ratio of correct matches approximates the scale variation of two images, SVH-RANSAC proposes a
scale constraint, the scale variation homogeneity, to group data points, and thus the potential correct
matches are more probable to be used to generate hypotheses [12]. SC-RANSAC exploits matching
score to produce a set of reliable data points and then generates a hypothesis from these data points [13].

In the standard RANSAC framework, all inliers are treated as having equal quality for
hypothesizing homographies and, by this assumption, the number of times attempting to obtain
the largest consensus set is estimated. Then the noise in inliers can affects the precision of estimating
homographies and therefore impacts on the estimation of the largest consensus set. To cope with this
defect, we study an approach of consensus estimation suppressing the influence from noise. The rest
of this work is organized as follows. In Section 2, we discuss the limitation and some improvements in
the standard RANSAC framework on the noise problem. In Section 3, we present a new approach for
consensus estimation, which is based on the least square method. In Section 4, a new feature matching
method built on our new consensus estimator is presented. In Section 5, we test the least square based
consensus estimator and compare it with the plain RANSAC and MSAC. Finally we conclude our
work in Section 6.

2. The Limitation and Improvements on the RANSAC in Matching Features

Denote by X a finite set consisting of inliers and outliers. We define here inliers as the data
points satisfying a specified homography and ouliers as the data points not satisfying the homography.
Denote by G the set consisting of samples drawn from X . The sizes of samples in X are no less than
N0, the least number for calculating the homography. We call an element in G a generator. Then each
generator corresponds to a homograhpy [14]. Denote by H the set consisting of all homographies
corresponding to generators in G. Then there exists a homography which most approximates the
specified homography and we denote it by Ho. In the problem of matching features, the homography
between images is in general unknown. If the homography is estimated precisely, i.e., choosing a
homography H fromH approximating Ho as much as possible, then by H many erroneous matches
can be obviated. The standard RANSAC framework can be seen as a Bernoulli process [14]. In each
Bernoulli trial, a homography Hi is drawn fromH through computation of using a random sample
drawn from G. The drawn sample is denoted by Gi correspondingly. Then the homograhpy H
determines a set of data points, which is a subset of X and denoted by XGi . The set XGi is called the
consensus set of Gi [1]. Obviously, the consensus set corresponding to Ho, which is denoted by Xo here,
is the set most approximating the set consisting of true matches. We call the consensus set Xo the ideal
consensus set. When the RANSAC is employed for matching features, the largest set in consensus sets,
X∗ = argmax

i
‖XGi‖, is the solution to the problem. X∗ is called the largest consensus set [1] and its

optimal solution is the ideal consensus set Xo.
The direct linear transformation (DTL) is usually applied to compute the homography between

two images and it underlies consensus estimation. Suppose that H is the homography between two
images and Y = (y1, y2, 1)T ,X = (x1, x2, 1)T are two points in the images respectively, satisfying
Y = HX. Considering there existing perturbation, we introduce some noise of zero mean value into
this model, y1

y2

1

 = H

x1

x2

1

+

ε1

ε2

0

 .
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Denote entries in H by hi, namely, H =

h1 h2 h3

h4 h5 h6

h7 h8 h9

 and set h9 = 1. Hence it is easy to

obtain that

(
y1

y2

)
=

(
x1 x2 1 0 0 0 −x1y1 −x2y1

0 0 0 x1 x2 1 −x1y2 −x2y2

)


h1

h2

h3

h4

h5

h6

h7

h8


+

(
ε1

ε2

)
.

Suppose that there are N pairs of corresponding points, {Xi}N
i=1 and {Yi}N

i=1. Set Xi = (xi
1, xi

2, 1)T ,
Yi = (yi

1, yi
2, 1)T and denote by (εi

1, εi
1, 0)T the perturbation on the i-th corresponding point.

Then we have

Q = (P1, · · · , P8)h + ε, (1)

where Q = (y1
1, y1

2, · · · , yN
1 , yN

2 )T , h = (h1, · · · , h8)
T , ε = (ε1

1, ε1
2, · · · , εN

1 , εN
2 )T and

(P1, · · · , P8) =


x1

1 x1
2 1 0 0 0 −x1

1y1
1 −x1

2y1
1

0 0 0 x1
1 x1

2 1 −x1
1y1

2 −x1
2y1

2
...

...
...

xN
1 xN

2 1 0 0 0 −xN
1 yN

1 −xN
2 yN

1
0 0 0 xN

1 xN
2 1 −xN

1 yN
2 −xN

2 yN
2

 .

Therefore provided the rank of the matrix (P1, · · · , P8) is no less than 8, the homography H can be
estimated by Equation (1) and particularly when the rank is greater than 8, the least squares estimation
(LSE) can be applied to compute the homography H.

Proposition 1. Suppose var(Q) = σ2 IN . When using (1) to estimate the h, a larger sample size of
corresponding points entails a more precise estimation.

Proof. It is not difficult to know

var(h) = σ2((P1, · · · , P8)
T(P1, · · · , P8))

−1, (2)

which means that with more elements in each Pi (i = 1, · · · , 8), the elements in the principal diagonal
of var(h) tend to be smaller and therefore the estimation of h tends to be more effective.

Nevertheless directly adopting a large number of corresponding points to estimate consensus
under the standard RANSAC framework is difficult, which can be justified by the following fact.
Suppose that n is the number of all candidates and nI is the number of all inliers. If there are N
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(which should not be greater than nI) corresponding points being employed to calculate a homography,
then the probability that all these N corresponding points are inliers is

PN =

(
nI
N

)
(

n
N

) =
nI !(n− N)!
n!(nI − N)!

=
nI !
n!

(n− N) · · · (nI − N + 1),

Assume that N1 and N2 are two numbers of corresponding points for computing a homography,
satisfying N2 = N1 + m, m > 0. Then we have

PN2

PN1

=
∏n

i=nI+1(i− N1 −m)

∏n
i=nI+1(i− N1)

=
m

∏
i=1

nI − N1 − i + 1
n− N1 − i + 1

< (
nI
n
)m,

which means that in such a Bernoulli trial, for the event that all data points in the sample of N2 size
are inliers to occur, under the same given probability, the number of attempts is at least as many as
d( n

nI
)me times for the event that all data points in the sample of N1 size are inliers to occur. Therefore

when the nI is relatively small (e.g., nI < 0.5n), the cost to reduce the influence from noise under the
standard RANSAC framework is enormous (e.g., the cost for reducing noise is 2m times greater than
ignoring noise).

Some works for reducing the influence of the noise have been carried out. Torr et al. proposes
that inliers are not equal in quality, different from the assumption in the standard RANSAC [2].
The unequal quality amid inliers is caused by perturbation added in data points. From this perspective,
The different scores for inliers are introduced in MSAC and in MLESAC, MLE is exploited instead
of the cardinality of the consensus set to value the fitness between the hypothetical homographies
and the true homography and therefore to lower the influence from noise. Chum et al. embeds a
local optimization procedure into the standard RANSAC framework, which only runs when a new
maximal consensus set of inliers is found. This consensus set then is applied to compute a new
hypothetical homography [15]. Therefore the new hypothetical homography is always estimated
by generators with increasing size. In term of Proposition 1, the local-optimization-embedded
RANSAC is more effective than the standard RANSAC in the estimation on the consensus. İmre et
al. introduce order statistics into discussions on RANSAC, regarding the estimation of consensus as
the estimation of the first order statistic. Then the Top-n criterion is presented to determine the times
of Bernoulli trials [14]. Since RANSAC assumes no perturbation in data and thus pragmatically the
termination criterion does not ensure to obtain a consensus set approximating the largest consensus set
enough. The Top-n criterion in fact admits the existence of noise in data. Consequently, under a given
confidence, the method with the Top-n criterion can obtain the solution which arbitrarily approximates
the homography corresponding to the largest consensus set. However, although these approaches
have taken account of the perturbation in data, the only one able to obtain the solution approximating
the ideal consensus set is the Lo-RANSAC [15]. Our aim is also to present a method which can obtain
the solution approximating the ideal consensus set but different from the Lo-RANSAC, our method is
not under the standard RANSAC framework but based on Proposition 1 and the LSE estimates the
consensus while depressing the influence from noise simultaneously.

3. A Least Squares Consensus Estimation

By Equation (2), we can carry out the following result.

Proposition 2. Suppose {Xi}∞
i=1 a sequence of data points and {Hi}∞

i=1 a sequence of homographies estimated
from {Xi}∞

i=1 where Hi is estimated by {X1, · · · , Xi}. Then the sequence {var(Hi)}∞
i=1 monotonically decreases

if an arbitrary X ∈ {Xi}∞
i=1 is an inlier.
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This proposition can be used to rule out outliers if we have prior known some inliers in the set.
Assume that G is a subset of X and all elements in it are inliers. If a new data point from X is added
into G and a new hypothetical homography derived by this new generator gives a smaller consensus
set, that is, the estimation of the new hypothetical homography being more deviated to the true value,
then it is reasonable to deem the new added data point to be an outlier with large probability. Hence
we propose a method of consensus estimation which iteratively computes the LSE, not only eliminating
outliers but also diminishing the influence from the noise. The pivot step for this new method is to
find a necessary subset consisting of inliers to be used in LSE.

We introduce the information of descriptors to obtain this pivot subset and define the Euclidean
distance between two descriptors as the distance measurement of their corresponding features. It can
be seen from precision-recall curves of some classical descriptors, such as SIFT, SURF and so forth, that
matches with smaller distance measurements are more likely to be inliers in putatively matched local
features [16–19]. Heuristically, we have

Pr(the match X is true)

∝ Pr(the distance measurement of the match X is less than a small value).

Regard each element in X as a sample drawn from some population and denote these samples by
X1, · · · , Xn. We construct the order statistics on these samples as

(X(1), · · · , X(n)), (3)

where X(i) is with the i-th smallest value of distance measurement in X1, · · · , Xn. Let d > 0 be a
variable of distance measurements and D(·) be a function on the set of all putative matches:

D : X → R>0,

representing the distance measurement of a putative match. Therefore, once X1, · · · , Xn are drawn,
each D(Xi) (i = 1, · · · , n) is a random variable. Herefrom we denote D(Xi) by Di and introduce the
following result from Reference [14] directly.

Proposition 3 (Theorem 1, [14]). Suppose A(d) is a cumulative distribution function of the random variable
D. Let D1, · · · , Dn be i.i.d. random variables drawn from D and (D(1), · · · , D(n)) be order statistics, where
D(i) is the i-th smallest value of D1, · · · , Dn. The probability that the i-th order statistic is smaller than or equal
to d is

Pr(D(i) 6 d) =
I

∑
k=i

(
I
k

)
A(d)k(1− A(d))(I−k).

The above proposition yields that

Pr(D(i) 6 d) =

(
I
k

)
Ak(d)(1− A(d))I−k + Pr(D(i+1) 6 d). (4)

The Equation (4) means that given a small permitted distance, a putative match corresponding
to a distance measurement with a smaller rank in the order statistics (D(1), · · · , D(I)) is more likely
to be a true match. Hence we apply the order statistics Equation (3) to compute LSE. Initially, the
first k (which should not be less than 4 when calculating a homography matrix [10]) order statistics
are used to be an initial generator. Then exploiting Proposition 2 through the sequence Equation (3)
rules out outliers. When each order statistic in Equation (3) has been sifted, a sample of large size can
be obtained. By Proposition 1, this sample can be employed to get an estimation more effective than
the sample of smaller size used in the standard RANSAC and yield a set of matches approximating
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the ideal consensus set. Since the LSE is applied to estimate the consensus, we add the least squares
consensus estimate (LESC) to the new method.

4. Matching Features by LESC

Since the minimal number of matches for computing a homography is 4, the putative matches
with ranks from 1 to 4 are applied to generate the first hypothetical homography. Denote by Gi the
i-th generator, by Hi the i-th hypothetical homograhy generated by Gi through the LSE and by Ci

the i-th consensus set computed by Hi from X . For convenience, we define the set of the first four
order statistics to be the generator G4. Thus at the initial step the hypothetical homography and the
consensus set are H4 and C4 respectively. Once Gi, Hi and Ci are obtained, a test and approximation
scheme is carried out as follows:

(a) Add a new element to Gi to speculate a new generator

G̃i+1 = Gi ∪ {x(i+1)}. (5)

(b) Compute a new hypothetical homography H̃i+1 through the LSE by G̃i+1.
(c) Compute a new consensus set C̃i+1 from X by H̃i+1. A threshold T for considering inliers is

exploited here. A match (a, b) is considered an element in the set C̃i+1 if and only if it satisfies

‖b− h̃i+1a‖ < T2, (6)

where a and b are points in two planar images respectively and h̃i+1 is a 2-dimensional
transformation matrix derived from H̃i+1.

(d) Compare the cardinality of Ci and C̃i+1. If the cardinality of C̃i+1 is larger, then put

Gi+1 = G̃i+1, Hi+1 = H̃i+1, Ci+1 = C̃i+1, (7)

otherwise put

Gi+1 = Gi, Hi+1 = Hi, Ci+1 = Ci. (8)

(e) Repeat (a)∼(d) until the largest order statistic X(n) has been processed through above steps.

When these iterations are finished, the homography Hn and the consensus set Cn are the solutions
and elements in Cn are matched features. Since the noise is suppressed in the procedure of estimating
the homography Hn, the obtained consensus set approximates the ideal consensus set more than the
largest consensus set does in RANSAC.

Since all elements in X are employed to tentatively put into the generator, the cost for unnecessary
computation may severely increase when the size of X is large and the inliers is fairly small. To cope
with this defect, we weigh up the reduction of elapsed time and the number of recalls. According to
Proposition 3, an element with higher rank in the order statistics is less probable to be an inlier than
one with lower rank. Therefore the frequency of inliers in some ordered data points is an upper bound
of the probability that a data point with rank higher than the ranks of these ordered data points is an
inlier. We can exploit this result to add a control scheme into above method to trade off the cost of
computation time and the number of recalls. Simply calculating the ratio of inliers, namely

r =
|Gi+1|
i + 1

, (9)

can value that upper bound. Then we assign a parameter as a threshold. Once the current ratio of
inliers is less than the threshold, the procedure of producing generators and finding inliers stops.

We summarize the schemes above as the Algorithm of LESC shown in Algorithm 1.
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Algorithm 1 The Least Squares Consensus Estimation

Input: The order statistics x(1), · · · , x(I) as defined by Equation (3), and the parameter R.
Produce the initial generating set G4 = {x(1), x(2), x(3), x(4)}, the initial hypothetical homography
H4 and the initial consensus set C4.
for i = 5 : n

(a) Produce a speculated generating set G̃i by Equation (5).
(b) Compute a new hypothetical homography by G̃i through the LSE;
(c) Compute a new consensus set C̃i from X by H̃i according to Equation (6);
(d) Obtain the current consensus set Ci by Equation (7) or (8);
(e) Calculate the ratio of inliers r by Equation (9) and if r < R then break;

end for
Output: A set of true matches Ci.

5. Simulations and Results

We employ four methods, NNA, NNA with the plain RANSAC (NNA-RANSAC), NNA with the
MSAC (NNA-MSAC) and NNA with LESC (NNA-LESC), to compute their performance of precision
versus the number of recalls by Mikolajczyk’s criteria [20] (The image sequences are from the website
http://www.robots.ox.ac.uk/~vgg/research/affine/.). The codes of RANSAC and MSAC adopted in
our simulations are developed by Marco Zuliani (All these codes are downloaded from the website
https://github.com/RANSAC/RANSAC-Toolbox.). We set the threshold T in Equation (6) to be 3
pixels. The parameters of RANSAC are the same as MSAC, which are given in Table 1. The threshold
R in Algorithm 1 is changed according to the sequence: {0, 0.01, 0.02, 0.05, 0.1} and experiments are
run repeatedly at each setting of R. Our simulating environment is Windows 7 (64 bits) on the CPU of
i7-5550U(2.00G) and the RAM of 16 G .

Table 1. Main Parameters in RANSAC and MSAC.

χ2 probability threshold for inliers 1− e−4

False alarm rate e−6

Maximum number of iterations 100,000
Minimum number of iterations 1
The σ of assumed Gaussian noise 1

For extracting and describing local features, the SURF [18,19] algorithm is adopted, for which
we utilize the codes all from OpenSURF originally developed by Chris Evans (the original codes are
downloaded from the website https://github.com/gussmith23/opensurf.). First, we use SURF to
extract local features and to describe them through all test images. Second, we match features in
the first image to the rest of images in each test group by NNA, NNA-RANSAC, NNA-MSAC and
NNA-LESC, respectively. The results of the experiment in which the parameter R of LESC is 0.01 are
shown in Figures 1–8. In term of results of simulations, when the threshold R is small enough, the
number of recalls reduces slowly while the cost of the computation time decreases rapidly. An example
depicts this outcome, which can be seen from Table 2, where the data are obtained through using
Algorithm 1 on the first image versus the second image in the Lueven sequence at settings of R:
0, 0.01, 0.02, 0.05 and 0.1, respectively.

In the simulation of scale change for the textured scene (cf. Figure 1), LESC , RANSAC and MSAC
have similar scores when there are more than 4% inliers, whereas if the ratio of inliers is less than a
small value, for example, 1.3% in (e) , RANSAC and MSAC find the consensus sets consisted of as
many as 8 and 7 elements respectively but all these elements are not inliers. LESC gets advantages in
four scale changes for the structured scene (cf. Figure 3) but is surpassed by MSAC under the situation
of drastic change of scale. In the cases of blurred images, either structured scene or textured scene (cf.

http://www.robots.ox.ac.uk/~vgg/research/affine/
https://github.com/RANSAC/RANSAC-Toolbox
https://github.com/gussmith23/opensurf
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Figures 2 and 4), as well as in the case of illumination change (cf. Figure 6), LESC noticeably overcomes
RANSAC and MSAC in all fifteen comparisons. For JPEG compression, LESC also obtains higher
performance than RANSAC and MSAC under increasing compression artefacts (cf. Figure 5). The most
complex situation is viewpoint changes for either a textured scene or a structured scene. From 20 to 50
degrees changes of viewpoint for the textured scene (cf. Figure 7), LESC shows higher performance
on precision than RANSAC and MSAC but at the viewpoint change of 60 degrees, LESC slumps to
very low recall rate. A phenomenon for these viewpoint changes is that when the change degrees are
greater than 30, the precision of these methods decreases severely. This phenomenon also appears
under the situation of viewpoint change for the structured scene (cf. Figure 8), where at 60 degrees
of the viewpoint change, although LESC, RANSAC and MSAC find some consensus sets but all data
points in these sets are outliers. In the structured scene, LESC surpasses RANSAC and MSAC when
the change of degrees is not greater than 30.

Since LESC produces generators by some statistics of increasing ranks, it dramatically lowers
the cost for hypothesizing homographies and therefore in general matches features consuming less
computation time than RANSAC and MSAC, which can be seen from Tables 3–10. Moreover, in each
test sequence the elapsed time of LESC are much more steady than the one of RANSAC and MSAC,
which is a good property for some tasks sensitive to intervals of time.

Table 2. An example of the influence of R in Algorithm 1 to the Elapsed time and the number of recalls.

Settings of R 0 0.01 0.02 0.05 0.1

Elapsed time (seconds) 6.392 0.466 0.186 0.060 0.029
Number of recalls 621 620 619 615 612
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Figure 1. Scale change for the textured scene by the Bark sequence. From (a) to (e) the degree of change
ascends.
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Figure 2. Blur for the structured scene by the Bikes sequence. From (a) to (e) the degree of change
ascends.
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Figure 3. Scale change for the structured scene by the Boat sequence. From (a) to (e) the degree of
change ascends.
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Figure 4. Blur for the textured scene by the Trees sequence. From (a) to (e) the degree of change
ascends.
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Figure 5. JPEG compression by the UBC sequence. From (a) to (e) the degree of change ascends.
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Figure 6. Illumination change by the Leuven sequence. From (a) to (e) the degree of change ascends.
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Figure 7. Viewpoint change for the textured scene by the Wall sequence. From (a) to (e) the degree of
change ascends.
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Figure 8. Viewpoint change for the structured scene by the Graffiti sequence. From (a) to (e) the degree
of change ascends.

Table 3. The computation time (in seconds) of LESC, RANSAC and MSAC respectively on the Bark
sequence using the 1st image versus the rest of images.

Method 1 vs. 2 1 vs. 3 1 vs. 4 1 vs. 5 1 vs. 6

LESC 0.124 0.238 0.231 0.172 0.074
RANSAC 9.127 195.041 211.282 210.633 213.429
MSAC 9.456 206.953 212.522 210.419 213.408

Table 4. The computation time (in seconds) of LESC, RANSAC and MSAC respectively on the Boat
sequence using the 1st image versus the rest of images.

Method 1 vs. 2 1 vs. 3 1 vs. 4 1 vs. 5 1 vs. 6

LESC 0.431 0.478 0.368 0.100 0.135
RANSAC 2.070 6.874 12.967 85.802 170.648
MSAC 2.270 6.142 15.308 102.652 173.758

Table 5. The computation time (in seconds) of LESC, RANSAC and MSAC respectively on the Bikes
sequence using the 1st image versus the rest of images.

Method 1 vs. 2 1 vs. 3 1 vs. 4 1 vs. 5 1 vs. 6

LESC 0.256 0.120 0.288 0.311 0.073
RANSAC 0.278 0.255 0.363 0.348 0.327
MSAC 0.270 0.265 0.368 0.336 0.299
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Table 6. The computation time (in seconds) of LESC, RANSAC and MSAC respectively on the Trees
sequence using the 1st image versus the rest of images.

Method 1 vs. 2 1 vs. 3 1 vs. 4 1 vs. 5 1 vs. 6

LESC 0.226 0.487 0.293 0.592 0.207
RANSAC 4.739 5.010 15.057 72.853 277.446
MSAC 4.331 5.319 14.351 81.059 270.460

Table 7. The computation time (in seconds) of LESC, RANSAC and MSAC respectively on the UBC
sequence using the 1st image versus the rest of images.

Method 1 vs. 2 1 vs. 3 1 vs. 4 1 vs. 5 1 vs. 6

LESC 0.335 0.196 0.186 0.567 0.276
RANSAC 0.225 0.211 0.383 0.887 4.828
MSAC 0.227 0.353 0.320 1.003 4.858

Table 8. The computation time (in seconds) of LESC, RANSAC and MSAC respectively on the Leuven
sequence using the 1st image versus the rest of images.

Method 1 vs. 2 1 vs. 3 1 vs. 4 1 vs. 5 1 vs. 6

LESC 0.466 0.259 0.329 0.260 0.094
RANSAC 0.206 0.230 0.239 0.243 0.388
MSAC 0.230 0.220 0.287 0.225 0.323

Table 9. The computation time (in seconds) of LESC, RANSAC and MSAC respectively on the Wall
sequence using the 1st image versus the rest of images.

Method 1 vs. 2 1 vs. 3 1 vs. 4 1 vs. 5 1 vs. 6

LESC 0.168 0.459 0.186 0.277 0.061
RANSAC 1.052 1.848 8.183 98.532 286.434
MSAC 0.934 2.046 8.207 92.270 290.465

Table 10. The computation time (in seconds) of LESC, RANSAC and MSAC respectively on the Graffiti
sequence using the 1st image versus the rest of images.

Method 1 vs. 2 1 vs. 3 1 vs. 4 1 vs. 5 1 vs. 6

LESC 0.738 0.188 0.149 0.186 0.049
RANSAC 2.511 19.248 217.795 230.480 230.250
MSAC 2.559 27.735 219.145 232.490 230.998

6. Conclusions

We proposed the LESC method, which exploits LSE and order statistics to suppress noise in data
and to diminish outliers for matching local features. Unlike other works employing the framework of
RANSAC, our method generates hypothetical homographies determinatively according to the rank of
the order statistics on the distance measurement and in effect roughly estimates the true homography
and then iteratively refines the estimation to approximate it. LESC reaches higher precision-recall score
than plain RANSAC in 31 scenes (and than MSAC in 30 scenes) out of total 40 test scenes. Because of
the determinative sampling technique, in contrast to other methods of randomly selecting homography
samples, LESC has advantages in its relatively stable cost of computation time for estimating the
largest consensus set.
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