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Abstract: This article empirically demonstrates the impacts of truthfully sharing forecast information
and using forecast combinations in a fast-moving-consumer-goods (FMCG) supply chain. Although it
is known a priori that sharing information improves the overall efficiency of a supply chain,
information such as pricing or promotional strategy is often kept proprietary for competitive reasons.
In this regard, it is herein shown that simply sharing the retail-level forecasts—this does not reveal the
exact business strategy, due to the effect of omni-channel sales—yields nearly all the benefits of sharing
all pertinent information that influences FMCG demand. In addition, various forecast combination
methods are used to further stabilize the forecasts, in situations where multiple forecasting models
are used during operation. In other words, it is shown that combining forecasts is less risky than
“betting” on any component model.
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1. Introduction

Demand forecasting at various forecast horizons is a key component in manufacturing operation
management. Although the demand-forecasting problem have been addressed extensively in the
literature and from many perspectives, the evolution of the complex supply chain—such as exposure
to new data types, new retailing regimes, or new operation strategies—creates new challenges and
opportunities for more accurate forecasts.

Forecast skill generally depends on two factors: the amount of data (information) that is available,
and the depth of understanding about the underlying data-generating process. Whereas many papers
in the literature focus on better inferring the underlying process, i.e., proposing various models
to improve forecasts for a particular application, the integration of information across a supply
chain is relatively less discussed. From an operational perspective, it is well understood that
coordination across an entire supply chain creates win-win situations for all players in that supply
chain. Such coordination is not just limited to the flow of materials, but also requires effective flow of
information [1,2]. In a typical supply chain, the amount of demand-related data are abundant, ranging
from a news release on a catastrophic event that may affect the global demand of a particular product,
to a mobile-device advertising campaign launched by a local retailer. It is almost impossible for a
particular player in a supply chain to obtain, manage, and use all of this information during forecasting.
As a result, demand forecasts are often generated by using only an organization’s internal data.
For example, a manufacturer usually produces forecasts based on historical order data; the accuracy
of such forecasts is often limited. On this point, the first contribution of this paper is therefore on
investigating the benefits of forecast information sharing in a supply chain.
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Another challenge of the demand forecasting problem originates from the fact that the underlying
data-generating processes may not be unique. Each entity in a supply chain may identify one or
more appropriate models for their operational forecasts. To that end, two types of inconsistency
are frequently encountered in supply-chain management: (1) the aggregation inconsistency across
various levels in a supply chain, and (2) the inconsistency due to the multi-modeling of demand.
The demand structure in a supply chain can be considered as a hierarchy, where goods produced
by a manufacturer (top level) are shipped to its distributors, and, subsequently, retailers (bottom
level). When the forecasts are produced by different supply-chain entities with different models,
aggregation consistency is not guaranteed. In other words, the demand forecasts produced by different
retailers do not add up exactly to the forecast produced by a manufacturer. The second type of
inconsistency originates from the fact that, oftentimes, supply-chain entities use more than one model
to generate forecasts. The question “to combine or not to combine?” has led to much debate over
decades (e.g., [3–5]) since at least 1969, when Bates and Granger [6] published their seminal paper on
forecast combination. The second contribution of this paper is therefore on addressing the forecast
inconsistencies, in fast-moving-consumer-goods (FMCG) demand, through reconciliation and forecast
combination.

2. Literature Review

The literature review is divided into four parts. A summary is presented at the end of the section
to relate the various ideas herein discussed.

2.1. On Information Sharing

Although it is known a priori that more information—provided that it is relevant—leads to better
forecasts, the supply-chain literature on this topic seems to be divided. On one hand, with no surprise,
there are abundant papers in the literature, many being empirical, showing that sharing historical
demand information between downstream retailers and upstream suppliers is valuable. On the other
hand, a stream of research says that, under certain conditions, sharing of demand information from
downstream retailers to upstream suppliers is not valuable, as the historical time series data of the
retailers’ orders provides sufficient information for suppliers to impute the end-consumer demand
process. In other words, the divided insights are partially subject to whether the retailer-level demand
is inferable from the retailers’ order data (see [7,8] and references therein for more details).

In a recent study, Ali and Boylan [9] showed that the part of literature that supports “no value of
information sharing” mostly relies on certain restrictive assumptions, some of which may not hold in
practice. For example, Cui et al. [10] showed that there is indeed value in sharing the demand time
series. Although they use a similar demand-process model as papers showing “no value of information
sharing”, they find that, when retailers change their inventory policy (contingent on some private
information), sharing the demand time series is valuable for the supply chain. The reader is referred to
[10,11] for further information on such debate.

Apart from the general debate on information sharing, there are also more focused works on
forecast sharing in supply chain (e.g., [12–15]). These works are mostly theoretical and/or dealing with
supply-chain contracting. For instance, the authors in [13,14] considered a scenario where the retailer
may game the system by strategically distorting the shared information. The game-theoretic interaction
between retailers and suppliers, i.e., the continuum between the “all-or-nothing” cooperation (The term
“all-or-nothing” is used to describe the situations where the supply-chain members either absolutely
trust each other and cooperate or do not trust each other at all.) was modeled. Nevertheless,
such behavior can be argued away by invoking the Folk theorem—a class of theorems about possible
Nash equilibrium payoff profiles in repeated games [16]. Even when the interactions are not long-term,
truthful sharing of forecasts can be encouraged by using appropriately designed contracts [15].
To that end, this paper assumes that all shared forecasts are truthful. Based on this assumption,
this paper, along with the aforementioned papers, provides a strong prescription for supply-chain
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managers: sharing forecast information truthfully provides most of the benefits derived by sharing
more (potentially sensitive) details, such as pricing or promotional strategies.

2.2. On Forecast Reconciliation

The concept of reconciliation emerges when the forecast quantity, such as renewable power
generation [17–19], electrical load [20], tourism demand [21], or FMCG demand [22], can be modeled
as a hierarchy. Due to the different information sets available at various levels in the hierarchy,
e.g., retailers’ business strategy is opaque to the distributor, and modeling uncertainties, the lower-level
forecasts almost surely do not sum up to the higher-level forecasts. When such aggregation
inconsistency is observed, decision makers are challenged with a selection problem, i.e., which set of
forecasts should be used? In the case of FMCG forecasting, such inconsistency contradicts the core idea
of manufacturing operation management, namely, effective and efficient supply–demand matching.

In the literature, there are several well-known aggregate-consistent forecasting methods, such as
the bottom-up approach, top-down approach, or middle-out approach [21]. Bottom-up approach
assumes the forecasts at a higher level of the hierarchy are the arithmetic sum of the bottom-level
forecasts. In this case, a manufacturer does not make its own forecasts but awaits retailers’ forecasts
(sometimes in the form of order data). However, due to the need of creating “safety stock”,
retailers often over-forecast their demand. The excess demand propagates up the supply chain
and results in a phenomenon commonly known as the bullwhip effect [23,24], which leads to
inefficiency in supply chain. Another aggregate-consistent forecasting method is the top-down
approach, which assumes the forecasts of lower-level demand are fractions of the manufacturer’s total
forecast. There are several ways to assign such fractions. However, such demand assignment often
leads to inventory shortage/excess at lower levels. The middle-out approach combines the previous
two approaches by initiating forecast from a middle level of the demand hierarchy; the forecasts on
other levels are aggregated or disaggregated using the middle-level forecasts. However, when the
supply chain is complex and contains many levels, identifying the “middle-level player” is not trivial;
it also involves contracting issues that may complicate operation.

Recently, through a series of papers [21,25–27], the optimal reconciliation technique—as detailed in
the next section—was demonstrated. This technique takes the independently-made forecasts at various
levels in a hierarchy (also known as the base forecasts), and produces a set of aggregate-consistent
forecasts. Since the base forecasts are generated by different supply-chain entities, most likely using
the best information available to these entities, they are often more accurate. Furthermore, as only the
forecasts are required, neither the forecasting model nor the raw data needs to be revealed to the other
entities. Due to the omni-channel sales, even when a particular forecast shows an increase in demand,
the specific business strategy that causes that boost remains opaque to the peers, and thus protects
the supply-chain entity who made that forecast. There are several versions of optimal reconciliation;
this paper does not consider all of them. Instead, the aim is to demonstrate the benefits of forecast
sharing, and thus only one version is used to exemplify the reconciliation procedure.

2.3. On Forecast Combination

Twenty years after the paper by Bates and Granger [6], Granger [28] noted in his review that the
combination of forecasts is a simple, pragmatic, and sensible way to possibly produce better forecasts.
Forecast combination often works even when some component forecasts are inefficient. For such
reasons, forecast combination has become a standard practice in many scientific domains (e.g., [29–31]).

The core idea of forecast combination is to produce a final forecast using several component
forecasts. Supposing N component forecasts, ŷ(i)t , i ∈ {1, · · · , N}, are available, the combine forecast
takes the form:

ŷ(c)t =α0 +
N

∑
i=1

αi ŷ
(i)
t , (1)
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where αi are the weights placed on the component forecasts. It is immediately clear that there are
many ways to estimate those weights. de Menezes et al. [32] summarized seven well-established
methods that were thought to be good representatives of varying degrees of sophistication. The reader
is referred to the original paper for details. Among the seven methods discussed by de Menezes
et al. [32], the regression-based combination has the most variants. This paper considers several
popular methods including ordinary least squares, least absolute deviations, lasso, and complete
subset regression.

2.4. On FMCG Forecasting

FMCG demand forecasting, or any other forecasting, is essentially an input–output matching
problem, where the input is the historical and current information, and the output is the forecast.
To construct an appropriate forecasting model, many methods are available. For instance, econometric
approaches (e.g., [33,34]) and machine-learning approaches (e.g., [35]) have both been used in
the demand forecasting literature. The reader is referred to the work by Fildes et al. [36] for
a comprehensive review on forecasting in operation research. In the supply-chain-planning process,
due to the large number of factors that may affect demand, forecasting is often done in two steps.
An automated forecasting system would produce an initial demand forecast and some adjustments are
made subsequently based on either an expert’s view, or some other algorithms [37].

General-purpose univariate forecasting methods, such as the autoregressive integrated moving
average (ARIMA) family of models, or the exponential smoothing (ETS) family of models, are available in
many statistical software packages, such as R or Python. They are therefore commonly utilized by the
industry. Since forecasts that consider domain knowledge (exogenous factors) are generally better than
those solely relying on univariate modeling, the output of a univariate forecasting method can be further
adjusted using domain knowledge. For example, the base-times-lift model [38] is one such model.

Besides postprocessing the forecasts, the exogenous information can also be built into the
forecasting models directly. In the case of FMCG demand forecasting, Huang et al. [39] considered the
autoregressive distributed lag (ADL) model, which had shown excellent performance for their dataset.
A large number of exogenous variables, as well as the lagged version of these variables, were used in
their ADL model. The model is quite general and customizable. The complete form of the model is
given by:

ln(y0,t) = α0 + ∑`
j=1 αj ln(y0,t−j) + ∑`′

j=0 β0,j ln(p0,t−j) + ∑`′′
j=0 γ0,jI0,t−j + ∑P

p=1 ∑`∗
j=0 βp,j ln(pp,t−j)

+∑Q
q=1 ∑`∗∗

j=0 γq,jIq,t−j + ∑12
d=1 θdmonthly_dummyd + ∑9

c=1 ∑1
ν=0 δc,νcalendar_eventc,t−ν + εt,

(2)

where y0 is the demand of the focal product; p0 and pp are the price of the focal and competitor
products; and I0 and Iq are the promotion index of the focal and competitor products. Together with
the 12-month dummy variable and the dummy variables for nine major public holidays (and the
weeks before that) in the US, if `′ = `′′ = `∗ = `∗∗ = P = Q = 2, the model would have
48 exogenous variables. Huang et al. [39] showed that the ADL model not only outperforms the
ETS and base-times-lift models, but also marginally outperformed the reduced (without competitor
information) ADL model. However, only a reduced model is considered in this paper because the
real-time information on pricing and promotional strategy, as well as the corresponding demand times
series faced by the competitors, are seldom available in practice. Moreover, a reduced model is less
likely to be over-specified as compared to the full model.

2.5. Section Summary

In view of the above literature review, the following aspects are discussed in the remaining part
of the paper:

1. Various information-sharing strategies in hierarchical FMCG demand forecasting. Four cases
are elaborated, based on different levels of information sharing. Forecasting models are selected
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based on the available information in each case. More specifically, Case I (see below) considers
univariate forecasting models (ARIMA and ETS); Case II considers a reduced ADL model;
the forecasting models for Case III utilizes hierarchical reconciliation; and Case IV again uses the
ADL model, but with more predictors.

2. Hierarchical reconciliation procedure. It has three main steps: (1) arrange the data into
a hierarchical structure, (2) generate base forecasts, and (3) reconcile the base forecasts.
Two methods, namely, the bottom-up approach and the optimal reconciliation are used.

3. Effect of combining forecasts. After the forecast accuracies under different levels of information
sharing are compared, all models are subsequently treated as component models to investigate
the effect of combining forecasts. A total of seven forecast combination methods are considered
in this paper.

3. Cases of Different Levels of Information Sharing and Hierarchical Reconciliation

In this section, details of the supply-chain structure and the different cases of information sharing
are elaborated. More specifically, four cases are considered: (1) no information other than the past
demand is shared (Case I); (2) the past demand, price, and promotional information, i.e., all past
pertinent information, is shared (Case II); (3) only the past demand time series and the retailers’
forecasts are shared (Case III); and (4) the past demand, price, and promotion time series, as well as
the future planned pricing and promotional campaign strategies, are shared (Case IV).

Obviously, these cases are arranged in an increasing order in terms of the amount of shared
information. Case IV is the one where all pertinent information is shared, so naturally it is expected to
perform the best. However, this case is highly unrealistic, as future price and promotional campaign
strategies are highly-sensitive information that retailers may not be willing to share. Case II also
comes with practical challenges, as it would require retailers to divulge their historical pricing and
promotional strategies. However, one may argue that this information may be less sensitive than what
is needed for Case IV. Case I, on the other hand, does not have any challenge in terms of feasibility,
nevertheless, its forecast accuracy may be greatly limited by the lack of information. Finally, Case III
comes with relatively fewer practical challenges than Cases II and IV; it is thus argued to be the most
feasible case of information sharing in the retail industry.

Before the forecasting models for each case are revealed, the hierarchical nature of the supply
chain is exemplified. The number of levels in a demand hierarchy and the aggregation/disaggregation
interpretation may vary according to the granularity of the supply-chain structure. For example,
one may either disaggregate the total demand based on product types or do so geographically.
Without loss of generality, Figure 1 shows a three-level hierarchical demand time series structure,
which will be used throughout this paper.

Figure 1. A three-level hierarchical demand time series structure. Universal product code (UPC) level,
L1, contains n nodes; retailer level, L2, contains ∑n

i=1 mi nodes.

In Figure 1, the level 0 (L0) demand is disaggregated based on n universal product codes (UPCs)
to form the time series at level 1 (L1). At L1, yi,t represents the demand of UPC i at time t. For each
UPC, the demand is further disaggregated based on stores to form the level 2 (L2) time series. Here,
yij,t represents the demand of UPC i at store j at time t. Let mi be the number of stores that sell UPC i,
then the total number of L2 demand time series is ∑n

i=1 mi.
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3.1. Case I

Case I assumes that the business strategies of the downstream retailers are completely opaque to
their supplier. In the context of Figure 1, it implies that the pricing and promotional strategies at L2

are unknown to L0 and L1. Under this setting, the information set at time t available to the supplier is

ΩI
t = {YL2,1, · · · , YL2,t−1}, (3)

where

YL2,t′ =
(
y11,t′ , · · · , y1m1,t′ , · · · , yn1,t′ , · · · , ynmn ,t′

)> , t′ ∈ {1, · · · , t− 1} (4)

is the historical retailer-level demand.
Using ΩI

t, the supplier can come up with a L1 forecast by first aggregating the demand data:

YL1,t′ =

(
m1

∑
j=1

y1j,t′ , · · · ,
mn

∑
j=1

ynj,t′

)>
=
(
y1,t′ , · · · , yn,t′

)> , t′ ∈ {1, · · · , t− 1}, (5)

so that the n UPC-level demand time series {yi,1, · · · , yi,t−1}, i ∈ {1, · · · , n}, are obtained.
Subsequently, univariate forecasting methods can be used on the aggregated time series. In this
work, two frequently used univariate families of models are considered for Case I, namely, ARIMA and
ETS. Furthermore, the case number and model abbreviation in SMALLCAPS are jointly used to denote
a model, e.g., the ARIMA family of models for Case I is denoted as C1ARIMA.

3.2. Case II

In this case, it is assumed that the retailers share the historical price, promotion, and the
corresponding demand information with their supplier. Sharing such information does not pose severe
practical challenges from an operational perspective. In fact, for those supply-chain relationships
governed by long-term contracts, such information can be shared by enabling connectivity between IT
systems of the firms. However, from a strategic perspective, retailers may not want to divulge their
historical pricing and promotional strategy, since such information may be useful for their competitors
in updating their priors. In other cases when the competitors also source from the same supplier,
leakage of competitive information may not be ruled out completely. Therefore, this case poses certain
strategic barriers to being implemented in practice.

The information set in this case is:

ΩII
t = {YL2,1, · · · , YL2,t−1,PL2,1, · · · ,PL2,t−1,IL2,1, · · · ,IL2,t−1}, (6)

where the additional terms to Case I, namely,

PL2,t′ =
(

p11,t′ , · · · , p1m1,t′ , · · · , pn1,t′ , · · · , pnmn ,t′
)> , t′ ∈ {1, · · · , t− 1}, (7)

IL2,t′ =
(
I11,t′ , · · · , I1m1,t′ , · · · , In1,t′ , · · · , Inmn ,t′

)> (8)

are the historical retailer-level price and promotions information, respectively.
Whereas the L1 demand is the simple summation of the L2 demand (see Equation (5)), the L1

price and promotional information needs to be strategically aggregated. A weighted-average approach
is used:
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pi,t′ =
mi

∑
j=1

(
ACVj × pij,t′

/
mi

∑
j=1

ACVj

)
, t′ ∈ {1, · · · , t− 1}, (9)

Ii,t′ =
mi

∑
j=1

(
ACVj × Iij,t′

/
mi

∑
j=1

ACVj

)
, (10)

when aggregating PL2,t′ and IL2,t′ . ACVj is the all commodity volume (ACV) of retailer j, i.e.,
the annual sales volume of retailer j. Equations (9) and (10) average the price and promotion index of
each retailer according to the store’s ACV. In other words, a bigger store receives a higher demand
during a promotional campaign than a smaller store with the same promotion.

Considering the exogenous factors, theL1 forecasts for Case II can be produced via a regression model:

yi,t = exp

[
αi,t

0 +
`

∑
k=1

αi,t
k ln(yi,t−k) +

`′

∑
k=1

βi,t
k ln(pi,t−k) +

`′′

∑
k=1

γi,t
k Ii,t−k + εi,t

]
, (11)

where i ∈ {1, · · · , n} is the index set for the UPCs under consideration. Parameters `, `′, and `′′ control
the numbers of lagged values of the dependent variable and each explanatory variable. The regression
parameters in Equation (11), namely, αi,t

0 , αi,t
k , βi,t

k , and γi,t
k are designed as adaptive parameters,

to capture the changing dynamics in the demand series. After the regression parameters are estimated,
the forecast for UPC i at time t is given by:

ŷi,t = exp

[
α̂i,t

0 +
`

∑
k=1

α̂i,t
k ln(yi,t−k) +

`′

∑
k=1

β̂i,t
k ln(pi,t−k) +

`′′

∑
k=1

γ̂i,t
k Ii,t−k

]
. (12)

As parameter estimation is not the primary concern of this paper, least squares fitting is used
throughout the text. Furthermore, the model equations (such as Equation (11)) and the prediction
equations (such as Equation (12)) will be used interchangeably hereafter. In conclusion, a reduced
form of the ADL model is used for Case II or C2ADL.

3.3. Case III

Case III refers to a situation where retailers share their forecasts with their suppliers. Just like
Cases I and II, it is assumed that the historical demand information is available to the supplier.
However, the price and promotional information is assumed unknown to the supplier. The information
available is thus ΩIII

t = {YL2,1, · · · , YL2,t−1, ŶL2,t}, where ŶL2,t denotes the forecasts made by retailers
for time t. As mentioned earlier, the information available in Case III may even be less sensitive
than that in Case II, as information on price and promotions is only embedded in the forecasts
implicitly. In other words, if the supplier observes an increase in the forecast demand, due to the
lack of information on PL2,t and IL2,t, there is, however, no way for the supplier to infer the cause
(e.g., a target promotion or a simple price reduction) of the additional demand. The pricing and
promotional strategies of retailers are thus (somewhat) protected.

At first glance, Case III is straightforward, as the forecasts at L1 can be easily obtained by summing
up ŶL2,t. However, doing so implies that the supplier is not utilizing the information provided by
{YL2,1, · · · , YL2,t−1}. Therefore, a more holistic approach is needed. A highlight of this paper is to
present the usefulness of the optimal hierarchical reconciliation method [21,25] in forecasting for
a supplier in a supply chain with multiple retailers.

In hierarchical reconciliation, simply summing up ŶL2,t is referred to as the bottom-up approach.
The reconciled forecasts at all levels, Ỹt, using the bottom-up approach is:

Ỹt =SŶL2,t, (13)
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where ŶL2,t is given in Equation (22) below, and each entry therein is a forecast of a particular UPC
at a particular store. S is a summing matrix. For illustration purposes, consider Figure 1 with n = 3,
mi = 3, i ∈ {1, 2, 3}, and the summing matrix is given by:

S =



1 1 1 1 1 1 1 1 1
1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1



. (14)

By observing the summing matrix, it becomes apparent how Ỹt may be obtained. For example,
multiplying the second row of S with ŶL2,t gives the forecast for y1,t.

The optimal reconciliation method is similar to the bottom-up approach, but it utilizes the
information that is ignored by the bottom-up approach, namely, {YL2,1, · · · , YL2,t−1}. The idea of
optimal reconciliation originates from a linear regression model:

Ŷt =Sβt + εt, (15)

where Ŷt given by Equation (21) is a vector of all base forecasts, εt has zero mean and unknown
covariance Σ, and βt = E(ŶL2,t) is the unknown mean of retailer-level forecasts. As compared to
Equation (13), Equation (15) models the errors associated with reconciliation (εt should not be confused
with the base-forecast errors). In other words, when the base forecasts are generated individually at
L0, L1 and L2, Equation (15) explains the aggregate inconsistency in the forecasts.

Regression parameter βt can be estimated using the generalized least squares (GLS):

β̂GLS
t =(S>Σ†S)−1S>Σ†Ŷt, (16)

where Σ† is the Moore–Penrose generalized inverse of Σ. A problem with the GLS solution is that the
covariance matrix, Σ, is unknown. As the length of εt is l = 1 + n + ∑n

i=1 mi, i.e., the total number of
base forecasts, there are l(l + 1)/2 unknown parameters in Σ that need to be estimated. This is not
a straightforward computation. Therefore, an alternative strategy is to use the weighted least squares
(WLS) approach:

β̂WLS
t =(S>ΛS)−1S>ΛŶt, (17)

where Λ is a diagonal matrix whose elements are the inverse of the variances of εt. Using the WLS
solution, the optimally reconciled forecasts are:

Ỹt =Sβ̂WLS
t = S(S>ΛS)−1S>ΛŶt. (18)
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Using the optimal reconciliation technique, the entire information set ΩIII
t is used. The results are

thus expected to be better than those from a bottom-up approach. The following system of equations
summarizes the forecast method in Case III:

Ỹt =SPŶt; (19)

P =(S>ΛS)−1S>Λ; (20)

Ŷt =
(

ŶL0,t, Ŷ>L1,t, Ŷ>L2,t

)>
; (21)

ŶL2,t =
(
ŷ11,t, · · · , ŷ1m1,t, · · · , ŷn1,t, · · · , ŷnmn ,t

)> ; (22)

ŷij,t = exp

[
α̂

ij,t
0 +

`

∑
k=1

α̂
ij,t
k ln(yij,t−k) +

`′

∑
k=0

β̂
ij,t
k ln(pij,t−k) +

`′′

∑
k=0

γ̂
ij,t
k Iij,t−k

]
, (23)

where i ∈ {1, · · · , n}, j ∈ {1, · · · , mi};

ŶL1,t = (ŷ1,t, · · · , ŷn,t)
> ; (24)

ŷi,t = exp

[
α̂i,t

0 +
`

∑
k=1

α̂i,t
k ln(yi,t−k)

]
; (25)

ŶL0,t = exp

[
α̂t

0 +
`

∑
k=1

α̂t
k ln(yt−k)

]
. (26)

Equation (19) is the general form of forecast reconciliation [21]. The bottom-up approach can
be represented by setting P as (0m×(n+1)|Im), where 0 and I are null matrix and identity matrix
respectively, m = ∑n

i=1 mi. Equation (23) produces L2 base forecasts. It assumes that the retailers
know their own price and promotional information at a future time t; the summations over p and
I thus start from k = 0. Equations (25) and (26) produce L1 and L0 base forecasts, respectively.
Regression parameters α

ij,t
0 , α

ij,t
k , β

ij,t
k , γ

ij,t
k , αi,t

0 , αi,t
k , αt

0 and αt
k can be estimated using historical data via

the least squares method. The bottom-up and optimal reconciliation techniques are hereafter denoted
as, C3BU and C3OPT, respectively.

3.4. Case IV

This case represents the ideal case for traditional supply-chain management. In this
case, the retailers share all pertinent information with the supplier that is ΩIV

t =

{YL2,1, · · · , YL2,t−1,PL2,1, · · · ,PL2,t,IL2,1, · · · ,IL2,t}. It is important to note that, in this case,
different from Case II, the planned pricing and promotional strategy PL2,t and IL2,t are also shared.
Due to the competitive importance of this information, this case is less practical than all other cases.

The forecast method for Case IV is identical to Case II except now that the planned price and
promotional information for time t is available to the supplier:

ŷi,t = exp

[
α̂i,t

0 +
`

∑
k=1

α̂i,t
k ln(yi,t−k) +

`′

∑
k=0

β̂i,t
k ln(pi,t−k) +

`′′

∑
k=0

γ̂i,t
k Ii,t−k

]
. (27)

L1 price and promotion are aggregated through Equations (9) and (10), but for t′ ∈ {1, · · · , t}.
This model is denoted as C4ADL.

4. Forecast Combination Methods

Section 3 has discussed the various modeling approaches to be used in cases of different levels
of information sharing. It is noted that there is information overlap among these cases. For example,
suppose the information set ΩIII

t is available, all forecasts in Case I also become available, i.e., ΩI
t ⊂ ΩIII

t .
Although it can be argued that the “best” method known to a forecaster will most likely outperform
all other alternatives, e.g., C3OPT will outperform C1ARIMA, suboptimal forecasts sometimes can
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contribute positively to the final forecast, as discussed in Section 2. To that end, several frequently
used forecast combination methods are formulated in this section.

4.1. Simple Averaging

The most intuitive way to combine forecasts is to use the average of all forecasts as the final
combined forecast. Suppose a total of N component models are used to produce forecasts at each time
stamp t, the final forecast is given by

ŷ(avg)
t =

1
N

N

∑
i=1

ŷ(i)t , (28)

where ŷ(i)t is the forecast produced by method i, and ŷ(avg)
t is the combined forecast using simple

averaging. This method is denoted as AVG.

4.2. Trimmed Simple Averaging

In practice, if more than five component forecasts are available, the forecaster can afford to drop
the highest and lowest forecasts, i.e., the outliers among the component forecasts. This method is
known as the trimmed simple averaging, or TRIM.

4.3. Combination through Variance

AVG puts equal weights on the component models. However, it can be argued that a heavier
weight should be placed on a better performing model. The variance-based method (VAR) computes
the mean squared error (MSE) and weighs the forecasts according to their accuracy. Mathematically,
it is expressed as:

ŷ(var)
t =

N

∑
i=1

1
MSEi

∑N
i=1

1
MSEi

ŷ(i)t . (29)

It is noted that, in this method, some historical forecasts need to be available for the computation
of MSE.

4.4. Combination through Ordinary Least Squares

Besides assigning equal or variance-based weights, another class of weight-assignment methods
is through linear regression:

yt′ =x>t′ W + et′ , (30)

where xt′ =
(

1, ŷ(1)t′ , · · · , ŷ(N)
t′

)>
is the size-(N + 1) vector of component model forecasts at time t′, yt′

is the actual demand at time t′, and W is the size-(N + 1) vector of weights. The above regression
equation can be written into a vector form, if a total of T historical forecasts are available:

Y =XW + e, (31)

where Y = (y1, · · · , yT)
>, e = (e1, · · · , eT)

>, and

X =

x>1
...

x>T

 =


1 ŷ(1)1 · · · ŷ(N)

1
...

...
. . .

...

1 ŷ(1)T · · · ŷ(N)
T

 . (32)
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If the weight vector W can be estimated, the combined forecast at time t can be obtained via

ŷt =x>t Ŵ . (33)

Given the regression setting, the ordinary least squares (OLS) method provides a basic solution to W :

ŴOLS =(X>X)−1X>Y . (34)

This method is denoted as OLS.

4.5. Combination through Least Absolute Deviations

Whereas the OLS regression minimizes ∑T
t′=1(et′)

2, the median regression, or least absolute
deviations (LAD) regression, minimizes ∑T

t′=1 |et′ |, i.e.,

ŴLAD = argmin
W

{
T

∑
t′=1

∣∣∣yt′ − x>t′ W
∣∣∣} . (35)

Linear programming is required to solve for WLAD. The advantage of LAD is that it treats all
samples equally, whereas OLS penalizes the large errors. In other words, LAD is more resistant to
outliers in the component forecasts.

4.6. Combination through Lasso

Similarly, lasso is another commonly used regression technique, which minimizes the sum of
squares subject to a regularization on the L1 norm of the regression parameter. Formally, the lasso
estimator is given by:

Ŵ lasso = argmin
W

 T

∑
t′=1

(
yt′ − w0 −

N

∑
i=1

ŷ(i)t′ wi

)2

+ λ
N

∑
i=1
|wi|

 . (36)

Due to its geometry, see Tibshirani [40], lasso is capable of shrinking some regression parameters
to zero, and thus acts as a variable selection method. In the present context, lasso shrinks and selects
only the good component model forecasts, which may be more appropriate than OLS and LAD.

4.7. Combination through Complete Subset Regression

The last variant of the regression-based combination method considered in this paper is the
complete subset regression. Given N component models, a total of Ψ regressions can be built, where

Ψ =
N

∑
i=1

(
N
i

)
=

N

∑
i=1

N!
i!(N − 1)!

. (37)

These Ψ combined forecasts can then be combined for a final forecast using averaging—mean,
median, mode, or any other combination method. This method is denoted as SUBSET.

5. Empirical Study

The empirical part of this paper considers the FMCG data from a retail chain. The data are stored in
the Dominick’s database (http://research.chicagobooth.edu/kilts/marketing-databases/dominicks/),
which is freely available online. The dataset is provided by the James M. Kilts Center, University of
Chicago Booth School of Business with a collaborative effort by the Dominick’s Finer Food (DFF).
Although the dataset records weekly historical data from 1989 to 1994, owing to its informative nature,
it is still frequently being used to conduct marketing research (e.g., [41,42]). It was previously found

http://research.chicagobooth.edu/kilts/marketing-databases/dominicks/
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that sales promotions in Dominick’s database are large and frequent [43]; the dataset thus provides
a suitable platform for our current investigation, i.e., forecasting under strong demand fluctuation.

The database contains four types of files: the customer count file, store-level demographics file,
UPC files, and movement files. Store-level sales information for FMCG from 29 categories, along with
the store-level price and promotional information, is provided in the movement files. Since the goal of
this paper is to investigate the benefits of information sharing during forecasting, only data from one
category, namely, the bottled juice category (BJC), is used. However, similar results and conclusions
can be expected, should the data from other categories be used.

There are three types of promotion in BJC: simple price reduction, bonus buy, and coupons, with
bonus buy being the dominant type (e.g., three bottles of cranberry juice for 10 dollars). As the price
in the data file is registered for the bundle, the total price is simply divided by the size of the bundle
to obtain the price of a single item (which is equivalent to a price reduction). In addition, a “1” is
recorded if a particular store has a promotion (any type) on a particular product. After careful data
preprocessing and filtering (e.g., list-wise deletion of missing values), complete data from 37 UPCs
over a period of 377 weeks remain. These UPCs are listed in the first column of Table 1. In conclusion,
37 L1 time series (n = 37) and 1971 L2 time series (m = ∑37

i=1 mi = 1971) are used in this section. The
numbers of L2 time series in for each UPC are listed in the second column of the table.

Table 1. Universal product code (UPC) level mean absolute percentage errors for the bottled juice
category. The colored columns 3–8 compare forecast accuracies under different levels of information
sharing, i.e., Cases I–IV. The combined forecasts using various methods are displayed in columns 9–15.

Component Models Combined Forecasts
UPC n.L2 C1ETS C1ARIMA C2ADL C3BU C3OPT C4ADL AVG TRIM VAR OLS LAD LASSO SUBSET
7045011402 55 10.97 10.88 9.44 7.48 6.97 7.77 7.35 7.23 7.19 6.73 8.13 6.87 6.85
5300015154 61 9.58 9.51 9.49 9.24 9.06 9.33 8.76 8.74 8.77 9.46 8.94 9.12 9.08
5300015108 64 13.10 14.02 11.83 10.39 10.41 11.71 11.40 11.02 11.35 11.85 10.57 11.61 12.08
3828103123 61 17.06 17.33 16.53 20.13 19.42 17.15 15.36 15.43 15.68 12.37 11.85 12.32 13.51
3828103091 66 38.12 40.32 34.03 22.21 22.20 27.46 27.78 26.96 26.42 29.16 18.85 26.48 27.77
3828103025 52 57.05 52.18 24.51 18.13 17.72 17.10 24.59 20.54 22.23 48.04 16.13 46.25 30.65
3828103021 63 113.02 211.64 53.78 35.91 35.62 37.02 72.00 47.21 50.81 47.75 40.71 52.98 44.78
3120027407 42 29.46 36.50 28.61 17.94 18.09 12.47 21.27 20.07 17.25 13.23 10.61 13.23 13.61
3120027007 53 26.89 32.80 29.31 12.35 12.48 13.24 18.35 17.24 13.66 13.98 12.22 17.15 14.20
3120026134 52 26.42 24.26 24.79 11.33 11.49 12.68 16.42 15.45 13.09 11.94 11.91 12.09 11.81
3120021007 62 26.42 29.21 21.93 12.08 12.05 10.62 15.12 14.10 11.56 12.25 11.01 23.78 12.74
3120020035 63 22.45 22.91 19.61 8.99 8.94 9.01 12.91 11.99 9.88 9.16 9.60 14.28 9.14
3120020007 65 32.73 28.84 21.33 10.56 10.43 9.56 14.66 12.73 10.52 17.65 15.78 18.26 15.64
3120020005 66 54.05 52.50 32.74 11.26 11.36 11.92 26.33 23.57 16.96 15.55 14.36 39.36 12.18
1480031656 65 75.89 58.68 33.14 22.87 22.90 22.76 30.83 25.69 27.78 30.98 28.83 27.16 28.71
1480000034 67 84.17 73.04 39.76 27.50 27.96 28.71 38.12 34.39 30.93 36.07 24.96 33.80 38.29
7045011328 61 10.81 11.59 12.45 11.20 10.77 8.31 9.54 9.26 9.24 9.04 8.76 8.36 8.66
5300015132 66 15.13 16.72 15.47 17.82 16.73 18.55 14.85 14.40 14.99 14.33 14.15 14.76 14.39
4850000193 34 29.11 29.52 25.98 13.01 13.06 13.46 18.34 17.28 15.70 14.90 12.03 12.26 13.61
4180022700 54 10.46 10.91 10.06 16.01 14.86 9.65 10.59 10.36 9.98 9.92 9.68 10.16 10.31
4180020750 65 11.26 11.80 10.28 14.71 14.00 9.42 10.37 10.29 10.17 9.71 9.81 18.25 9.83
4176000394 64 261.68 279.95 51.56 35.86 34.19 33.35 108.79 89.05 46.47 59.35 32.44 49.71 54.45
3828103017 67 71.01 75.98 47.17 25.85 25.59 27.98 39.33 36.35 31.07 36.36 28.24 32.84 29.60
3828103009 40 15.77 14.25 13.96 12.13 11.51 11.34 12.11 12.09 12.02 11.85 11.57 12.23 11.99
3120027005 39 34.41 33.18 33.07 17.49 17.69 18.63 23.79 22.11 20.09 17.09 17.58 17.83 18.42
3120026107 56 33.09 32.66 23.02 11.28 11.22 11.09 17.07 15.97 12.00 17.98 13.20 16.03 14.73
3120026105 45 67.83 72.35 48.22 19.81 22.30 22.51 39.21 35.34 28.42 24.59 20.01 27.16 26.31
3120021005 41 52.78 52.54 40.44 16.69 17.04 17.65 30.48 27.86 22.73 18.07 13.97 15.98 17.31
3828103115 7 34.80 36.58 38.50 28.60 29.94 31.73 31.94 31.40 31.48 30.37 31.63 38.95 33.69
3828103033 61 24.86 23.09 20.71 19.39 19.28 18.55 18.44 18.54 18.10 18.95 19.38 23.70 18.68
3828103005 41 16.05 14.29 15.51 15.15 14.01 13.14 13.14 13.07 13.15 13.46 13.51 13.30 13.41
3120027405 26 39.52 37.32 34.64 19.68 20.17 19.39 26.39 24.16 22.59 16.01 16.80 17.35 17.90
1480000032 62 9.12 9.43 9.10 11.67 10.87 9.31 9.23 9.10 9.14 9.14 8.94 9.31 8.61
5300015407 7 25.03 25.06 24.26 24.61 23.96 24.58 24.02 23.90 24.06 24.63 25.03 25.25 24.84
7045011401 58 14.79 12.15 11.68 10.56 10.04 9.68 9.72 9.82 9.50 9.37 9.07 9.28 9.04
3120020000 59 10.71 10.74 10.79 11.26 11.08 10.61 10.31 10.42 10.31 10.62 10.08 10.54 10.67
1480051324 61 10.44 11.94 11.21 14.62 13.91 11.49 10.89 10.87 10.91 12.66 10.52 12.18 11.96
Overall 1971 40.50 43.63 24.29 16.60 16.36 16.06 23.10 20.54 17.94 19.36 15.63 20.57 18.18

5.1. Forecast Accuracies under Different Levels of Information Sharing

Rolling forecast is used in this paper. Data from the first 200 weeks are used to train the model,
and thus generate the first forecast. A sliding window is then used to define the training data for
subsequent forecasts. Given the span of the data (377 weeks), 177 pseudo out-of-sample forecasts can
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be made for each time series. This procedure is depicted in Figure 2. The mean absolute percentage
errors (MAPEs) of UPC-level demand under each case are shown in the colored columns of Table 1.

Complete time series

1

2

3

N

...

N rolling
forecasts

Training: 1 ∼ 200 Unused: 202 ∼ 377
· · · · · ·
Training: 2 ∼ 201 Unused: 203 ∼ 377
· · · · · ·

Training:3 ∼ 202 Unused: 204 ∼ 377
· · · · · ·

Training: N ∼ 376

· · · · · ·

Figure 2. Experimental design, following Yang et al. [22]. A total of N = 177 rolling forecasts are
performed for each UPC time series. The data point being forecast is shown in red. The size of training
window (shown in green) is fixed at 200.

The results shown in Table 1 agree very well with the hypothesized scenario, namely, the forecast
errors of Cases I–IV follow a decreasing order. Models in Case I, namely, C1ETS and C1ARIMA,
perform the worst because they can hardly capture any demand surge during the promotional periods.
This strongly supports the conjecture that pricing and promotional strategy forms a relevant part
of the suppliers’ information set, in the absence of which forecast errors may be significant. Case II
performs better than Case I due to the additional information (past price and promotion) used during
forecasting. However, the most interesting observation is that Case III performs almost as well as Case
IV, with C3OPT having a higher accuracy than C3BU.

The results shown in Table 1 can be used to conclude that, for the current dataset, sharing full
information with a supplier no doubt benefits the supplier greatly. However, only sharing forecast
information can also result in significant forecast improvements on the supplier’s side. The fact that
forecast sharing benefits the supplier is not surprising; however, the observation that it nearly yields
the same level of benefits as Case IV is quite interesting.

5.2. Forecast Accuracies of the Combined Forecasts

The second part of the empirical study investigates the effects of forecast combination on forecast
accuracy. To simplify the case study, the full information set in Case IV is assumed to be available,
so that all Cases I–III forecasts can be generated as well. In this way, a total of seven component models
are used during forecast combination. Since all forecast combination methods, besides AVG and TRIM,
require training/fitting, 100 out of 177 sets of pseudo out-of-sample forecasts are randomly chosen for
training. The remaining samples are used for error evaluation. The MAPEs of the combined UPC-level
forecasts are shown in columns 9–15 of Table 1.

By contrasting the combined forecasts to the component forecasts, it is observed that the
combined forecasts appear to be more accurate in general. For certain UPCs, such as “3828103123,”
the worst combined forecasts are found to be better than the best component forecasts. Among the
various forecast combination methods, LAD performs the best, whereas AVG performs the worst.
Since the differences between the best and worst combined forecasts are smaller than that between the
component forecasts, it seems that choosing combined forecasts is less risky than choosing the forecasts
from the “best-known” component model. This also implies that, when the best forecasting method for
a new UPC is unknown, it is better to choose a combined forecast than choosing a component forecast
based on previous results. To elaborate, suppose only the forecasts for UPC “5300015132” are available,
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the forecaster would choose C1ETS as the best-known model—based on its small MAPE of 15.13% for
that UPC. In this case, C1ETS would give large errors for other UPCs, which is not desired.

6. Conclusions

The benefits of forecast sharing in a supply chain in terms of forecast accuracy is demonstrated
through an empirical example. Four cases characterized by different levels of information sharing
are considered. It is found that the full information sharing case (Case IV) produces the best forecast
accuracy. However, by only sharing the retailer-level forecast values (Case III), the forecast at the
supplier level is almost as accurate as Case IV. This implies that it is not necessary for retailers to
share pricing and promotional strategies explicitly, which protects them from leakage of sensitive
competitive information. This concludes the first contribution of the paper.

When the retailer-level forecasts are shared, suppliers can reconcile those forecasts with their
own forecasts. It is also shown that optimal reconciliation (which considers all forecasts) outperforms
the traditional bottom-up method (which considers only the retailer-level forecasts). The merit of
the optimal reconciliation approach is that it puts greater weights on the more accurate forecasts,
so that the overall performance of all forecasts across the hierarchy can be improved. Additionally,
forecast combination has been shown to improve the reliability of the forecasts, especially when
the best component model is unknown to a forecaster. To that end, hierarchical reconciliation and
forecast combination are two ways to address the forecast inconsistencies in supply-chain management,
and hence conclude our second contribution.
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Abbreviations

The following abbreviations are used in this manuscript:

ACV all commodity volume
ADL autoregressive distributed lag
ARIMA autoregressive integrated moving average
BJC bottle juice category
DFF Dominick’s Finer Food
ETS exponential smoothing
FMCG fast moving consumer goods
LAD least absolute deviations
MAPE mean absolute percentage error
OLS ordinary least squares
UPC universal product code
WLS weighted least squares
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