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Abstract: We explore the class of positive integers n that admit idempotent factorizations n = p̄q̄ such
that λ(n) ∣ (p̄ − 1)(q̄ − 1), where λ is the Carmichael lambda function. Idempotent factorizations
with p̄ and q̄ prime have received the most attention due to their cryptographic advantages, but there
are an infinite number of n with idempotent factorizations containing composite p̄ and/or q̄.
Idempotent factorizations are exactly those p̄ and q̄ that generate correctly functioning keys in
the Rivest–Shamir–Adleman (RSA) 2-prime protocol with n as the modulus. While the resulting
p̄ and q̄ have no cryptographic utility and therefore should never be employed in that capacity,
idempotent factorizations warrant study in their own right as they live at the intersection of multiple
hard problems in computer science and number theory. We present some analytical results here.
We also demonstrate the existence of maximally idempotent integers, those n for which all bipartite
factorizations are idempotent. We show how to construct them, and present preliminary results on
their distribution.
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1. Introduction

Certain square-free positive integers n can be factored into two numbers (p̄, q̄) such that λ(n) ∣
(p̄− 1)(q̄− 1), where λ is the Carmichael lambda function. We call such (p̄, q̄) an idempotent factorization
of n, and (n, p̄, q̄) an idempotent tuple. We say that n = p̄q̄ admits an idempotent factorization.
(Overbars indicate that p̄, q̄ are not necessarily prime.)

When n is prime, all factorizations are trivially idempotent (p = 1 or q = 1). For p and q prime,
the factorization n = p̄q̄ is idempotent due to Euler’s Theorem and the exponent cycle length property
of λ. If p and q are sufficiently large, such factorizations have useful cryptographic properties, and are
the basis for the 2-prime Rivest–Shamir–Adleman (RSA) cryptosystem [1]. Carmichael numbers [2]
also easily form idempotent products.

These, however, are not the only idempotent factorizations. While they do not use the term
themselves, Huthnance and Warndof [3] describe idempotent factorizations n = p̄q̄, where p̄ and
q̄ are either primes or Carmichael numbers, noting that such integers generate correct RSA keys.
These values are in fact a subset of idempotent factorizations as we define them here, as there
are an infinite number of idempotent tuples (n, p̄, q̄) with composite p̄ and/or q̄ where neither p̄
nor q̄ are Carmichael numbers. We emphasize that, like the subset of idempotent tuples noted in
[3], these numbers should never be used cryptographically [4]. We merely note that idempotent
factorizations are exactly those p̄, q̄ that “fool" RSA in the sense that such n, p̄, q̄ supplied to the 2-prime
RSA protocol will generate keys that encrypt and decrypt messages correctly.

An idempotent factorization of the form n = p̄q or n = pq̄ with one composite and one prime is
a semi-composite idempotent factorization. A factorization of the form n = p̄q̄ with both components
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composite is a fully composite idempotent factorization (implying n has at least four factors). Trivial
factorizations (p̄ or q̄ = 1) and factorizations of n where n is a semiprime (p̄ and q̄ prime) will not be
considered further.

2. Idempotent Factorizations of a Carmichael Number

Carmichael numbers C have the property C − 1 ≡
λ(C)

0. Let C = p̄q̄ be a factorization of C.

For a factorization of a Carmichael number to be idempotent, we have

(p̄− 1)(q̄− 1) ≡
λ(C)

0,

⟺ (p̄q̄− 1)− p̄− q̄+ 2 ≡
λ(C)

0,

⟺ (C − 1)− p̄− q̄+ 2 ≡
λ(C)

0,

⟺ −p̄− q̄+ 2 ≡
λ(C)

0,

⟺ p̄+ q̄ ≡
λ(C)

2.

3. Maximally Idempotent Integers

If all bipartite factorizations of n are idempotent, we say that n is maximally idempotent.
Let n = p1 p2 p3, with all pi prime. Let a = p1 − 1, b = p2 − 1, c = p3 − 1, λ(n) = lcm(a, b, c) = λ.

Suppose that p̄ = p1 p2, q = p3 is an idempotent factorization. We have

[(a+ 1)(b+ 1)− 1]c ≡
λ

0,

⟺ (ab+ a+ b+ 1− 1)c ≡
λ

0,

⟺ abc+ ac+ bc ≡
λ

0,

⟺ ac+ bc ≡
λ

0.

Similarly, for the other two factorizations, we have ab + bc ≡
λ

0 and ab + ac ≡
λ

0.

Thus, n is maximally idempotent ⟺ ac + bc ≡
λ

0 & ab + bc ≡
λ

0 & ab + ac ≡
λ

0. For these three

conditions to all be true, ab ≡ ac ≡ bc ≡
λ

x. For a < b < c ≤ λ = lcm(a, b, c), the only possibility is x = 0.

This gives the following theorem:

Theorem 1. Let n = p1 p2 p3 with each pi prime. Let a = p1 − 1, b = p2 − 1, c = p3 − 1, λ(n) = lcm(a, b, c) =
λ. n is maximally idempotent ⟺ (ab ≡ ac ≡ bc ≡

λ
0).

For the system of three nonlinear modular equations above consider the terms ab, ac, bc. If all
of them are ≡

λ
0, all three equations are satisfied. If exactly two of them are ≡

λ
0, only one equation is

satisfied. If exactly one is ≡
λ

0, no equations are satisfied. If none are ≡
λ

0, there are three possibilities:

No equations are satisfied, one is satisfied if ab ≡
λ
−ac, or three are satisfied if ab ≡

λ
−ac, ab ≡

λ
−bc.

Thus, no integer n = p1 p2 p3 can have exactly two idempotent factorizations.
Since the equations for maximal idempotency are all sums of products of two or more ai with no

duplicates, and that these sums are all ≡
λ

0, we have the following result:

Theorem 2. Let n = p1 p2...pm with all pi prime, ai = pi − 1, λ(n) = lcm(a1, a2...am) = λ. ∀i ≠ j∏ aiaj ≡
λ

0 → n is maximally idempotent.
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The maximally idempotent integer 137555 = 5× 11× 41× 61 shows the converse of this theorem
is false. λ(137555) = 120, and 60× 40 ≡

λ
0, but 4× 10 ≢

120
0, 10× 40 ≢

120
0, etc.

As shown previously, a Carmichael number C is maximally idempotent ⟺ ∀p̄q̄ = C, p̄ +
q̄ ≡

λ(C)
2.

4. Strong Impostors and Idempotent Factorizations

We have shown [5] that square-free composite numbers s̄ with the property λ(s̄)∣2(s̄− 1) produce
semi-composite idempotent tuples (n, s̄, r) when paired with any prime r coprime to s̄. We called
these s̄ strong impostors because they behave as prime numbers to the 2-prime RSA protocol. Strong
impostors include the Carmichael numbers, which have been long known to have this property, but are
not limited to them. It can easily be shown that the product of any two odd coprime strong impostors
s1, s2 is idempotent.

5. Examples

The first 16 square-free n with m ≥ 3 factors that admit idempotent factorizations are shown
in Table 1.

Table 1. Values of n that admit idempotent factorizations.

n p or p̄ q̄

30 5 6
42 7 6
66 11 6
78 13 6
102 17 6
105 7 15
114 19 6
130 13 10
138 23 6
165 11 15
170 17 10
174 29 6
182 13 14
186 31 6
195 13 15
210 10 21

6 and 15 are strong impostors, but 10, 14, and 21 are not. In addition, 210 = 2× 3× 5× 7 is the
smallest square-free n that can be factored into two composite factors. It can be so factored in three
ways, of which (10, 21) is fully composite and idempotent.

Values of n also exist which admit multiple idempotent factorizations. n = 273 has idempotent
factorizations of (3, 91), (7, 39) and (13, 21), all of which are semi-composite. n = 1365 has both
semi-composite and fully composite idempotent factorizations: (7, 195), (13, 105) and (15, 91). The latter
is the product of two odd strong impostors.

The first 16 maximally idempotent n with three and four prime factors are shown in Table 2,
along with the two 5-factor cases < 230. Carmichael numbers are underlined.
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Table 2. Maximally idempotent integers with 3, 4 and 5 factors.

3 Factors λ 4 Factors λ 5 Factors λ

273 = 3× 7× 13 12 63,973 = 7× 13× 19× 37 36 72,719,023 = 13× 19× 37× 73× 109 216
455 = 5× 7× 13 12 137,555 = 5× 11× 41× 61 120 213,224,231 = 11× 31× 41× 101× 151 300
1729 = 7× 13× 19 36 145,607 = 7× 11× 31× 61 60
2109 = 3× 19× 37 36 245,791 = 7× 13× 37× 73 72
2255 = 5× 11× 41 40 356,595 = 5× 19× 37× 73 72
2387 = 7× 11× 31 30 270,413 = 11× 13× 31× 61 60
3367 = 7× 13× 37 36 536,389 = 7× 19× 37× 109 108
3515 = 5× 19× 37 72 667,147 = 13× 19× 37× 73 72
4433 = 11× 13× 31 60 996,151 = 13× 19× 37× 109 108
4697 = 7× 11× 61 60 1,007,903 = 13× 31× 41× 61 120
4921 = 7× 19× 37 36 1,847,747 = 11× 17× 41× 241 240
5673 = 3× 31× 61 60 1,965,379 = 13× 19× 73× 109 216
6643 = 7× 13× 73 72 2,060,863 = 7× 37× 73× 109 216
6935 = 5× 19× 73 72 2,395,897 = 7× 31× 61× 181 180
7667 = 11× 17× 41 80 2,778,611 = 11× 41× 61× 101 600
8103 = 3× 37× 73 72 3,140,951 = 11× 31× 61× 151 300

Maximally idempotent integers are rare. Below 230 there are 15189 with three prime factors,
315 with 4, and 2 with 5.

There are no maximally idempotent integers with six or more factors below 232. The smallest
6-factor maximally idempotent integer M(6) is 11× 31× 41× 61× 101× 151. The smallest maximally
idempotent integer with seven factors known to the author is (λ(M(6)) + 1) × M(6) = 601 × M(6).

5.1. Cumulative Statistics for Idempotent Factorizations of the Carmichael Numbers

An analysis of maximally idempotent Carmichael numbers < 1018 is shown in Table 3 [6].

Table 3. Maximally idempotent integers among the Carmichael numbers.

Proportion of Maximally Idempotent Integers

# factors Carmichael #’s < 1018 integers < 230 ratio
3 5.5862× 10−4 1.4145× 10−5 39.5
4 2.3543× 10−5 2.9336× 10−7 80.3
5 7.1344× 10−7 1.8626× 10−9 383.0

As expected, maximally idempotent integers are found at higher proportions in the Carmichael
numbers, although they remain rare. There is only one 5-factor maximally idempotent Carmichael
number in the results above: C598349 = 661 × 991 × 3301 × 4951 × 9901. It is the smallest such
Carmichael number.

6. Constructing Maximally Idempotent Integers

Knowing sufficient conditions for the existence of idempotent factorizations and maximal
idempotency suggests constructive approaches. We may construct a set of maximally idempotent
integers sharing a given λ in the following way:

(1) Pick some prime p, let λ = p− 1. (2) Find all the divisors of λ ai such that pi = ai + 1 is prime.
(3) Construct the divisor graph of λ by creating a node for each ai, with an edge from each ai to every
node aj such that λ/ai ∣ aj. Any two such nodes will have the property aiaj ≡

λ
0. Thus, by Theorem 2,

every k-clique with k ≥ 3 in the resulting graph corresponds to a maximally idempotent integer with k
prime factors. Each node ai corresponds to a prime factor pi = ai + 1, with a maximally idempotent
n equal to the product of all corresponding pi in the subgraph. It follows that all divisors of such
constructed integers with more than two factors are also maximally idempotent.
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For example, consider p = 37, λ = 36. The resulting divisors ai with pi = ai + 1 prime are
1, 2, 4, 12, 18, 36. This produces the divisor graph of Figure 1.

Figure 1. Divisor graph for λ = 36.

This graph contains six 3-cliques and one 4-clique. These correspond to seven maximally
idempotent integers with λ = 36. Five of the six 3-cliques correspond to integers in Table 2. The 4-clique
is the smallest maximally idempotent integer with four factors, also shown in Table 2.

To construct a maximally idempotent integer with a large number of factors, choose p such
that λ = p − 1 is highly composite. The divisor graph will then have a large number of nodes,
high connectivity and a greater likelihood of k-cliques for larger k.

For example, we may choose p = 44,101, λ = 44,100 = (2 × 3 × 5 × 7)2. The procedure above
yields the 31-node graph shown in Figure 2.

Figure 2. Divisor graph for λ = 44,100.

This graph has a total of 1293 k-cliques with k ≥ 3. The largest clique has 10 nodes, corresponding
to the 10-factor maximally idempotent integer n = 211× 421× 631× 1051× 1471× 6301× 7351× 8821×
22,051× 44,101.

We may define a function µ(p) as the number of maximally idempotent integers M with λ(p) =
p− 1 that can be constructed in this way. The domain of this function is the primes. The range is the set
of numbers y that are the total number of k-cliques in the divisor graph for some p with λ(p) = p− 1,
k ≥ 3. The first 16 nonzero values of µ(p) are shown in Table 4.
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Table 4. Nonzero values of µ(p).

p µ(p)
13 2
31 1
37 7
41 1
61 11
67 1
73 14
89 1
97 2
109 9
113 2
127 2
156 11
181 19
193 8
199 3

By this definition and computer analysis of the graph in Figure 2, the value of µ(44,101) is 1293.

7. Cumulative Statistics on Idempotent Factorizations

Cumulative statistics for idempotent factorizations for n < 230 are shown below (Tables 5–7).
Rs f indicates the ratio of numbers with idempotent factorizations to the total number of candidates n,
those square-free numbers with > 2 factors. RN indicates the ratio to all n in the indicated interval.
The first entry in Rcpu is the computation time in seconds on the author’s computer for the indicated
interval. Remaining entries are the ratio of computation time of the current interval to the previous
interval. An entry of the form i:j in row with #factors = F indicates that there are j integers < 230 with F
prime factors and i idempotent factorizations.

All answers are rounded to the indicated number of decimals. We ignore order when
counting factorizations.

Table 5. Proportion of integers with idempotent factorizations.

Max n 212 215 218 221 224 227 230

Rs f 0.61 0.37 0.28 0.21 0.17 0.13 0.11
RN 0.09 0.09 0.08 0.07 0.06 0.05 0.04
Rcpu - 2.7 11.3 10.6 13.3 9.8 10.4

Table 6. Factor distribution of idempotent factorizations < 230 (<8 factorizations).

# Factors 0 1 2 3 4 5 6 7

3 184,510,285 34,215,577 0 15,189 0 0 0 0
4 132,479,584 11,347,214 4448 15,678 28 235 0 315
5 50,515,758 1,733,232 6530 13,743 93 599 1 441
6 10,004,651 242,377 6143 6906 167 586 12 302
7 931,270 35,473 2994 1597 124 286 22 102
8 29,211 2956 477 158 39 43 5 6
9 99 28 7 2 1 0 1 1
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Table 7. Factor distribution of idempotent factorizations < 230 (≥8 factorizations).

# Factors

5 8:2 9:6 11:18 15:2
6 8:3 9:10 11:31 15:20
7 8:3 9:5 10:1 11:24 15:3 31:1
8 8:1 9:2 11:4

8. Idempotent Tuples and RSA

Unlike factorizations of n with p and q prime, idempotent factorizations of n with composite p̄
and/or q̄ offer no cryptographic utility. Like the Carmichael numbers, they should never be used
in practice [4]. Nonetheless, all idempotent factorizations of n produce correct results if used in the
2-prime RSA protocol. Given n = p̄q̄, choosing any integers (e, d) with ed ≡

(p̄−1)(q̄−1)
1 yields public and

private keys that work correctly. This arises from the definition of idempotency.

Theorem 3. A factorization of square-free n into (p̄, q̄) with n = p̄q̄ and (p̄, q̄) > 1 produces correctly
functioning keys for 2-prime RSA iff the factorization is idempotent.

We note a well-known property of the Carmichael function: λ(n) is the smallest positive integer
such that ∀a ∈ Zn, aλ(n)+1

≡
n

a. It follows by induction that ∀a ∈ Zn, akλ(n)+1
≡
n

a ∀k ≥ 0.

Proof. (→): Let n = p̄q̄ produce correctly functioning keys for 2-prime RSA. Encryptions and
decryption keys (e, d) are chosen such so that ed − 1 ≡

(p̄−1)(q̄−1)
0. By hypothesis, we have aed

≡
n

a ∀a ∈ Zn. Since ed− 1 is a multiple of (p− 1)(q− 1), we have

aed
≡
n

aed−1a ≡
n

ak(p−1)(q−1)a ≡
n

a

for all k > 0. Writing (p− 1)(q− 1) as mλ(n)+ r, 0 ≤ r < λ, we have ∀a ∈ Zn:

ak(p−1)(q−1)a ≡
n

ak(mλ(n)+r)a ≡
n

a.

We must show r = 0.
By the exponent cycle length property of λ, we have

ak(mλ(n)+r)a ≡
n

akmλ(n)akra ≡
n

akmλ(n)+1akr
≡
n

aakr
≡
n

akr+1
≡
n

a.

∀a ∈ Zn, ∀k ≥ 0. Choosing k = 1, we have ar+1
≡
n

a ∀a ∈ Zn. λ(n) is the smallest positive integer for
which this is possible, so r = 0.

(←): By hypothesis, let n be a square-free positive integer, n = p̄q̄, (p̄ − 1)(q̄ − 1) = mλ(n) for
some positive integer l. Let (e, d) be positive integers such that ed− 1 ≡

(p̄−1)(q̄−1)
0. We have

aed
≡
n

aed−1a ≡
n

ak(p−1)(q−1)a ≡
n

akmλ(n)a ≡
n

akmλ(n)+1
≡
n

a

by the exponent cycle length property of λ.

For example, consider the idempotent tuple n = 1365, p̄ = 15, q̄ = 91. Note that both p̄ and q̄ are
composite. Possible (e, d) pairs include (13, 97), (19, 199), (71, 71), (17, 593), (11, 1031), (83, 167) and so
forth. The reader may confirm that, for any such (e, d),∀a ∈ Z1365, aed

≡
1365

a.
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9. Conclusions and Future Work

We conjecture that, for any square-free p̄, a composite non-Carmichael q̄ can be found such that
n = p̄q̄ is an idempotent factorization. We have verified this conjecture for all square-free p̄ < 214.
For certain p̄− 1 prime, the resulting q̄ can be quite large, requiring the use of heuristic algorithms for
these cases. This is work in progress.

Rather than view idempotency as an all-or-nothing property of a bipartite factorization, it may be
viewed as a ratio between 0 and 1. In that case, the previous definition of idempotent factorizations
could be regarded as indicating full idempotency because all (e, d) pairs have the desired idempotency
property. A value of 0 corresponds to minimal idempotency, in which no non-trivial (e, d) pairs are
functional RSA keys. Values in between indicate the idempotency ratio for a given n = p̄q̄ factorization,
based on the fraction of (e, d) pairs for which aed

≡
n

a ∀a ∈ Zn.

The (e, d) pairs that lend idempotency to a factorization of n = p̄q̄ are exactly those for which
ed ≡

L
1, where L = lcm((p̄− 1)(q̄− 1), λ(p̄q̄)). The desired (e, d) are then exactly those solutions to the

2-variable system of nonlinear modular equations ed ≡
m1

1, ed ≡
m2

1...ed ≡
mj

1, where m1, m2...mj are the

prime power factors of L. Determining whether or not such systems have solutions and calculating their
exact number are known NP-complete problems. Thus, simple, efficient calculations of idempotency
ratios are likely to prove elusive. This is work in progress.

We conjecture that, due to redundancy in the equations for idempotency, no non-maximally
idempotent integer n can have exactly one of its factorizations be non-idempotent. No counterexamples
below 230 have been found. This suggests the question of the maximum number of idempotent
factorizations an integer n with m prime factors can have without being maximally idempotent. Other
questions include the asymptotic density of various kinds of idempotent factorizations, calculations of
various idempotency ratios, the development of efficient algorithms to find idempotent factorizations,
and more rigorous bounds on maximally idempotent integers.

Finding idempotent factorizations connects factoring, graph theory, number theory, complexity
theory, and cryptography. They depend on the relationship of products of primes pi and their
immediate predecessors ai = pi − 1, so necessary and sufficient conditions for their existence beyond
their defining equations are likely to prove elusive.

Various files related to idempotent factorizations are available at the Online Encyclopedia of
Integer Sequences [7–10]. Some of these ideas first appeared in preliminary form in [11].
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