
 information

Article

Privacy-Aware MapReduce Based Multi-Party Secure
Skyline Computation

Saleh Ahmed 1,2,* , Mahboob Qaosar 1,3 , Asif Zaman 3, Md. Anisuzzaman Siddique 3,
Chen Li 1, Kazi Md. Rokibul Alam 4 and Yasuhiko Morimoto 1

1 Graduate School of Engineering, Hiroshima University, Higashi-Hiroshima 739-8527, Japan;
D172517@hiroshima-u.ac.jp or qaosar@ru.ac.bd (M.Q.); D165000@hiroshima-u.ac.jp (C.L.);
morimo@hiroshima-u.ac.jp (Y.M.)

2 Department of Computer Science, Bangabandhu Sheikh Mujibur Rahman Science and Technology
University, Gopalganj 8100, Bangladesh

3 Department of Computer Science and Engineering, University of Rajshahi, Rajshahi 6205, Bangladesh;
asif@ru.ac.bd (A.Z.); anisuzzaman@ru.ac.bd (M.A.S.)

4 Department of Computer Science and Engineering, Khulna University of Engineering and Technology,
Khulna 9203, Bangladesh; rokib@cse.kuet.ac.bd

* Correspondence: D162694@hiroshima-u.ac.jp or saleh@bsmrstu.edu.bd

Received: 22 April 2019; Accepted: 5 June 2019; Published: 8 June 2019
����������
�������

Abstract: Selecting representative objects from a large-scale dataset is an important task for
understanding the dataset. Skyline is a popular technique for selecting representative objects
from a large dataset. It is obvious that the skyline computation from the collective databases of
multiple organizations is more effective than the skyline computed from a database of a single
organization. However, due to privacy-awareness, every organization is also concerned about the
security and privacy of their data. In this regards, we propose an efficient multi-party secure
skyline computation method that computes the skyline on encrypted data and preserves the
confidentiality of each party’s database objects. Although several distributed skyline computing
methods have been proposed, very few of them consider the data privacy and security issues.
However, privacy-preserving multi-party skyline computing techniques are not efficient enough.
In our proposed method, we present a secure computation model that is more efficient in comparison
with existing privacy-preserving multi-party skyline computation models in terms of computation
and communication complexity. In our computation model, we also introduce MapReduce as a
distributive, scalable, open-source, cost-effective, and reliable framework to handle multi-party data
efficiently.

Keywords: skyline; MapReduce; distributed system; information security; order-preserving
encryption; homomorphic encryption; big data; data privacy; semi-honest model;
multi-party computation

1. Introduction

In the present era of information technology, organizations with a similar type of service collect
various information from their clients. For reliable and effective analysis, they want to perform
a study on their collective databases. This kind of analysis is called a multi-party computation;
examples of multi-party computations are joint data analysis, data mining, statistical data analysis,
etc. Business services may contain sensitive data, such as personal, financial, or health-related data of
their clients. Disclosure of such data significantly violate clients’ privacy and may cause a financial or
goodwill loss to the organization. Therefore, the organizations never wants to disclose their sensitive

Information 2019, 10, 207; doi:10.3390/info10060207 www.mdpi.com/journal/information

http://www.mdpi.com/journal/information
http://www.mdpi.com
https://orcid.org/0000-0003-0774-3766
https://orcid.org/0000-0003-2509-1191
https://orcid.org/0000-0001-7130-2864
http://dx.doi.org/10.3390/info10060207
http://www.mdpi.com/journal/information
https://www.mdpi.com/2078-2489/10/6/207?type=check_update&version=2

Information 2019, 10, 207 2 of 19

data to others. However, during joint data mining operations, the participating parties are willing
to obtain the result from their combined databases without revealing the sensitive information of
the clients.

Skyline has received considerable attention in the database community during the past few
decades. It is an important tool in many multi-criteria decision-making applications like business
planning, hotel management, etc. Given a dominance relationship in a dataset, a skyline query returns
the objects that are not dominated by any other objects within the dataset.

Let us assume a number of organizations willing to conduct surveys about commission cost and
risk prediction where all the organizations have collected similar types of private data from their
clients. Maintaining the privacy of the information of each client is a prime responsibility for each
organization. As we know, skyline computation requires the comparison of attribute values among
the objects of each party; without disclosing the attribute values, organizations are unable to compute
the multi-party skyline from the union of their databases. The data of Table 1 plotted on the Figure 1
illustrates this scenario where P1, P2, P3, P4, and P5 are five records of Organization 1 and Q1, Q2, Q3,
Q4, and Q5 are five records of Organization 2 with their costs (d1) and risks (d2). If both organizations
want to find a reasonable recommendation list considering minimum cost and risk using skyline
query, the skyline objects for the individual database of Organization 1 will be P1, P2, and P4, and
the skyline objects for Organization 2 will be Q1, Q3, and Q4. However, the skyline objects of their
combined databases will be Q1, P4, Q4, and P2. Although the object P1 and the object Q3 are in the
skyline of Organization 1 and Organization 2, respectively, they are not present in their combined
skylines. The object P4 of Organization 1 dominates the object Q3 of Organization 2 and the objects
Q1 of Organization 2 dominates the object P1 of Organization 1. Therefore, cost and risk prediction
using a skyline query are more reliable and meaningful if they are computed from the data of both
organizations. Therefore, the organizations want to calculate skyline objects from their combined data.
However, for security reason, they do not wish to disclose the attribute values in the objects with
others. Therefore, we need a secured system that can compute the skyline from combined data of both
parties without revealing the real attribute values during computation.

��

��

��

��

��

��

��

��

���

���

���

���

���

���

���

���

�� �� �� �� �� �� ��

�

�

��
��
�
�

�
�

������

• ��	
��
������

• ��	
��
������

Figure 1. The skyline and multiparty skyline of Organizations 1 and 2.

Information 2019, 10, 207 3 of 19

Table 1. Organization database.

Organization 1 Organization 2

ID Cost Risk ID Cost Risk

P1 27 33 Q1 22 30
P2 39 3 Q2 48 11
P3 45 15 Q3 32 25
P4 30 17 Q4 36 8
P5 45 30 Q5 42 37

Usually, skyline computation requires a massive comparison of objects’ attributes to determine
whether an object is in the skyline or not. It may need many object dominance checks, and each
check may involve all of the objects’ dimensions. Skyline computation is both IO-consuming and
CPU-intensive in centralized settings [1,2]. Therefore, in the interest of overall efficiency, it is useful to
compute skylines in distributed and parallel environments.

On the other hand, MapReduce is increasingly used to process massive data due to its scalability
and fault tolerance. The availability of scalable and open-source MapReduce systems, such as
Hadoop [3], makes it desirable for large-scale parallel skyline computation. Though the MapReduce
framework usually has been composed in a local area network, which is owned by one organization,
the distributed computation can be extended to computing the skyline from the union of databases that
are owned by multiple organizations. In such cases, users have to send each database independently
and securely to the MapReduce framework. In this way, the distributed computing of MapReduce will
be used for multi-party databases. However, we also have to secure the privacy of values during the
processing of multi-party data. We, therefore, think that privacy-aware computations of multi-party
data in MapReduce have to be considered.

Although a number of skyline computation methods [1,2,4–6] utilize the MapReduce framework
to calculate the skyline in a distributed environment, except [2], none of them consider the security
issues for the multi-party skyline. The previously-proposed secure skyline computation method [2]
only used MapReduce operation for sorting the attribute values in the multi-party objects and
demanded multiple rounds of MapReduce operations.

Moreover, several methods have been proposed for secure skyline query [7–10]. The methods
in [7,8] only considered the secure computation of the skyline for clients from single party data
stored in the cloud platform. The method in [9] computed the skyline from two-party data and
exchanged a significant amount of data during the secure comparison. It also needed multiple
two-party skyline computation to obtain the multi-party skyline. Although our previously-proposed
encrypted substitution vector-based framework [10] improved the efficiency, compared to other secure
skyline computation frameworks, it also required sharing an encrypted substitution vector before
secure computation of the skyline.

In our proposed method, we introduce an efficient multi-party skyline computation method
that generates skyline objects from multi-party data and preserves the privacy of individual objects
during multi-party skyline computation. Our method simultaneously processes multi-party data,
concurrently executes operations for skyline computation in each phase, and uses only two rounds of
MapReduce operations. For our proposed method, a minimum number of data exchanged is required
among the parties.

This paper is organized as follows:
Section 2 discusses and reviews the related work; Section 3 explains the required preliminary

knowledge; Section 4 explains the methodology of computing the secure multi-party skyline with an
example; Section 5 specifies the scalability and the application of the method; Section 6 specifies the
security issues; Section 7 provides the theoretical analysis of our proposed method; Section 8 discusses
the experiment details and explains the effectiveness and efficiency of our method under various
settings; Section 9 concludes the proposed work.

Information 2019, 10, 207 4 of 19

2. Related Work

The following sections discuss the various related work.

2.1. Skyline Query

Borzsonyi et al., first proposed the skyline operator over a large dataset and provided three
algorithms: Block-Nested-Loops (BNL), Divide-and-Conquer (D&C), and B-tree-based schemes [11].
The BNL algorithm compares every object with every other object in the database, then non-dominant
objects are collected as a result. The D&C algorithm divides the data in such a way that they can fit
into memory; then, the candidate skylines are computed in each partition. After merging the candidate
skyline from each partition, it gets the final skyline. The B-tree-based schemes [11] compute the skyline
using an ordered index; e.g., a B-tree, an R-tree, etc. Chomicki et al., improved BNL by presorting
data and proposed a variant of BNL as Sort-Filter-Skyline (SFS) [12]. The Branch-and-Bound Skyline
(BBS) [13], proposed by Papadias et al., is a progressive algorithm based on the best-first nearest
neighbor (BF-NN) algorithm. In the same way, Kossmann et al., improved the performance of the
D&C algorithm and proposed the nearest neighbor (NN) [14] algorithm that prunes out dominated
objects by iteratively dividing the data space based on the closest objects in the space. Furthermore,
none of the above works considered the multi-party skyline or security issues.

2.2. Secure Skyline Query

Because of the privacy awareness of the present era, each organization expresses concern about the
security of their information. Privacy-preserving secure data analytics is one of the major research areas
in “big data” processing. In different application aspects, it is necessary to compute the multi-party
skyline without revealing the vital information to others. Liu et al. [7] proposed secure skyline
queries that can execute the skyline query in encrypted form on the cloud platform. To compute
the secure skyline, Liu et al., used the secure comparison protocol proposed by Veugen et al. [15]
and the secure bit-decomposition method proposed by Samanthula et al. [16]. Hua et al., proposed
a privacy-preserving skyline computation model named CINEMA [8]. In their work, they proposed
a solution for computing the secure skyline based on the user’s dynamic query. In this proposed
method, a user can hide the dynamic query point from the database owner, and the database owner
can also protect the data from the user during computation. Although their model provided a secure
computation environment concerning data privacy, their circumstances were different from ours.
Moreover, their model used computationally-expensive secure comparison protocols.

Liu et al., provided another privacy-preserving skyline computation system [9] using the
additivity property of the skyline [17] to reduce the number of secure comparisons. They computed the
local skyline object set at first. Then, from the local skyline, they used secure dominance relationship
computation and calculated the global skyline object set. However, for several participating parties,
it needs a pair-wise secure skyline computation for computing the global skyline. Therefore, as the
number of participating party grows, the computational complexity increases rapidly. Besides,
the complexity of the zero-encoding and one-encoding schemes used in their proposed method
increased with the domain length of the attribute values. From the above discussion, we can assume
that the work mentioned above for multi-party skyline query is not efficient enough when the number
of parties increases and also needs to exchange a significant amount information during computation
among the parties.

Qaosar et al., proposed a secure multi-party skyline computation method [10]. It improved
efficiency, compared to other secured skyline computation frameworks, but it required sharing an
encrypted substitution vector before secure computation of the skyline.

In our proposed method, we solve the problems by keeping the exchange of information minimum
and by applying concurrent and distributed computation of skyline in each phase.

Information 2019, 10, 207 5 of 19

2.3. MapReduce-Based Skyline Query

Recently, the distributed computing paradigm has become very popular for skyline computation.
Kasper Mullesgaard et al. [1] proposed efficient skyline computation in the MapReduce framework.
They designed a grid partitioning scheme to divide the data space into several partitions and employed
a bit-string to represent the partitions. The bit-string was efficiently obtained in MapReduce, and it
helped to prune partitions (and tuples) that could not have skyline tuples. Hyeong-Cheol Ryu et al.,
used adaptive two-level grids to process the skyline query in MapReduce [4]. Ji Zhang et al. [5] in
their scheme considered data partitioning, filtering, and parallel skyline evaluation as a holistic query
process. To improve the parallel local skyline calculation, they proposed two partition-aware filtering
methods that kept skyline candidates in a balanced manner. Yoonjae Park et al. [6] proposed efficient
parallel algorithms for processing the skyline and its variants using MapReduce. They effectively
pruned out non-skyline points in advance with the help of histograms calculated from all points.
Then, using the quadtree, they divided the data into partitions, where each partition contained the
same number of data points. In the first MapReduce phase, it computed the candidate skyline in
each partition, then in the next step, it combined the candidate skyline to generate the final skyline.
Conversely, the above-discussed methods did not consider multi-party databases and privacy issues
regarding multi-party skyline.

Asif Zaman et al. [2] introduced the secure objects’ ordering-based skyline computation
framework. In his work, all participating parties constructed their database objects’ order with
the help of a semi-honest third party, called the coordinator. At first, the method generated the order
of the values for each dimension in the multi-party databases. This computation required one round
of MapReduce operation for each digit in a dimension. For example, in the multi-party databases,
if there were D dimensions, and each dimension contained M digits, then it needed D ∗M number of
MapReduce rounds for order generation. Afterwards, from the order of the values in each dimension
of multi-party databases, it computed the skyline using another round of the MapReduce operation.
In our current proposed method, we use two MapReduce rounds for calculating the privacy-preserving
skyline, thus improving the performance.

3. Preliminaries

3.1. Adversary Model

In this work, we consider the semi-honest adversary model for multi-party computation. In the
semi-honest adversary model, no parties are allowed to share information with any other party,
other than permitted by the protocol. Each party may be honest, but curious and try to analyze the
data during computation. The security threats in this model depend on how each party successfully
obtains private information from the data during calculation. Berlin and Heidelberg in their book [18]
provided a proper definition and the security proof of the semi-honest model.

3.2. Dominance and Skyline

Assume a dataset P = {P1, P2, · · · , Pn} of n objects with m-dimensions {d1, d2, · · · , dm}.
We consider Pi.dj to denote the value of the j-th dimension of object Pi. Without loss of generality,
we consider the lower value in each attribute to be better while calculating the skyline.

Dominance: An object Pi ∈ P is dominant over another object Pj ∈ P, denoted as Pi ≺ Pj,
if Pi.dr ≤ Pj.dr (1 ≤ r ≤ d) for all d dimensions and Pi.dt < Pj.dt (1 ≤ t ≤ d) for at least one
attribute. We say such a Pi is a dominant object and such a Pj is a dominated object between Pi and Pj.
For example, in Figure 1, object Q3(31, 145) is dominated by object P4(30, 137); because P4 is better
than Q3 in both dimensions. At the same time, objects P4(30, 137) and P2(39, 123) are not dominating
each other because P4 is better than P2 when we consider Dimension 1 (cost) and P2 is better than P4
when we consider Dimension 2 (risk).

Information 2019, 10, 207 6 of 19

Skyline: An object Pi ∈ P is said to be a skyline object of P, if and only if there is no such object
Pj ∈ P (j 6= i) that dominates Pi.

The skyline of P, denoted by Sky(P), is the set of skyline objects in P. For the dataset shown in
Figure 1, objects {Q1, P4, Q4, P2} are not dominated by any other objects. Thus, the skyline query
retrieves Sky(P) = {Q1, P4, Q4, P2}, where P = {P1, P2, P3, P4, Q1, Q2, Q3, Q4}.

Local skyline: In multi-party secure skyline computation, we consider the skyline of the single
party as the local skyline. In Figure 1, the object sets {P1, P2, P4} and {Q1, Q3, Q4} are the local skyline
of Organization 1 and Organization 2, respectively.

Global skyline: The skyline computed from all objects of the private parties in a secure
multi-party skyline computation is called the global skyline. In Figure 1, the objects {Q1, P4, Q4, P2}
are the global skylines of Organization 1 and Organization 2.

Additivity of skyline computation [17]: Suppose a dataset P (a union of datasets of d number of
datasets) such that P = P1∪· · ·∪Pd, then the additive property of skyline computation ensures that:
Sky(P) = Sky(Sky(P1)∪· · ·∪Sky(Pd)).

3.3. Order-Preserving Encryption

Order-preserving Encryption (OPE) [19] is a symmetric key encryption technique whose
encryption function preserves the numerical order of plaintext. Consider a database D containing
|D| number of plaintext and represented as D = d1, d2, ..., d|D| where di < pi+1. After encrypting
the plaintext values into ciphertext values, we get C̃ = c̃1, c̃2, ..., c̃|D|, which ensures that c̃i < c̃i+1
(i = 1, ...|D| − 1).

OPE usually preserves the order in the encrypted values and in the plaintext values, but generates
a different distribution for values in ciphertext than the values in plaintext.

3.4. Paillier Cryptosystem

Paillier cryptosystem is an asymmetric key-based homomorphic encryption mechanism [20].
In this method, both the public and secret key are used in integer form. We can consider plaintext
as p and ciphertext as c, respectively. Let the public key be Paillierpk(n, g) and the secret key be
Pailliersk(λ, µ).

We can define the Paillier encryption and decryption by the following functions:
c = gp · rn modn2

p = L(cλ modn2) · µmodn, where L(x) = x−1
n

The scheme is an additive-homomorphic cryptosystem; one can add two numbers in the
encrypted form.

Suppose, m1 and m2 are in plaintext and the corresponding encrypted messages are ζ1 and ζ2,
where ζ1 = Pkx(m1) and ζ2 = Pkx(m2), where Pkx(y) is a Paillier encryption function and Pkx is a
Paillier public key of x.

Then, we can perform homomorphic addition using:

• Homomorphic Addition

(ζ1 × ζ2)mod n2 = Pkx((m1 + m2)mod n)

3.5. Hadoop MapReduce

Hadoop is an open-source implementation of the MapReduce framework, maintained by the
Apache Software Foundation. This framework is designed to allow users to define a MapReduce
job only by specifying the map and reduce functions. In this framework, data are represented as
<key, value> pairs, and computations are distributed across a shared-nothing cluster of autonomous
machines. Jobs to be performed using the MapReduce framework mainly refer to two user-defined
functions, called Mapand Reduce:

Information 2019, 10, 207 7 of 19

• Map function Map(k1, v1) to (k2, v2)

• Reduce function Reduce(k2, list(v2)) to list(v3)

The Map function (sometimes called Mapper) processes on each <key, value> pair of input data
and produces intermediate <key, value> pairs. The intermediate <key, value> pairs are then sorted
and grouped, associated with the same intermediate key. The Reduce function (sometimes called
Reducer) takes a key and a list of values for that key, applies the processing algorithm, and generates
the final result.

MapReduce is increasingly used to process massive data due to its scalability and fault-tolerance.
The availability of scalable and open-source MapReduce systems, such as Hadoop [3], makes it
desirable to leverage such systems for large-scale parallel skyline computation. We tried to deploy
MapReduce using Apache Hadoop because of its positive features like being easy to implement,
its popularity, flexibility, and fault-tolerance. We can deploy and scale it using a general purpose
computer, so it is a cost-effective solution for the distributed computing environment. The algorithm
design in the Apache Hadoop platform can be easily transferable to Apache Spark. It also produces
the desired accurate result and efficiency in the case of the implementation of our proposed
method. Therefore, we used Hadoop MapReduce to handle the data generated from multiple
parties during the computation of skyline. Moreover, there were several skyline computations found
that use the MapReduce framework to calculate skyline efficiently: the works in [1,4,5,21] showed
that MapReduce-based parallel skyline computation is more efficient than the centralized skyline
computations and can process a large amount of data.

4. Proposed Model

In our proposed system, we introduce a skyline computation method that can compute the
skyline with the help of coordinators using multiple parties’ databases with privacy and security.
The participating parties never want to disclose the real attribute values of the databases; therefore, in
our proposed method, each party encrypted the values before sending them to the coordinators, and the
coordinators computed the skyline on the encrypted attribute values. We considered two coordinators:
Coordinator 1 and Coordinator 2. Coordinator 2 computes the skyline cell-wise, and Coordinator 1
computes the final multi-party skyline. During skyline computation, we considered four types of
privacies. The privacies were:

1. The privacy of the original values of attributes.
2. The privacy of the initial distribution of the values in each attribute of the multi-party databases.
3. The privacy of the original order of attribute values in each database.
4. The privacy of information about the source of data, which means the privacy of information

about which data came from which party.

In our proposed model, during computation, we ensured Privacies 1, 2, and 3 were in
Coordinator 2 and Privacies 1, 2, and 4 were in Coordinator 1. We also considered each party and
the coordinators as a semi-honest adversary. Therefore, they can try to guess private values during
computation, but never exchange any information with other parties except those permitted by the
proposed method.

For efficiency, we simultaneously computed the local skyline and encryption of the local skyline
in each party, concurrently executing operations in each coordinator.

Figure 2 describes the simplified block-diagram of our proposed privacy-preserving skyline
computation model. Here, Party 1, Party 2, ..., Party N want to calculate the global skyline from their
local databases without disclosing their attribute values. Coordinator 1 and Coordinator 2 calculate the
global skyline from the data of each party without knowing the actual attribute values of individual
databases. Our proposed algorithm consists of five steps.

Information 2019, 10, 207 8 of 19

1. Initialization
2. Local skyline computation, order-preserving encryption of local skyline objects, and perturbation

of the original order of attribute values
3. Cell-wise candidate skyline computation distributively and concurrently in each cell
4. Global skyline computation from the cell-wise candidate skyline
5. Decryption of the global skyline

For simplicity, we provide an explanation of each step of the proposed method by two-dimensional
data, as shown in Table 2. Here, Party A and Party B are two participating parties.

�����������	

�����������	�

�������

�������

������	

������

�������

�������

������

�

�

	

�

Figure 2. MapReduce-based multi-party secure skyline computation model.

Table 2. Data of Party A and Party B.

Party A Party B

ID Cost Risk ID Cost Risk

A01 105 154 B01 113 151
A02 113 149 B02 127 111
A03 124 102 B03 131 101
A04 133 99 B04 134 92
A05 191 85 B05 145 84
A06 144 72 B06 159 98
A07 167 64 B07 167 70
A08 176 55 B08 176 60
A09 191 53 B09 191 102
A10 167 151 B10 174 149
A11 167 98 B11 174 87
A12 191 53 B12 191 55

4.1. Initialization

We assumed that all databases of the participating parties contained the same database schema.
Therefore, all participating parties had the same number of attributes in each object, and the same
amount of bits was needed in each attribute to store the values. Coordinator 1 initiates the process by
sending a start signal to all parties and sends its Paillier public key (PkC1) to all parties with a random
number RC1. Coordinator 1 randomly selects a party. The selected party decides the OPES key for
each attribute and the number of partitions they make in each attribute. Then, the selected party sends
the OPE keys and partition for each attribute to all participating parties.

4.2. Local Skyline Computation, OPE of Original Values, and Perturbation of Original Order

Before sending any objects to the coordinator, each party computes the local skyline, performs
order-preserving encryption, and perturbs the original order. The operations are discussed in the
following subsections.

Information 2019, 10, 207 9 of 19

4.2.1. Local Skyline Computation

All the parties calculate the local skyline from their private databases. As a result, all the
dominated objects from the private databases of each party are filtered out. Figure 3a,b show the
objects in the database of Party A and Party B. Figure 3c,d show the objects in the local skyline of
Party A and Party B.

����������

����������

��	��	����

��
�������

��������

���������

����������

����������

�

�

��

�

	�

� � �� �
 	�

���������

�����
����

��	������

��
������

�����������

���������

���������

����������

�

�

��

�

	�

� � �� �
 	�

���

���

��	

��

���

���

��

���

���

���

���

���

�

��

�

��

��

���

���

�
�

���

���

��� ��� �
� ��� ��� ���

���

���

��	

��

���

���

��

���

���

���

���

���

�

��

�

��

��

���

���

�
�

���

���

��� ��� �
� ��� ��� ���

���

���

��	

��

���

��

���

���

�

��

�

��

��

���

���

�
�

���

���

��� ��� �
� ��� ��� ���

���

���

��	

��

���

��

���

���

�

��

�

��

��

���

���

�
�

���

���

��� ��� �
� ��� ��� ���

���������	
������������� ��	���� ���������	
������������� ��	����

�����������������
����������� ��	���� �����������������
����������� ��	����

�����������������
��������������	���������	���� �����������������
��������������	���������	����

Figure 3. Local skyline of Party A and Party B from their private objects. OPE, Order-preserving Encryption.

4.2.2. OPE of the Original Attribute Values of Objects in the Local Skyline

Here, every party performs order-preserving encryption for each attribute value by applying the
OPE key (they get OPE keys for each attribute during initialization) for the corresponding attribute of
the local skyline objects. Order-preserving encryption changes the attribute values and distribution
of the values, but maintains the relative order in each attribute value. Figure 3c,d show the local
skyline of objects with the original attribute values of Party A and Party B. Figure 3e,f show the order
preserving encrypted attribute values of the local skyline of Party A and Party B.

Information 2019, 10, 207 10 of 19

4.2.3. Perturbation of the Original Order

OPE changes the attribute values without changing the relative order of values in each attribute.
The objects in the local skyline of all parties have to be sent to Coordinator 2 for global skyline
computation. If they send the values with the relative order in each attribute of objects, then the
coordinator can analyze the relative position of all the objects of the parties. This is also a significant
privacy and security concern.

Therefore, each party perturbs the original order of the values in each attribute before sending it
to Coordinator 2. For perturbation, each party divides the object space into several cells and disguises
the order of the attribute values in such a way that the order of values within a cell is maintained, but
the order of the values in the different cells is not retained.

Cells are created by dividing the domain of each attribute by the corresponding partition number.
Since the partition number is provided to each party during initialization, all the parties will have an
equal number of cells. Figure 4 shows the cell division by applying four partitions in each attribute.

����������

����������

��	��	����

��
�������

��������

���������

����������

����������

�

�

��

�

	�

� � �� �
 	�

����������	��
��������	
�
����������	
�
����

��	
���

���������

�������	
�

����������

���������

�����
����

��	������

��
������

�����������

���������

���������

����������

�

�

��

�

	�

� � �� �
 	�

����������	��
��������	
�
����������	
�
����

��	
���

����
�����

����
������

�������	���

���������

���������

���������

�������
���

�
���������

�

�

��

�

	�

� � �� �
 	�

������	
�	��
�������	��	����

	���
���������

��	
���

����
�����	

�������
���

�����������

��������

����������

���������

�������
��

�
���������

�

�

��

�

	�

� � �� �
 	�

������	
�	��
�������	��	����

	���
���������

��	
���

���������

���������

�����	
���

����������

���������

���������

�����	
���

����������

���������

�������	
�

����������

���������

���������

�������	
�

����������

Figure 4. Cell creation and attribute value perturbation of objects in the local skyline of Party A and
Party B.

Figure 4a,b exhibit that Party A and Party B have the same number of cells. We considered the
minimum integer attribute values in a cell as the cell id. For example, in Figure 4a, cell(0, 8) is a cell
with id (0, 8) because zero and eight are the minimum integer attribute values in this cell.

We subtracted attribute values in an object with the values in the cell id. For example, in Figure 4a,
the object A01 of Party A with attribute value (1, 28) in cell(0, 24) becomes (1, 28)−(0, 24) = (1, 4).
We can consider an object as <cell id><subtracted value>. For example, objects with attribute value
(1, 28) in cell(0, 24) can be considered as <0, 24; 1, 4>. Figure 4c,d show the object attribute value as
<cell id; value>.

Information 2019, 10, 207 11 of 19

The participating party encrypt the cell id of each object by the public key of Coordinator 1 and
RC1 (all parties collect RC1 at the time of initialization). At this point, the objects become <encrypted id;
values>. For example, object <0, 24; 1, 4> becomes <PkC1(0, 24); 1, 4>. Here, PkC1(0, 24) means (0, 24)
is encrypted by the public key of Coordinator 1. The encrypted cell id disguises the inter-cell relative
order in attribute values. All the participating parties send the value of the object with the encrypted
id to Coordinator 2. Each party performs all the tasks using Algorithm 1 where Line 2 creates the
divisions, Lines 5–12 generate the cell id, as well as the cell-wise attribute values of each object, and
Line 13 sends the objects with an encrypted cell id to Coordinator 2.

Algorithm 1: Cell-wise object generation with encrypted cell id and translated attribute values.

Input : Oj(1 ≤ j ≤ m) m objects with n attributes each, the bit length bi(1 ≤ i ≤ n),
the number of partitions Pari(1 ≤ i ≤ n), the Paillier public key of Coordinator 1
PkC1, random number r1

Output : Cell-wise objects with encrypted cell id and translated attribute values

1 for i← 1 to n do
2 divi=(2bi + 1)/Pari;
3 end
4 Define P as a temporary object;
5 for j← 1 to m do
6 cellid=null
7 for i← 1 to n do
8 P(i) = Oj(i) mod divi /* here, Oj(i) means the i-th attribute of the j-th

object */
9 celli = Oj(i)− P(i) /* cell id generation in the ith attribute */

10 Oj(i) = P(i) /* value of the ith attribute of the j-th object */
11 cellid = concatenate (cellid, celli)
12 end
13 send value <PkC1(cellid, R1)><Oj> to Coordinator 2 /* encryption of cell id by

the Paillier public key of Coordinator 1
using R1 */

14 end

4.3. Cell-Wise Candidate Skyline Computation Distributively and Concurrently in Each Cell

Coordinator 2 receives objects as < encrypted_cell_id; attributes_values > from all parties.
Since the ids of the objects are encrypted, it is impossible for Coordinator 2 to guess which id
corresponds to which cell. As we know, relative order is sufficient for a dominance check between
two objects; as a result, we can calculate the skyline from the relative order. The Coordinator 2 could
compute the skyline of objects in each cell because objects’ attribute values in a particular cell maintain
their relative order. Coordinator 2 uses the mapper and reducer functions to execute the skyline in
each cell concurrently. Figure 5a shows the objects received from all the parties. Figure 5b shows the
split of the encrypted cell id of the object as the mapper-key and the cell-wise attribute values of objects
as the mapper-value. Figure 5c shows cell-wise objects. Figure 5d shows the candidate skyline objects
in each cell after the reducing operation.

Coordinator 2 performs PkC1(cell id) + PkC1(value) for each object in the cell-wise skyline.
Since it is a homomorphic addition, PkC1(cell id) + PkC1(value) = PkC1(cell id + value) (Figure 6).
After performing such homomorphic addition, it sends all the cell-wise skyline objects to Coordinator 1.
Figure 6 shows the homomorphic addition process.

Information 2019, 10, 207 12 of 19

��
��

�������	
�����

��
��

�������	
�����

��
��

������	
����

��
��

�����	
�����

��
��

�����	
�����

��
��

������	
�����

��
��

������	
�����

��
��

������	
�����

��
��

������	
����

��
��

������	
�����

��
��

������	
�����

��
��

�����	
�����

��
��

�����	
�����

��
��

�����	
�����

��
��

������	
�����

��
��

�������	
�����

���
��

�������	���������

���
��

�������	���������

���
��

������	���������

���
��

�����	�����������

���
��

�����	�����������

���
��

�����	�����������

���
��

������	���������

���
��

������	����������

���
��

������	���������

���
��

�������	���������

���
��

������	����������

���
��

�����	������������

���
��

�����	������������

���
��

�����	�������������

���
��

������	����������

���
��

������	����������

���
��

�������	���������

���
��

�������	���������

���
��

������	���������

���
��

������	���������

���
��

�������	���������

���
��

������	����������

���
��

�����	����������

���
��

�����	����������

���
��

�����	����������

���
��

�����	���� �������

���
��

�����	� ������

���
��

������	����������

���
��

������	����������

���
��

������	����������

���
��

������	����������

���
��

�����	����������

��� ������	
	���	

���
��

�������	���������

���
��

�������	���������

���
��

������	���������

���
��

������	���������

���
��

������	����������

���
��

�����	����������

���
��

�����	���������

���
��

�����	����������

���
��

������	���������

���
��

������	����������

�� �� �� ��

Figure 5. MapReduce-based cell-wise skyline computation. Here, PkC1(x, y) means (x, y) is encrypted
by Coordinator 1’s public key.

���
��

������	
�������	�

���
��

������	
���������

���
��

�����
����������

���
��

�����
����������

���
��

�����
���������

���
��

�����
����������

���
��

�����
���������

���
��

�����
����������

���
��

�����
����	����

���
��

��	���
����������

�����������	
����

������

���������������

��������������������

��������������������

�������	
��

���������������

 ���
�����

����������

������!	
��

�������������"�

��
��

������	
�����
���

����	

��
��

������	
�����
���

�����

��
��

�����
�����
���

�����

��
��

�����
�����
���

�����

��
��

�����
�����
���

����

��
��

�����
�����
���

�����

��
��

�����
�����
���

�����

��
��

�����
�����
���

�����

��
��

�����
�����
���

�	���

��
��

��	���
�����
���

�����

��
��

�������

��
��

�������

��
��

������

��
��

������
�

��
��

�����
�

��
��

�����

��
��

������
�

��
��

�������

��
��

������

��
��

������

�������

�������

������

������
�

�����
�

�����

������
�

������

������

������

Figure 6. Homomorphic addition by Coordinator 2 and decryption of global skyline objects by
Coordinator 1. Here, PkC1(x, y) means (x, y) is encrypted by Coordinator 1’s public key.

4.4. Global Skyline Computation from the Cell-Wise Candidate Skyline

Coordinator 1 decrypts all the objects attribute values by its secret-key (SkC1) (Figure 6) and
computes the global skyline using quadtree-based [6] skyline computation. The quadtree-based
method divides the objects using the quadtree structure and concurrently computes the skyline in each
node using the MapReduce framework. After computation of the skyline, skyline objects are sent to all
the parties. Since the cell id and values are added together before sending each object to Coordinator 1,
the coordinator can know the original order of all objects. On the other hand, the objects are directly
coming from Coordinator 2 (not from other parties) to Coordinator 1. Therefore, Coordinator 1 has no

Information 2019, 10, 207 13 of 19

knowledge about which objects came from which party; thus, Coordinator 1 is never able to analyze
the relative order of the objects of each party.

4.5. Decryption of the Global Skyline

Dominated objects are pruned out in each phase, and finally, only the non-dominated objects
are retained. We know that the skyline is the set of non-dominated objects; as a result, all the parties
obtain the desired global skyline. Each party receives the global skyline where each attribute value is
encrypted with the corresponding OPE key. Then, they decrypt the attribute values using the OPE key
for each attribute and obtain the global skyline in plaintext form. Table 3 shows the decrypted values
of the global skyline.

Table 3. Decrypted objects of the global skyline.

Global Skyline (OPE) Global Skyline (Plaintext)

1 28 105 154
2 25 113 149
3 18 124 102
5 17 131 101
6 15 133 99
9 7 144 72

15 5 167 64
20 2 176 55
25 1 191 53

5. Scalability and Application of the Proposed Method

Local skyline calculation, OPE, and perturbation are performed concurrently in each participating
party, so the system is scalable as the number of participating parties grows. We used the Hadoop
MapReduce distributed computing system in Coordinator 1 and Coordinator 2. Since MapReduce is a
highly scalable and distributed system, our system is scalable for a higher number of participating
parties or a significant volume of data.

We may extend our work where there are multi-party databases and they want to perform
secure computation without disclosing the actual values in the data. The inferring fine-grained
urban flows [22] can be extended to multi-party secure urban traffic flow analysis. Spatiotemporal
computation using ST(Spatiotemporal)-Hadoop [23] can be extended for multi-party secure
computation. K-nearest skyline query in spatiotemporal databases [24] may be deployable as secure
multi-party computation in our proposed model. In the urban area, if there are multiple water quality
testing services, then our method can extend the work proposed by Ye Liu et al. [25] for secure analysis
of data from multiple water-quality testing service databases.

6. Privacy and Security

To build the proposed secured privacy-preserving skyline computation, we utilized
order-preserving encryption and Paillier encryption to meet the secure computation and data privacy
requirements. As per the semi-honest adversary model [18], no party is allowed to share any data with
any other party violating the protocol assigned to each party.

Since no party shares their private data with other parties, so no party has any idea about data
from other parties. Only data are shared with Coordinator 1 and Coordinator 2, so we have to ensure
the privacy of data in Coordinator 1 and Coordinator 2.

In the case of Coordinator 2, the values are encrypted by order-preserving encryption, and orders
are perturbed by encrypting each cell id. It can obtain the actual order of values if it is successful
at rearranging the cells correctly. Let us consider that there are M attributes in the objects and each
attribute is divided into N partition; then, we can arrange NM cells in (NM)! different ways. Therefore,

Information 2019, 10, 207 14 of 19

the probability of correctly organizing all cells will be 1/(NM)!. Moreover, Coordinator 2 has no
mechanism to determine the correct arrangement of cells because each arrangement produces similar
kinds of results, which are not distinguishable from each other. Therefore, it is quite impossible for
Coordinator 2 to guess the correct order. Thus, the privacy of the values in each attribute and the
privacy of the relative order in each attribute are preserved during computation in Coordinator 2.

On the other hand, in the case of Coordinator 1, it does not know the actual values of each
attribute. However, it knows the relative order of the values in each attribute of limited objects,
because a considerable number of objects are pruned out at the time of local skyline computation and
cell-wise skyline computation. Besides, Coordinator 1 does not know which objects came from which
party. Therefore, it is never able to analyze the relative order of the objects of multiple parties.

7. Theoretical Analysis of the Proposed Method

In this section, we discuss the theoretical comparison of our method with the existing methods.
In our proposed system, the computational complexity of the secure skyline depended on the
following operations:

1. The time required for the calculation of the local skyline, OPE, perturbation, and cell-wise
value generation.

2. The time needed for the calculation of the cell-wise candidate skyline.
3. The time needed for the calculation of the global skyline.

All the participating parties concurrently calculate the local skyline, OPE, perturbation,
and cell-wise values. Thus, if the number of parties increases, the time required for these operations
does not vary. On the other hand, Coordinator 2 calculates the candidate skylines concurrently in
every cell, prunes a considerable number of dominated object, and improves the efficiency. Moreover,
in global skyline computation, it maps all the data into a quadtree, then calculates the final skyline
simultaneously in each node of the quadtree, thus improving the efficiency. Besides, during the
calculation, the coordinators do not need to exchange any information with the participating parties or
other coordinators; this also enhances the overall efficiency.

The method proposed in [9] securely compared the pair-wise objects’ attributes and computed the
dominance of objects between two parties. In their method, they did not consider the coordinator for
computing the multi-party skyline. Therefore, it cannot handle multiple parties simultaneously; it can
only compute the skyline between two parties. Therefore, for n parties, it needs nC2 = n(n−1)

2 two-party
skyline computations to compute the n-party skyline. Moreover, it requires secure comparison in each
object attribute for the dominance check, which is also time consuming and needs several rounds of
data exchange between the parties to compare each attribute value.

On the other hand, the complexity of our proposed method depends on the total local skyline
objects of multiple parties, not on the number of participants. Moreover, it does not require any rounds
of data exchange between any pair of participating parties and also compares objects directly on the
encrypted values for the dominance check.

For the method proposed in [2], all the participating parties constructed their database objects’
order with the help of a semi-honest third party, called the coordinator. To generate the join order
in each dimension, every digit in the dimension needed one round of MapReduce operation in the
coordinator. For example, if there were D dimensions and each dimension contained M digits, D ∗M
MapReduce rounds were required for order generation and one extra round for producing the skyline.
In our recent work, wee only needed two MapReduce rounds.

Our previous work [10] improved the efficiency, compared to other secure skyline computation
frameworks, but it required sharing an encrypted substitution vector before secure computation of
the skyline. For 32-bit integer values and two equal 16-bit partitions, it needed 2× 216 32-bit integer
values as a substitution vector and should be shared among the parties before skyline computation.

Information 2019, 10, 207 15 of 19

8. Experimental Analysis of the Proposed Method

8.1. Experimental Setup and Datasets

Here, we discuss the performance and efficiency of our proposed method. For participating
parties, we used computers with a fourth-generation Intel R© CoreTMi7, 3.4-GHz CPU, and 8 GB
main memory, running on the 64-bit Microsoft Windows 10 Enterprise edition operating system.
For Coordinator 1 and Coordinator 2, we configured a cluster of two commodity PCs in a high-speed
Gigabit Ethernet network, each of which had an Intel Core 2 Duo E8500 3.16-GHz CPU and 8 GB
memory. We compiled the source codes under Java V8. We used Hadoop Version 2.5.2 and 64-bit
Cent-OS 7. We set the replication parameter of the Hadoop cluster to two.

We evaluated our proposed privacy-preserving secure skyline algorithm in a multi-party
distributed environment on synthetic datasets. As benchmark databases, we used the skyline
benchmark data generator proposed by Borzsonyi et al. [11], in which we could generate three
types of synthetic data distributions: correlated, anticorrelated, and independent.

8.2. Analysis of Our Proposed Method for Different Data Distributions

We know that the standard way to analyze the skyline computation is how the complexity of the
calculation varies with correlated, anticorrelated, and independent data distributions. Most of the
related work used these three distributions to analyze the complexity of skyline computation. Usually,
correlated data generate less non-dominated objects in skyline computation, thus requiring less time.
On the other hand, anticorrelated data generate most non-dominated objects in skyline computation;
therefore, they require the longest time. However, independent data produce non-dominated objects in
between the number of non-dominated objects generated by correlated and anticorrelated data. We also
want to verify how the complexity of our proposed algorithm varied with different data distributions.
For this experiment, we varied each participating parties’ object numbers from 10–50 k, each object
containing two attributes, and values were in a 32-bit integer. We also considered 30 partitions
per attribute.

According to Figure 7, We found that the skyline computation was more efficient for the correlated
dataset and less efficient for the anticorrelated dataset. However, the performance for the independent
dataset lied in between the performance for the anticorrelated and correlated datasets. For correlated
data, a paramount number of objects are pruned out during local skyline computation. In the case of
independent data, the average number of objects is pruned out. For anticorrelated data, less pruning
occurred. We also found that the time needed for skyline increased when the number of objects per
party increased because it needed a dominance check for each object of one party with the objects of
the other parties.

�

���

���

���

���

���

���

���

	��

����� ����� ����� ����� �����

�

�

�

�

�

�

�

�

�

��������	�
���������

�����������	�
���	����������������������

�������

��������

�������������

��� ������

Figure 7. Running time varies with data distribution (attribute: 2, partitions: 30/attribute, value: 32-bit).

Information 2019, 10, 207 16 of 19

8.3. Analysis of Our Proposed Method with Variation in Object Dimensions

Another way to analyze the complexity of skyline computation is how the computation time
varies with the variation in object dimensions. We know skyline computation requires comparison in
each dimension to compute non-dominating objects from the dataset. Therefore, the complexity of
skyline computation increases with the increase in the object dimensions. Here, we discuss how our
proposed skyline computation time varied with the variation in the objects’ dimensions.

Figure 8 shows how time varied with the variation of the data dimension for computing skyline.
For this experiment, we varies data dimensions from 2–6 and tried to find out how the computation
time varied with the variation in the data dimensions.

�

����

����

����

����

�����

�����

����� ����� ����� ����� �����

�
��

�
��
�
��

��������	�
�����������

�����������	�
���	���������	����

�	

�	

�	

�	

�	

��
�������������������������������������
�����������������������������������
�����������������������������������
������������ ��
���

��
���

��
���

Figure 8. Running time varies with objects attributes (distribution: independent, partitions:
30/attribute).

Since the number of required attribute partitions along with the number of comparisons and the
amount of qualified local skyline objects increases with the object dimension, the process execution
time additionally increases. Therefore, in Figure 8, we find that the running time increased when
object dimensions grew. We also found that the time needed for skyline increased when the number of
objects per party increased because it needed a dominance check for each object of one party with the
objects of the other parties.

8.4. Comparison of the Proposed Method with the Encrypted Substitution Vector-Based Method

Recently, an encrypted substitution vector (ESV)-based [10] method has been proposed for
multi-party distributed skyline computation, and the method is efficient compared to other
contemporary multi-party secure skyline computations. In this section, we compare our proposed
method with the ESV method. For this experiment, we considered that each party had 10–50 k objects,
each object containing three attributes, and the values in each attribute contained a 32-bit value. We also
considered 30 partitions per attribute. For the ESV method, we considered an 11-bit bit-slice length for
creating the encrypted substitution vector.

The ESV-based method requires sharing an encrypted substitution vector among the parties
before secure computation of the skyline. Besides, it does not consider the concurrent computation of
the skyline in the coordinator. In our proposed method, the exchange of information among the parties
was only OPE keys for each attribute and the number of partitions in each attribute. We concurrently
executed the operation in each phase to compute the global skyline. Thus, the comparison results
show that our proposed method needed less time than the ESV-based method. Figure 9a–c show
that our proposed method outperformed the ESV-based method for the independent, correlated,
and anticorrelated datasets.

Information 2019, 10, 207 17 of 19

�

���

���

���

���

���

���

���

	��

��

����� ����� ����� ����� �����

�

�

�

�

�

�

�

�

�

��������	
���

����������������� �������������

�

���

���

���

	��

����

����

����

����� ����� ����� ����� �����

�

�

�

�

�

�

�

�

�

��������	
���

��������������������� �����������������

�

���

���

���

���

���

���

���

����� ����� ����� ����� �����

�

�

�

�

�

�

�

�

�

��������	
���

�������������������� ����������������

������ ������ ������ ������ ������

������ ������ ������ ������ ������ ������ ������ ������ ������ ������

Figure 9. Running time comparison with ESVand the proposed method in different data distributions
(attribute: 2, partitions: 30/attribute, value: 32-bit, bit-slice length: 11-bit, slices/attribute:3).
ESV, encrypted substitution vector.

8.5. Comparison of the Proposed Method with Variation in the Number of Participating Parties

We discussed that our method was efficient even for the increases in the number of parties. Here,
we varied the number of participating parties and determined the time required for multi-party secure
skyline computation. For this experiment, we considered each party to have 50 k objects, each object
containing two attributes, and each attribute value was a 32-bit unsigned integer. We also considered
30 partitions per attribute.

Figure 10 shows the time required for skyline computation with variation in the number of
participating parties. The number of parties varied from 2–8. Since our proposed method did not
share data among the parties during computation and did not need pair-wise computation, thus the
computation time grew linearly with the growth in the number of participating parties. Therefore,
the time required for our proposed method in Figure 10 showed a steady increase in time with an
increase in participating parties’ databases.

�

����

����

����

����

�����

�����

�
��

�
��
�
��

��������	�
�����

��	
�
�	
��

���
���
	

���������
���
	

������������	��
�

��

������

������

Figure 10. Running time varies with participating parties (attribute: 2, partition: 30/attribute).

Information 2019, 10, 207 18 of 19

9. Conclusions

In our proposed method, we efficiently handled multi-party data without disclosing the original
values in the attributes during the computation of the secure skyline. We simultaneously performed
local skyline computation and encryption of local skyline objects in each party. Moreover, Coordinator 1
and Coordinator 2 parallelly executed operations for computing the global skyline. We also kept a
minimum exchange of information among other parties during the computation of the skyline. Thus,
our proposed method showed better performance. Both of the coordinators used the MapReduce
framework; therefore, our approach can handle big data from multi-party reliably and cost-effectively.

Author Contributions: Conceptualization, S.A. and Y.M.; formal analysis, S.A., A.Z., M.A.S., and Y.M.;
investigation, S.A.; methodology, S.A.; supervision, Y.M.; validation, S.A., M.Q., A.Z., and M.A.S.; writing,
original draft, S.A.; writing, review and editing, S.A., M.Q., C.L., K.M.R.A., and Y.M.

Funding: This work is supported by KAKENHI (16K00155, 17H01823), Japan. Saleh Ahmed and Mahboob
Qaosar are supported by the Japanese Government MEXT Scholarship. Asif Zaman and Md. Anisuzzaman
Siddique were supported by the Japanese Government MEXT Scholarship.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Mullesgaard, K.; Laurits Pederseny, J.; Lu, H.; Zhou, Y. Efficient Skyline Computation in MapReduce.
In Proceedings of the 17th International Conference on Extending Database Technology (EDBT), Athens,
Greece, 24–28 March 2014; pp. 37–48.

2. Zaman, A.; Siddique, M.A.; Annisa; Morimoto, Y. Secure Computation of Skyline Query in MapReduce.
In Advanced Data Mining and Applications; Li, J., Li, X., Wang, S., Li, J., Sheng, Q.Z., Eds.; Springer International
Publishing: Cham, Switzerland, 2016; pp. 345–360.

3. Apache. Welcome to ApacheTMHadoop. Available online: http://hadoop.Apache.org (accessed on
1 May 2019).

4. Ryu, H.C.; Jung, S. MapReduce-based Skyline Query Processing Scheme Using Adaptive Two-level Grids.
Clust. Comput. 2017, 20, 3605–3616. [CrossRef]

5. Zhang, J.; Jiang, X.; Ku, W.; Qin, X. Efficient Parallel Skyline Evaluation Using MapReduce. IEEE Trans.
Parallel Distrib. Syst. 2016, 27, 1996–2009. [CrossRef]

6. Park, Y.; Min, J.K.; Shim, K. Parallel Computation of Skyline and Reverse Skyline Queries Using Mapreduce.
Proc. VLDB Endow. 2013, 6, 2002–2013. [CrossRef]

7. Liu, J.; Yang, J.; Xiong, L.; Pei, J. Secure Skyline Queries on Cloud Platform. In Proceedings of the 2017
IEEE 33rd International Conference on Data Engineering (ICDE), San Diego, CA, USA, 19–22 April 2017;
pp. 633–644. [CrossRef]

8. Hua, J.; Zhu, H.; Wang, F.; Liu, X.; Lu, R.; Li, H.; Zhang, Y. CINEMA: Efficient and Privacy-Preserving Online
Medical Primary Diagnosis with Skyline Query. IEEE Internet Things J. 2018, 6, 1450–1461. [CrossRef]

9. Liu, X.; Lu, R.; Ma, J.; Chen, L.; Bao, H. Efficient and privacy-preserving skyline computation framework
across domains. Future Gener. Comput. Syst. 2016, 62, 161–174. [CrossRef]

10. Qaosar, M.; Zaman, A.; Siddique, M.A.; Annisa; Morimoto, Y. Privacy-Preserving Secure Computation of
Skyline Query in Distributed Multi-Party Databases. Information 2019, 10, 119. [CrossRef]

11. Borzsonyi, S.; Kossmann, D.; Stocker, K. The skyline operator. In Proceedings of the IEEE International
Conference on Data Engineering (ICDE), Heidelberg, Germany, 2–6 April 2001; pp. 421–430.

12. Chomicki, J.; Godfrey, P.; Gryz, J.; Liang, D. Skyline with Presorting. In Proceedings of the IEEE International
Conference on Data Engineering (ICDE), Bangalore, India, 5–8 March 2003; pp. 717–719.

13. Papadias, D.; Tao, Y.; Fu, G.; Seeger, B. Progressive skyline computation in database systems. ACM Trans.
Database Syst. 2005, 30, 41–82. [CrossRef]

14. Kossmann, D.; Ramsak, F.; Rost, S. Shooting stars in the sky: An online algorithm for skyline queries.
In Proceedings of the International Conference on Very Large Data Bases (VLDB), Hong Kong, China,
20–23 August 2002; pp. 275–286.

15. Veugen, T.; Blom, F.; de Hoogh, S.J.A.; Erkin, Z. Secure Comparison Protocols in the Semi-Honest Model.
IEEE J. Sel. Top. Signal Process. 2015, 9, 1217–1228. [CrossRef]

http://hadoop.Apache.org
http://dx.doi.org/10.1007/s10586-017-1203-y
http://dx.doi.org/10.1109/TPDS.2015.2472016
http://dx.doi.org/10.14778/2556549.2556580
http://dx.doi.org/10.1109/ICDE.2017.117
http://dx.doi.org/10.1109/JIOT.2018.2834156
http://dx.doi.org/10.1016/j.future.2015.10.005
http://dx.doi.org/10.3390/info10030119
http://dx.doi.org/10.1145/1061318.1061320
http://dx.doi.org/10.1109/JSTSP.2015.2429117

Information 2019, 10, 207 19 of 19

16. Samanthula, B.K.K.; Chun, H.; Jiang, W. An Efficient and Probabilistic Secure Bit-decomposition.
In Proceedings of the 8th ACM SIGSAC Symposium on Information, Computer and Communications
Security, Hangzhou, China, 8–10 May 2013; ACM: New York, NY, USA, 2013; pp. 541–546. [CrossRef]

17. Hose, K.; Vlachou, A. A survey of skyline processing in highly distributed environments. VLDB J. 2012,
21, 359–384. [CrossRef]

18. Hazay, C.; Lindell, Y. Definitions. In Efficient Secure Two-Party Protocols: Techniques and Constructions;
Springer Berlin Heidelberg: Berlin/Heidelberg, Germany, 2010; pp. 19–49. [CrossRef]

19. Agrawal, R.; Kiernan, J.; Srikant, R.; Xu, Y. Order Preserving Encryption for Numeric Data. In Proceedings
of the ACM SIGMOD International Conference on Management of Data, Paris, France, 13–18 June 2004;
pp. 563–574.

20. Paillier, P. Public-Key Cryptosystems Based on Composite Degree Residuosity Classes. In Proceedings of the
Advances in Cryptology–Annual International Conference on the Theory and Applications of Cryptographic
Techniques (EUROCRYPT)’99, Prague, Czech Republic, 2–6 May 1999; Stern, J., Ed.; Springer Berlin
Heidelberg: Berlin, Heidelberg, 1999; pp. 223–238.

21. Siddique, M.A.; Tian, H.; Morimoto, Y. Distributed Skyline Computation of Vertically Splitted Databases
by Using MapReduce. In Proceedings of the International Conference on Database Systems for Advanced
Applications, Bali, Indonesia, 21–24 April 2014; pp. 33–45.

22. Liang, Y.; Ouyang, K.; Jing, L.; Ruan, S.; Liu, Y.; Zhang, J.; Rosenblum, D.S.; Zheng, Y. UrbanFM: Inferring
Fine-Grained Urban Flows. arXiv 2019, arXiv:1902.05377.

23. Alarabi, L.; Mokbel, M.F.; Musleh, M. ST-Hadoop: A MapReduce framework for spatio-temporal data.
GeoInformatica 2018, 22, 785–813. [CrossRef]

24. Huang, Y.K.; He, Z.H. Processing continuous K-nearest skyline query with uncertainty in spatio-temporal
databases. J. Intell. Inf. Syst. 2015, 45, 165–186. [CrossRef]

25. Liu, Y.; Zheng, Y.; Liang, Y.; Liu, S.; Rosenblum, D.S. Urban Water Quality Prediction Based on Multi-task
Multi-view Learning. In Proceedings of the Twenty-Fifth International Joint Conference on Artificial
Intelligence, New York, NY, USA, 9–15 July 2016; AAAI Press: Menlo Park, CA, USA, 2016; pp. 2576–2582.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1145/2484313.2484386
http://dx.doi.org/10.1007/s00778-011-0246-6
http://dx.doi.org/10.1007/978-3-642-14303-8_2
http://dx.doi.org/10.1007/s10707-018-0325-6
http://dx.doi.org/10.1007/s10844-014-0344-1
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Skyline Query
	Secure Skyline Query
	MapReduce-Based Skyline Query

	Preliminaries
	Adversary Model
	Dominance and Skyline
	Order-Preserving Encryption
	Paillier Cryptosystem
	Hadoop MapReduce

	Proposed Model
	Initialization
	 Local Skyline Computation, OPE of Original Values, and Perturbation of Original Order
	 Local Skyline Computation
	OPE of the Original Attribute Values of Objects in the Local Skyline
	 Perturbation of the Original Order

	Cell-Wise Candidate Skyline Computation Distributively and Concurrently in Each Cell
	Global Skyline Computation from the Cell-Wise Candidate Skyline
	Decryption of the Global Skyline

	Scalability and Application of the Proposed Method
	Privacy and Security
	Theoretical Analysis of the Proposed Method
	Experimental Analysis of the Proposed Method
	Experimental Setup and Datasets
	Analysis of Our Proposed Method for Different Data Distributions
	Analysis of Our Proposed Method with Variation in Object Dimensions
	Comparison of the Proposed Method with the Encrypted Substitution Vector-Based Method
	Comparison of the Proposed Method with Variation in the Number of Participating Parties

	Conclusions
	References

