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Abstract: This paper proposes an improved Bat algorithm based on hybridizing a parallel and compact
method (namely pcBA) for a class of saving variables in optimization problems. The parallel enhances
diversity solutions for exploring in space search and sharing computation load. Nevertheless, the
compact saves stored variables for computation in the optimization approaches. In the experimental
section, the selected benchmark functions, and the energy balance problem in Wireless sensor
networks (WSN) are used to evaluate the performance of the proposed method. Results compared
with the other methods in the literature demonstrate that the proposed algorithm achieves a practical
method of reducing the number of stored memory variables, and the running time consumption.

Keywords: improved bat algorithm; optimization deployment problems; probabilistic model; wireless
sensor network

1. Introduction

Metaheuristic algorithms are one of the most main potential tools for solving complex optimization
problems. Metaheuristic algorithms have been applied successfully to optimization problems in the
fields of engineering, biology, and finance [1–3]. The Bats Algorithm (BA) is a novel meta-heuristic
search algorithm [4], which simulates the behavior of the bats species for searching prey. Preliminary
studies show that it is very promising and could outperform existing algorithms [5–7]. BA utilizes a
population of bats to represent candidate solutions in a search space and optimizes the problem by
iteration to move these agents to the best solutions. The general steps of this algorithm are described in
the next section. In addition, the original BA can solve problems with continuous search space, while
several versions of the algorithm are also proposed in the literature to solve problems with continuous
and discrete search spaces. An Evolved bat algorithm (EBA) is used for numerical optimization and
the economic load dispatch problem [8,9]. A hybrid between BA and Artificial bee colony (ABC) is
used for solving numerical optimization problems [10]. In addition to continuous BAs, several discrete
BAs have also been proposed in the literature. A binary BA (BBA) was proposed to solve the feature
selection problem [11], where its solution is restricted to be a vector of binary positions using a sigmoid
function. A similar BBA algorithm with a multi v-shaped version of the transfer function was adopted
to solve large scale 0–1 knapsack problems [12]. Another version of BA was discretized for job shop
scheduling problems [13]. However, BA has not considered the saving variable memory, and it has not
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been given the selected parameters of the algorithm based on the objective function, so the optimal
performance will not be very effective in removing the hot spot problem.

Moreover, the rapid growth in the field of integrated circuits (IC) and Information technology (IT)
has led to the development of cheap and compact size sensor nodes of Wireless sensor work (WSN) [14].
WSN is a promising and emerging technology, and it is an essential part of the Internet of Things
(IoT) infrastructure for collecting relevant information in the target environment. WSN is composed
of a set of a vast number of sensor nodes that are operated in an ad-hoc fashion to observe and
interact with the physical world. WSN has been widely applied in a variety of fields of industry, traffic
control, healthcare, and home automation [15,16]. However, the sensor nodes are limited in computing
capability and storage capacity of the computing unit, in communicating the range and radio quality
of the communication unit, in sensing the coverage and accuracy of the detecting unit, and in the
available energy of power units [17,18]. Because of the limited memory and the constrained power,
fully functional WSNs must be maintained and kept stable by the sound design employed network.

The clustering method in WSN is one of the most outstanding energy efficient ways of saving
the energy network. The clusters are generated by arranging the sensor nodes into groups. A cluster
has Node members (NM), and a Cluster head (CH) that are selected among NM. Clustering provides
various advantages like energy efficiency, lifetime, scalability, and less delay. However, clustering can
lead to a hot spot problem. Further, the unequal clustering technique is utilized for load balancing
among CHs to prevent the network from developing a hot spot issue [19]. In uneven clustering, the
cluster size varies proportionally to the distance to the base station (BS). Figure 1 shows the architecture
of solving the unequal clustering in WSN. The size of the clusters would be reduced regardless of
whether it is closer to BS.
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In contrast, the cluster size would be increased if the distance between the BS and CH is great.
The cluster size is directly proportional to the length of CHs from BS. Unequal Clustering permits
all CHs to pay the same amount of energy so that the CHs near BS spend equal energy to the CHs
farther from BS. So, uneven grouping eliminates the hot spot problem by balancing the load efficiently.
Due to the dense deployment and unattended nature of WSN, it is hard to recharge node batteries.
The efficient energy and maximize network lifetime is a primary design goal in deployed WSN.

Several traditional approaches had dealt with unequal clustering, e.g., the probabilistic,
deterministic, and heuristic approaches [20]. However, if the scale network is vast, traditional methods
would require a long time for computation and the accuracy would decrease. The metaheuristic
algorithm is the preferred method that can apply to address the hotspot problem adequately [21].
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Challenges to the optimization applications have also arisen somehow from the limited hardware
resource due to the cost, storage or space size. A compact optimization algorithm would decrease the
variables of candidating solutions, but it still obtained good results [22].

In this paper, we extend our previous conference papers [7,23] by hybridizing the parallel with the
compact techniques for the numerical optimization problems and balancing the energy consumption
problem in WSN. The logic behind extending works includes a hybrid parallel and compact, an added
weight to control the probability of sampling for the perturbation vector, and selected parameters
for the balancing the energy consumption problem of WSNs. The parallel processing considers
the diversity of communication strategies. The compact technique considers improving the built
probability model. The poor sampling individuals in the subgroups have been replaced with the better
sampling competition agents according to the fitness evaluation.

The rest of the paper is organized as follows: Section 2 provides a brief review of BA and a
statement hotspot problem in WSNs. Section 3 presents analysis and a design for hybrid parallel
and compact BA (pcBA). The simulation test and results are discussed in Section 4. A solution to the
balanced energy consumption problem in WSN is figured out in Section 5. Section 6 summarizes
the conclusion.

2. Related Work

2.1. Bat-Inspired Algorithm

The inspiration for the Bats algorithm (BA) [4] was drawn from the echolocation of the species
called the microbats for searching prey. The update solutions of BA were constructed based on three
primary characteristics, which included echolocation, frequency, and loudness. The echolocation of
Bats is used to locate the prey. The frequency is used to send out the variable wavelength. The loudness
is used to search for the victim. Solutions of BA are adjusted according to evaluate objective function by
using certain parameters, e.g., frequencies, loudness, and the pulse emission rates of the bats. Formulas
for updating the positions and velocities of BA in d-dimensional search space are as follows.

fi = fmin + ( fmax − fmin) × β (1)

where fi is the frequency for adjusting velocity change; f min and f max are the minimum and maximum
frequency of the bats emitting the pulse; β is a generated vector randomly based on distributed Gaussian
∈[0, 1]. A frequency assigned initially for each bat in a uniform range ∈[ f min, f max]. BA updates the
vectors of the bat’s location and velocity x, and v in the d-dimensional search space.

vt
i = vt−1

i +
(
xt−1

i − xbest
)
× fi, (2)

xt
i = xt−1

i + vt
i , (3)

where t is the current iteration, xbest is the global best location. Generating a new location of the bats in
exploiting the phase strategy is formulated as.

xi = xi + ε×At, (4)

where ε is a random variable in the range ∈ [−1, 1], and it indicates the weight for the loudness of the
bats at the current generation. The loudness of bats A is defined as.

At+1
i = α×At

i , (5)
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where α is a variable constant. The symbol denotes the rate of the pulse emission r and ∈[0, 1].
The pulse emission rate is calculated as.

rt+1
i = r0

i ×
[
1− e−γ×t

]
, (6)

where γ is a variable constant. This rate r is considered in the process to switch the global and local
search. If a random number is greater than r, a local search with a random walk is triggered.

2.2. Statement Problem in WSNs

Balancing energy consumption for a hierarchy WSN is done using a practical clustering approach
for the hotspot issue in WSN [19]. The wireless radio transceivers in WSN depend on the various
parameters, e.g., distance, energy consumption, the distance between the transmitters. Its receiver
obeyed the attenuated transceiving power that decreased exponentially with the increasing distance.
Dissipated energy of CH includes the power of aggregating the sensed information, transmitting the
aggregated signal to the base station BS, and receiving signals from the nodes. If a data message is a
number of l bits, the energy consumption of a node would be formulated as follows.

Et(i)consumed =

 (mn − 1) × l× Eele + mn × l× EDA + l× Eele + l× Emp × d4
i toBS, i ∈ CH

l× Eele + l× E f s × d2
n to CH, otherwiswe; it means i ∈ non−CH

(7)

where Et(i)consumed is the consumed energy of CHi (i εCH); n is member nodes in a round t. The distance
from the CH to the BS is set to di to BS. The distance of the member node to CH is set to dn to CH.
The sensor nodes are connected to CH are set to mn. Member nodes only need to transfer data to
the CH once during a round. Presumably, the distance to the CH is small, so the energy dissipation
follows the Friis free space model (d2 for lost energy). Since BS is the far distance from the nodes,
presumably the consumed energy follows the multi-path model (d4 for lost power). Parameters of
consumed energy for communication include the initial power for the nodes Ej, the radio electronics
dissipates for receiving and transmitting units Eele, the amplifier energy Emp and Efs, and the energy of
data aggregation EDA [24].

The average dissipated energy for round t is calculated as:

µ(Econsumed) =

∑
i ∈N

Et(i)consumed

/N (8)

The remaining power of cluster nodes for the round is defined as:

Et+1(i)res. = Et(i)res. − Et (i)consumed (9)

where Et+1(i)res is residual energy for the round (t + 1). The average residual power for round t is
calculated as:

µ(Eres.) =
∑
n∈N

Et(n)res.

N
(10)

The obtained residual energy for standard deviation is defined as:

δ(Eres.) = SQRT(
∑
n∈N

(µ(Eres.) − E(i)res.)
2

N
) (11)

Average energy consumption of the network for around the denoted µ(Econsumed) in Equation (8)
is minimized to save energy in the cluster nodes. To balance the energy load of nodes, we use
Equations (9)–(11) for minimizing the standard deviation of residual energy δ(Eres) in WSN. The average
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residual energy and number of received items are optimized to prolong the sensor network’s lifetime
by applying a clustering evaluation model for measuring the performance.

3. Methodology of Parallelized Compact BA (pcBA)

This section presents an improved BA based on hybridizing the parallel with the compact
for the numerical optimization problems and balancing the energy consumption problem in WSN.
The improvement BA is an extension of our previous works [7,23] that considered two techniques of
parallel and compact. The parallel with a communication strategy is significant for computations
that exchange information with other groups, share the computation load, and enhance the diversity
of individuals [25,26]. The compact technique can offer an effective way of using a saving variable
memory. An efficient compromise is used to present solutions of search space for the advantages
of population-based algorithms without requirements of storing actual populations of solutions.
The compact algorithm simulates the behavior of population-based algorithms by employing the
replacement of a community of solutions with its probabilistic representation.

3.1. Parallelized Bats Algorithm

The parallel method with communication strategies in the metaheuristic algorithm is proven
to have faster convergence and more accuracy than the original algorithm [25–27]. The processing
parallel plays a significant role in computational optimization, which is a carried computational form
that operates both in the same direction and simultaneously [23,27]. To build a parallel structure,
several subpopulations are created by dividing the population in ways that could evolve separately
over iterations, and the best agents are selected to continually search the next generation according to
the measured fitness. The communication scheme in parallel processing exchanges their properties
among groups, e.g., moving, copying, immigrating, or replacing randomly. A promising region would
swap with weak areas within the solution space, and exploration of a promising area is carried out in
the searching space.

Scheme 1 A pseudo-code of a parallel with communication strategies

Input: The subgroups Gi, . . . Gm, i = 1, 2 . . . , m < Np the population size
Output: Promising regions in subgroups G after communicating.

1: if m>2 then
2: if random ≤ ω then // Stategy1- neighboring groups
3: for i = 1 to m do
4: replace the worst(Gi) with best random from (Gi, . . . Gm)

5: endfor
6: else // Stategy2- the best to all
7: for i = 1 to m do
8: replace the worst (Gi) with best (Gi, . . . Gm)

9: endfor
10: endif
11: else // Stategy3- a pair swapping
12: replace worsts(G1) with best(G2)
13: replace worsts(G2) with best(G1)
14: endif

The communication strategies suggested include the best to all, neighboring groups, a pair
swapping, etc. The procedure with the best to all has the most excellent agents among all subpopulations
migrate to every group, mutate them by replacing the worst bats in each of these groups and update
them after the period exchanging time of running. The strategy with the neighboring groups is to
move the best bat of one group to its surrounding groups, then replace some poorer bats after the
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period of running. The strategy with a pair swapping is a pair of two subgroups where the most
exceptional bat of this subgroup replaces the worst bat in the other subset and vice-versa. The drawback
of communication in those algorithms was fixed for picking one of the communication strategies.
The effectiveness of these strategies therefore could not be taken advantage of. In this section, a new
communication scheme is proposed to overcome this drawback. In the draft scheme, the exchanging
procedures are combined rationally based on a switching parameter as the weight control. In the
experimental section, a weight control ω is set to 0.7 to 0.5. This scheme dynamically enhances
the communication strategies. Scheme 1 shows a pseudo code of communication scheme, namely
Communication (subpop).

3.2. Compacted Bat Algorithm

The estimated distribution algorithm (EDA) process uses a probabilistic representation to get fewer
stored variables, instead all the population of solutions was stored in the metaheuristic algorithms
while still getting the same obtained result of optimization [28]. The compact method uses the principle
of EDA to simulate the operations of the metaheuristic algorithm [7,29]. A probabilistic model was
used to represent the operations of the population-based algorithm in a compact one. In this case, a
real population considered as a virtual population in the compact algorithm. The virtual community is
configured by probability density functions (PDFs) [30] based on EDA. Not all of the population of a
solution was stored in memory, but it generated a few new solution candidates based on probability
distribution stored in the memory. An attracted new candidate solution is being iteratively biased
toward a promising area of an optimal solution. The likelihood of a population of individuals in an
algorithm represents the probability vector of each component learned from previous generations.
The structure of this vector was called the Perturbation Vector (PV) [29]. These principles were applied
to the improvement of memory saving variable for compact BA.

Different from the population-based algorithms such as BA, the compact technique considered
population as “virtual community” by expressing the encoded data structure of a probabilistic vector.
A real-valued prototype vector represents the probability of each component being described in
a candidate solution. The specified probability for each element in new candidate solutions was
maintained in the optimum process. The optimization processing objective of the compact algorithm is
to simulate the behavior of Bats of BA, but it was used with a much smaller stored variable memory.
PV generates a candidate solution probabilistically from the vector. Competing for components toward
the better solutions is reflected in the updated probability vector. The created trial solutions stayed to
be allocated in boundary constraints. PV is a matrix for specifying the two parameters of mean µ and
standard deviation σ values in the PDF of each design variable. It can be defined as: PVt =

[
µt, σt

]
,

where t is the time steps.
A truncated Gaussian (PDF) for µ and σ values are within the interval of (−1, +1). The PDF

normalizes the amplitude of area equal to 1. We use PV(µi, σi) to generate the candidate solution,
where xi in the compact method. The solution is corresponding to the virtual bats based on the
associated Gaussian of µ and σ as the following expressed PV.

Pi(x) =
exp

(
−(x−µi)

2

2σ2
i

)
×

√
2
π

σi

(
erf

(
µi+1
√

2σi

)
− erf

(
µi−1
√

2σi

)) (12)

where Pi(x) is the probability distribution of PV that is associated to the µ and δ in a truncated Gaussian
PDF. This is the corresponding value of the PDF to variable xi. The error function indicated as er f is
found in reference [31]. PDF could have found to be corresponding to the Cumulative Distribution
Function (CDF) by constructing Chebyshev polynomials [32]. The arranged codomain of CDF is from
0 to 1. The described CDF is a real-valued random variable X in a value given distribution at ≤ xi.
The value of the newly calculated candidate xi is a value of its inversed CDF.



Information 2019, 10, 194 7 of 22

3.3. Parallel Compact Bat Algorithm

This subsection presents an implementation of a hybrid of the parallel and compact methods
for BA. Construct parallel, whole population split into several subpopulations, and the communication
scheme are all triggers among the subpopulations. The subpopulations run in parallel and evolve
independently based on BA optimization. The communicating subgroup is carried out, e.g., the most
excellent bats among the subgroups immigrated to another subset and were replaced with the weakest
bats according to a measured fitness, and the subgroups were updated over the period. In the phase of
deployment compact, we figure out the pact to the subgroups based on probability vectors through the
competition. The hybrid of the parallel and compact process is described through the illustrations in
Schemes 2–7.

We extended a couple of improvements for the perturbation vector through the process of sampling
and updating PV. New candidates are generated by learning and sampling from explicit probabilistic
models that forward to promising solutions in search space. To control the probability of sampling of
µi in PDF, a parameter τ as a weight is suggested from between left [–1, µi] and right [µi, 1]. Thus, PV
can be computed into two sides of the left and right as follows:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Li(x) =
−

√
2
π

σi×

(
erf

(
µi+1
√

2σi

)) × exp
(
−

(x−µi)
2

2σ2
i

)
for− 1 ≤ x ≤ µi

Ri(x) =
−

√
2
π

σi×

(
erf

(
µi−1
√

2σi

)) × exp
(
−

(x−µi)
2

2σ2
i

)
for µi ≤ x ≤ 1

(13)

The new sampling extended approach for PDF is for generating new candidates of the group
depicted in Scheme 2.

It means the PV scheme will generate the agents of x randomly.

Scheme 2 Perturbation Vector (PV) for generating new solutions

Input: parameter µ, σ of probability vector, dimension d, and τ
Output: A new candidate x

1: for i = 1 to d do
2: Generated r ∈ [0, 1] randomly in uniform distribution
3: if r < τ then
4: Generating xi ∈ [1, 0] via Li(x) of Equation (13)
5: else
6: Generating xi ∈ [1, 0] via Ri(x) of Equation (13)
7: end if
8: end for

Scheme 3 shows the initializing PV scheme as the pseudo code of compact BA (cBA). The best bat
xbest is computed based on the learning scheme of a sampling trial bat. If the temporary new solutions
are better according to the evaluated fitness, x is then updated. k is a large constant, e.g., k is set to 10.

Scheme 3 Initialization of cBA

1: Initialization of PV(µ, σ)
for i = 1:n do

µt
i = 0;
σt

i = k;
end for

2: Initializing Bats location x via PV
3: Initializing xbest with the best location value: xbest = arg minf [x].
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Two design variables of winner and loser compete together to find out who is the better one
according to the evaluated fitness value. The winner is moved toward a promising area in a searching
space based on the comparison between two design variables for bats of the subgroup. A newly
selected candidate is assigned to evaluate the given objective function. Determining a winning solution
is employed based on the comparison of the chosen candidate agents. Scheme 4 displays the competing
scheme for the winner/loser.

Scheme 4 Compete for winner and loser

Input: The objective function f and solutions xa, xb
Output: winner or loser

1: if f (xa) < f (xb) then
2: winner assigned to xa

3: loser assigned to xb
4: else
5: winner assigned to xb
6: loser assigned to xa

7: end if

Moreover, the elements µt+1
i and σt+1 of the updating PV for the new solution for the winner and

loser are expressed over the differential iterations. A typical parameter called virtual population Np is
not strict variable corresponding to the population size variable as in a population-based algorithm.

µt+1
i = µt

i +
1

Np
(winneri − loseri) (14)

where t is current iteration, and i = 1, 2, . . .Np. Regarding σ values, the update rule of each element
is given:

σt+1
i =

√
(σt

i)
2
+

(
µt

i

)2
−

(
µt+1

i

)2
+

1
Np

(
winner2

i − loser2
i

)
(15)

Another improvement for updating PV, the values of µt+1
i and σt+1

i are modified with a control
parameter for expressing the maximum value of perturbation. A parameter ϑ is added as a weight
control of the expressed the perturbations maximum value.

µi = µi + βi × ϑ (16)

σi =
√
σ2

i + αi × ϑ (17)

where βi and αi are random number distributed in [–1, 1], and distributed in [0, 1], respectively.
Evaluate fitness function with selected location x compared with xbest to obtain a winner for the next
generation. Current location x maintained in following steps of the scheme. Scheme 5 shows the
updating PV scheme.

Scheme 5 Updating PV for new candidates

1: for i = 1 to d do
2: µbackup = µt

i
3: µt+1

i = µt
i +

1
Np

(winneri − loseri)

4: σt+1
i = SQRT(max

(
0, (σt

i)
2
+

(
µt

backup

)2
−

(
µt+1

i

)2
+ 1

Np

(
winner2

i − loser2
i

))
5: Improving for µt+1

i and σt+1 via Equations (16) and (17) with τ set to 0.01
6: end for



Information 2019, 10, 194 9 of 22

Scheme 6 indicates the pseudo-code of the steps for the compact BA. It simulated the behavior of
population-based algorithms by sampling the probabilistic model. A virtual population is encoded in
its probabilistic representation.

Scheme 6 The compact BA, (namely cBA)

Input: The objective function f , t = 0 and the swarm
Output: The best solution xgbest, Fmin

1: Initialization phase according to Scheme 3
2: while stop criteria are not met do
3: Generating x by PV, via Scheme 2
4: Update Bats via Equations (1) to (3)
5: Select best by Compete scheme via Scheme 4
6: [winner, loser] = compete(x, newx);
7: Fnew=f (newx);
8: Update PV scheme µt+1, σt+1, via Scheme 5
9: Global best update
11: [winner, loser] = complete(newx, xbest);
12: if (Fnew<Fmin)
13: xbest = winner; Fmin=Fnew;
14: end if
15: t = t + 1;
16: end while

The steps of the parallel compact BA algorithm are described as follows. For the first step,
initialized population is divided into G subgroups, objective function f and period of R for executing
the communication strategy that the bats are assigned to. For the second step, the compacted subsets
are evaluated, the communication scheme activates, and assessed results are compared to find the
current best solution. For the third step, the termination is checked for the terminating condition, go to
the second step if the termination condition is not met, otherwise it records the best bats and obtains
the value of the function f(x).

Scheme 7 shows the overall pseudo code for pcBA, in which G is subpopulations; n is the number of
bats in each group; m is the number of groups; R is the exchanging period, and cBA is a compact scheme.

Scheme 7 Pseudo code for Parallel and Compact Bats Algorithm-pcBA

1: Step 1. Initialization
2: generate G1...m

(
m ≤ Np

)
subgroups, each G has n bats

3: assign period exchanging time R, counter t = 1
4: solutions xt

i j in the j-th subgroup with nj bats, i = 1,2, . . . ,n; j = 1,2, . . . m

5: Step 2. while termination is not satisfied do
6: for j = 1 to m do
7: cBA(Gi) according to Scheme 6
8: end do
9: if(mod(t,R)==0) then
10: Communication (G1...m); according to Scheme 1
11: Find the current best solution xbest
12: t = t + 1
13: end while
14: Step 3. Output the best solutions found
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4. Experiment with Numerical Optimization Problems

To evaluate the performance of the proposed pcBA, fifteen optimal numerical problems selected
as benchmark functions [33]. Table 1 lists the initialized range, number of variables as the dimension
of the space search, and the max iteration for fifteen test functions. The experimental results of the
proposed pcBA are compared with the various version of other algorithms of BA, e.g., BA [4], parallel
BA (pBA) [23], and compact BA (cBA) [7], as shown in Table 2. Table 3 depicts the obtained results of
the proposed pcBA compared with popular metaheuristic algorithms in the literature, e.g., Particle
swarm optimization (PSO) [34], Differential evolution (DE) [35], Grey wolf optimizer (GWO) [36], and
Genetic algorithm (GA) [25]. Table 4 displays the comparison of the proposed algorithm with four
other compact algorithms in the literature, e.g., rcGA [37], cDE [38], cABC [39] and cFPA [40] regarding
solution quality and time running. The obtained results of minimized outcomes are averaged for
sequences of each testing function with the initialized range, the dimension, and max iteration in
Table 1.

Table 1. Fifteen selected benchmark functions.

Name Test Functions Range Dimension Iteration

Rosenbrock f1(x) =
n−1∑
i=1

(
100×

(
xi−1 − x2

i

)2
+ (1− xi)

2
)

±100 30 2000

Quadric f2(x) =
n∑

i=1

i∑
k=1

(xi) ±100 30 2000

Ackley
f3(x) = 20 + e− 20e−0.2

√∑n
i=1 x2

i
n − e

∑n
j=1 cos (2πxi)

n
±32 30 2000

Rastrigin f4(x) =
N∑

i=1
[10 + x2

i − 10cos2πxi ] ±5.12 30 2000

Griewangk f5(x) = 1 +
N∑

i=1

x 2
i

4000 +
N∏

i=1
cos xi√

i
±100 30 2000

Spherical f6(x) =
N∑

i=1

(
x 2

i

)
±100 30 2000

Quartic Noisy f7(x) = random[0, 1) +
N∑

i=1

(
i× x4

i

)
±1.28 30 2000

Schwefel f8(x) = 418.983n−
N∑

i=1
xi × sin

(√
|xi|

)
±100 30 2000

Langermann f9(x) =
n∑

i=1

[
x2

i − 10 cos(2πxi) + 10
]

±5.12 30 2000

Shubert
f10(x) = −20 exp

−0.2

√
1
n

n∑
i=1

x2
i

−
exp

(
1
n

n∑
i=1

cos(2πx1)

)
+ 20 + e

±32 30 2000

Dixon & Price f11 = (x1 − 1)2 +
d∑

i=2
i(2× x2

i − xi−1)
2

±32 30 2000

Michalewicz f12 = −
d∑

i=1
sin(xi) × sin20(

i×x2
i

π ) ±5.12 30 2000

Schaffer N.2 f13 = 1
2 +

sin2(x2
1−x2

2)−0.5

[1+0.001×(x2
1−x2

2)]
2 ±100 30 2000

Matyas f14 = 0.26
(
x2

1 + x2
2

)
− 0.48x1x2 − 10 ± 10 30 2000

Drop-Wave f15 =
1+cos(12

√
x2

1+x2
2

0.5(x2
1+x2

2)+2
±5.12 30 2000
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Table 2. Comparison of the proposed pcBA with the BA cBA, and pBA algorithms.

Functions pcBA BA r cBA r pBA r

f1(x) 9.20E−01 1.56E+00 + 1.07E+00 + 9.56E−01 ~
f2(x) 3.38E+00 4.34E+00 + 3.68E+00 ~ 3.49E+00 +
f3(x) 1.53E+00 4.11E+00 + 2.10E+00 + 1.96E+00 +
f4(x) 4.29E−01 5.62E−01 + 4.55E−01 + 4.29E−01 ~
f5(x) 1.17E+01 2.28E+01 + 2.44E+01 + 1.19E+01 ~
f6(x) 2.15E+00 6.79E+00 + 2.15E+00 ~ 2.38E+00 +
f7(x) 2.64E+00 4.13E+00 + 3.61E+00 + 2.46E+00 -
f8(x) −4.37E+02 −3.67E+02 ~ −4.09E+02 ~ −4.17E+02 ~
f9(x) 8.57E+01 1.38E+02 + 1.15E+02 + 9.57E+01 +
f10(x) 1.93E+00 1.93E+00 - 1.96E+00 ~ 1.70E+00 -
f11(x) 4.70E−02 1.34E−01 + 6.06E−02 ~ 4.16E−01 +
f12(x) 1.91E−01 5.48E−01 + 2.83E−01 + 6.38E−01 +
f13(x) 2.08E+00 3.17E+00 + 2.29E+00 + 2.63E+00 +
f14(x) 9.79E+00 1.14E+01 + 8.86E+00 - 8.14E+00 -
f15(x) 9.82E−03 2.78E−02 ~ 1.57E−02 + 3.36E−02 ~
AVG −2.10E+01 −1.12E+01 + −1.03E+01 + −1.90E+01 +

Summary
13+
2~
1-

10+
5~
1-

8+
5~
3-

Table 3. Comparison of the proposed pcBA with the DE, PSO, GWO, and GA methods.

Functions pcBA DE r PSO r GWO r GA r

f1(x) 9.20E−01 9.31E−01 ~ 7.54E−01 - 1.09E+00 + 1.25E+00 +
f2(x) 3.38E+00 3.34E+00 + 3.49E+00 + 4.09E+00 + 4.38E+00 +
f3(x) 1.45E+00 1.24E+00 + 1.91E+00 + 2.19E+00 + 2.91E+00 +
f4(x) 4.29E−01 5.93E−01 + 4.37E−01 + 4.93E−01 ~ 4.60E−01 ~
f5(x) 1.17E+01 1.21E+01 + 1.04E+01 - 1.34E+01 + 1.98E+01 +
f6(x) 2.15E+00 2.20E+00 ~ 2.38E+00 + 2.40E+00 ~ 2.17E+00 ~
f7(x) 2.64E+00 2.92E+00 + 2.46E+00 ~ 3.12E+00 + 7.40E+00 +
f8(x) −4.33E+01 −3.63E+01 + −2.70E+01 + −8.46E+00 + −1.25E+01 +
f9(x) 5.76E+00 5.39E+00 ~ 6.40E+00 + 6.39E+00 + 6.80E+00 +
f10(x) 1.90E+00 2.40E+00 - 2.69E+00 + 2.36E+00 + 2.19E+00 +
f11(x) 4.70E−02 4.16E−01 + 4.16E−01 + 4.16E−01 + 1.22E+00 +
f12(x) 1.92E−01 3.81E−01 + 2.38E−01 ~ 3.90E−01 + 3.75E−01 +
f13(x) 2.08E+00 2.63E+00 + 2.63E+00 + 2.63E+00 + 3.95E+00 +
f14(x) 9.79E+00 1.03E+01 ~ 1.11E+01 + 9.30E+00 - 1.27E+01 +
f15(x) 9.82E−03 8.33E−02 + 3.36E−01 ~ 8.33E−02 + 6.47E−02 ~
AVG −5.88E−02 5.73E−01 + 1.24E+00 + 2.66E+00 + 3.55E+00 +

Summary
11+
4~
1-

11+
3~
2-

12+
3~
1-

13+
3~
0-

Parameters setting for the algorithms occurs as follows. Virtual and real population size N of the
mentioned algorithms set to 80. The dimension of the solutions space-D is set based on the problem
dimension requirements listed in Table 1. Full iterations for each function are set to 2000. Several runs
for each testing function are set to 25. Some of the subgroups m are set to 2, 4, and 8. An exchanging
period R is established in a loop of 20 times current iterations. The further setting is referenced in
reference [6]. The final results are taking average of the outcomes from all runs.

The compared results of the proposed pcBA with various bats algorithms, e.g., the BA, cBA, and
pBA, are shown in Table 2. A parameter r is a ratio that is a paired comparison between pcBA and
other algorithms respectively, i.e., pcBA and BA, pcBA and cBA, and pcBA and pBA. The other column
values are the mean outcomes of the runs for the functions, respectively. The denoted r is symbols
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of ‘+’ ‘-’ and ‘~’ means the ‘better’ ‘worse’ and ‘approximate’ measurements of the deviation with
respect to their outcomes, respectively. The highlighted numbers are the best results among them in
each function (each row of the table). If the pcBA is better (smaller the value for minimized, or bigger
for maximized problems) than the others: BA, cBA, and pBA, then r is the symbol ‘+’. Similarly, the
symbols “-” and “~” are for the ‘worse’ and ‘approximated’ cases. Visibly, almost all the highlighted
cases belong to pcBA for testing the benchmark functions.

Table 3 compares the performance for fifteen numerical optimization problems of the proposed
pcBA with the other popular metaheuristic algorithms such as DE, PSO, GWO, and GA. The highlighted
numbers are the best results of the obtained average outputs among them in each function.

Table 4 shows the compared performance quality optimization between pcBA and the other
compact algorithms such as cABC, cPFA, cDE, and rcGA. The highlighted numbers are the best results
of the obtained average outputs among them in each function. As observed in Tables 2–4, the most
highlighted number and the symbol “+” of better points belong to the proposed algorithm. That means
the proposed approach offers a competitive algorithm.

Table 4. Comparison of the proposed pcBA with the cABC, cFPA, cDE, and rcGA respectively for
15 test functions.

Functions pcBA cABC r cFPA r cDE r rcGA r

f1(x) 9.25E−01 9.54E−01 ~ 7.39E+00 + 1.51E+00 + 9.44E−01 ~
f2(x) 3.38E+00 2.99E+00 - 1.15E+01 + 4.61E+00 + 1.02E+01 +
f3(x) 1.53E+00 1.51E+00 ~ 6.10E+00 + 4.92E+00 + 7.45E+00 +
f4(x) 3.67E−01 1.53E−01 - 7.94E−01 + 6.98E−01 + 7.99E−01 +
f5(x) 1.17E+01 1.34E+01 + 1.11E+01 ~ 2.23E+01 + 1.76E+01 +
f6(x) 2.15E+00 3.91E+00 + 1.01E+01 + 1.72E+00 - 5.17E+00 +
f7(x) 2.64E+00 8.81E+00 + 2.05E+01 + 5.49E+00 + 7.40E+00 +
f8(x) −4.37E+01 −2.50E+01 + −2.67E+01 ~ −2.38E+01 + −1.25E+01 +
f9(x) 8.57E+01 1.21E+02 + 1.08E+02 + 7.94E+01 - 1.28E+02 +
f10(x) 1.93E+00 1.66E+00 - 3.55E+00 + 1.81E+00 + 3.18E+00 +
f11(x) 4.70E−02 5.93E−02 ~ 3.46E−01 + 9.39E−02 ~ 3.22E−01 +
f12(x) 4.91E−01 9.81E−01 + 1.75E+00 + 8.24E−01 + 1.32E+00 +
f13(x) 2.08E+00 6.93E−01 - 4.67E+00 + 6.07E−01 - 1.95E+00 -
f14(x) 9.79E+00 1.22E+01 + 1.01E+01 + 1.27E+01 + 1.23E+01 +
f15(x) 9.82E−03 2.40E−02 ~ 1.93E+00 + 6.32E−02 ~ 2.75E−02 ~
AVG 5.27E+00 9.55E+00 + 1.14E+01 + 7.52E+00 + 1.23E+01 +

Summary
8+
4~
4-

14+
2~
0-

11+
2~
3-

13+
2~
1-

Figure 2 illustrates the comparison of executing time of the proposed pcBA with the BA, PSO,
GWO, cBA, and pBA algorithms for the first eight functions. Clearly, all cases of the time consumption
for testing functions of the pcBA are smaller than the other algorithms, but the shortest running time
belongs to cBA. The results of the fast processing speed are that some memory-stored parameters of
cBA and pcBA are smaller than the stored solutions in the population-based algorithms.

Figures 3–5 show the compared the best score results of the proposed pcBA with rcGA, cDE,
cABC, cFPA, and cBA for three selected testing functions f7(x), f8(x) and f9(x) over 25 runs outputs
in the same iteration of 2000. Clearly, the cases of these testing functions on the pcBA (indicated red
curve) shows a comparatively faster convergence than other algorithms. It says the accuracy of the
proposed pcBA is improved significantly.
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5. Applied pcBA for Optimally Balanced Energy Consumption

The unbalanced energy consumption in WSN with multihop communications is one that causes
the hotspot problem. The energy consumption of CH nodes closer to BS is increased more than the
others because of the massive traffic flows. In this section, we apply the pcBA for optimally balanced
energy consumption in deployment WSN. We utilize adjustable parameters of loudness of the bats in
BA and a distance coefficient ratio in the objective function for dealing with the mentioned hotspot
issue. The loudness Ai of BA can vary for responding to distances in clustering criterion for unequal
clustering in WSN. The optimized total communication distances from the cluster members to CHs,
and CHs to BS in WSNs provide the saving energy increase. The sequence of experiments consists of
steps: modeling the objective function, describing proper agent representation, setting up a mapping
solution model, and comparing results.

5.1. Objective Function

In designing and deploying sensor networks, a prolonging the lifetime is a core demand.
A crucial factor in extending the WSN lifetime is to reduce the energy consumption of its entire
network. The power consumption of WSNs is affected directly by the clustering criterion problem.
The employed heuristic clustering approaches by evaluating the fitness function is one of the most
efficient ways to deal with this issue. The objective function has also evaluated the WSN performance.
This objective function consists of the mean consumed energy for round t in Equation (8) and the
standard deviation of residual energy in Equation (11). Each sensor node member is connected to
the one closest CH after the CHs are decided. Equation (1) is used to get Et(n)consumed with CH node
(i ε CH, xi = 1) or the non-cluster head node (i ε non−CH, xi = 0).

Minimize F(x) = ω× µ(Econsumed) + (1−ω) × δ(Eres.) (18)

where ω is the weight of average consumed energy and standard deviation of residual energy. Table 5
tabulates an example of the residual energy of round 11–12, and the power consumption of round
11 for the ten node network example. Assuming we get node 4, with the µ(Econsumed) = 0.000204,
µ(Eres.) = 0.4986160, δ(Eres.) = 0.000237, the obtained result of the applied function in Equation (18) is
0.0002205 (with ω is set to 0.5) for the ten nodes network.



Information 2019, 10, 194 15 of 22

Table 5. An example of the residual and consumed energy of 11–12 round of the ten nodes network.

Node i E11(n)res. E11(n)consued E12(n)res.

1 0.4984650 0.000090 0.4983750
2 0.4985640 0.000056 0.4985080
3 0.4984960 0.000070 0.4984260
4 0.4986160 0.000204 0.4984120
5 0.4985520 0.000077 0.4984750
6 0.4985480 0.000079 0.4984690
7 0.4984300 0.000364 0.4980660
8 0.4977127 0.000068 0.4976447
9 0.4985010 0.000074 0.4984270
10 0.4987388 0.000065 0.4986738

5.2. Balancing Load Clusters

The hot spot problem in WSN prevents from figuring out the balancing load based on the layout of
uneven clustering. The partitioned clusters in the network have different sizes. The closer clusters to BS
are the hotter cluster because the traffic relay load of the CHs near BS that suffered heavier than those
CHs are farther away from BS. To avoid this problem, we figure out the adjustable parameters are not
only related to the objective function but are also related to the optimization algorithm. Two possible
coefficients need to be adjusted: the first is changing the distance applied to the objective function,
and the second is adjusting the loudness of the optimization algorithm. For the objective function
of constructing unequal clusters, each CH needs to adjust its equal cluster distances. Let’s Rc be the
distance adjustment factor, used as follows:

dCH j = dCH j ×Rc (19)

where dCH j is the distance from node CHj to the BS, and Rc is a ratio adjusting parameter. This Rc is
calculated as:

Rc =

1− αdmax − dCH j

dmax − dmin
− β

(
1−

Eres.

Emax

)×Rmax (20)

where dmax and dmin are the maximum and minimum distance from the CHs in the network to the
BS; Rmax is the maximum value of competition radius; α is a weighted factor whose value is in [0, 1];
Eres. is the residual energy of CHj. Balancing the load of WSN based on clustering formation by
updating Equation (7), and performing the optimal objective function by Equation (18) with the
assistance of different distances Equations (19) and (20). Figure 6a depts the comparison of the applied
pcBA for balancing energy consumption in WSNs with the BA, PSOTVW, and PSOTVAC approaches.
It is seen that the applied pcBA outstands performance the other approaches in terms of coverage rate.
Additionally, an adjusted distance of CHs to BS is applied to the pcBA for the objective function that
obtained the better than nonadjusted length, as shown in Figure 6b.

For the optimization algorithm, we assigned the variable of loudness Ai of BA as in Equation (5)
to correspond to the radius of the changing cluster size by bias iteration. We expressed the loudness of
BA mathematically the time-varying through the following equation:

A0
i =(Amax−Amin)×

(MaxIteration− Iter)
MaxIteration

+ Amin (21)

where MaxIteration is number of the maximum iteration, Iter is the current time steps, and Amax, Amin
are constants set to 0.5 and 0.25, respectively. The time varying loudness is mathematically represented
in Equation (21) of pcBA for the hot spot problem in WSN. Figure 7a shows the comparison of
some nodes alive for WSNs of advanced pcBA with PSOTVAC, PSOTVIW-WSN, and LEACH
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methods; and Figure 7b depicts the adjusted pcBA-WSN with unadjusted pcBA-WSN for a different
loudness parameter.
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5.3. Structured Model Solution

The model solution is structured as follows: a two-dimensional (x-y axes) coordinate system,
generating nodes randomly with its corresponding coordinates, initial clustering with the binary CHs
property, calculating distances nodes to CH, CHs to BS, and finally optimizing load balancing by
applying pcBA. Table 6 shows an example of the position of nodes in a network area. A modeled WSN
is a graphs G with N nodes distributed randomly in desired areas. A simulated network with N-nodes
(N = 100, 200 . . . ) is also distributed in a 2-D space [0:M, 0:M] (M = 100, 200 . . . ).
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Table 6. A sample of expressing the positions of the sensor nodes.

Index Nodei 1 2 3 4 5 6 7 .. N

x 05 65 95 100 75 60 45 40 .. 10

y 01 5 10 30 15 20 45 60 .. 80

Each node can communicate with others by using r transmission range. Node i can receive the
signal of node j if node i is in the transmission range r of node j.

Table 7 indicates the attribution of existing CHs in the WSN. This is the integer model with a
binary decision variable if CHj = 1, it is the selected CH in WSN, and CHj = 0, otherwise it is the not
selected CH. The initial values of communication energy parameters is referred to in reference [41].

Table 7. The attribution of existing cluster head (CHs) if flag = 1, Node is set to CH, otherwise Node is
configured to member node.

Index Nodei 1 2 3 4 5 6 7 8 .. n

CH i 0 0 0 0 1 0 0 0 .. 0

In the target network, there are N deployed nodes in a n× n grid space where a test platform is
established, where nodes were randomly distributed between (x = 0, y = 0) and (x = n, y = n) with N
set to 100, 200, 300 and 400 node networks. The objective function is in Equation (18) to be repeated in
generations of 2000 by different random seeds with 25 runs. Table 8 displays the initial values of the
parameters for setting the experiment for optimally balancing energy consumption.

Table 8. Initial values of parameters for setting the experiment of optimally balancing energy consumption.

Parameters Noticed Denoted Symbols Initial Values

Initial node energy Ej 0.5 J
Data aggregation energy EDA 5 nJ/bit/signal
Receiving and transmitting energy Efs 10 pJ/bit/m2

Radio electronics energy Eelec 50 nJ/bit
Number bit of a data message l 1024 bit
Amplifier energy Emp 0.013 pJ/bit/m4

Number of nodes in WSN N 100/200/300/nodes
Space distribution M 100/200/300 m
Population size (or virtual size for compact) Pop 40
Iteration (generations) MaxIteration 2000
Maximum of the loudness of BA Amax 0.5
Minimum of the loudness of BA Amin 0.25
Minimum bats’ frequency fmin 0
Maximum bats’ frequency fmax Number of nodes
Bats’ pulse emission r 0.35
Number of runs runs 25
Exchanging time for communication R 25

Figure 8 shows the detailed steps of processing in applied pcBA for balancing load in WSN.
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5.4. Experimental Results

We can figure out the optimization problem by minimizing the objective function in Equation (18).
The experimental results of the applied pcBA are compared with two cases for PSO: the time-varying
inertia weight (PSO-TVIW), and time-varying acceleration coefficients (PSO-TVAC) [21] and the BA [42]
by regarding solution quality and speed. The obtained result is averaged from the outcomes from
all runs. Figure 6a indicates four of the curves of the pcBA −WSN, BA −WSN, PSOTVIW −WSN
and PSOTVAC−WSN methods for minimizing the objective function in Equation (18). Apparently,
pcBA-WSN is as good as BA-WSN and faster than the PSOTVIW-WSN and PSOTVAC-WSN approaches
regarding convergence. With the support of adjustable parameters in Equations (19)–(21), the size
of clusters is varied based on responding to these variables to avoid the unbalanced load problem in
WSNs. Figures 6 and 7 show the results of the efficiently adjusting parameters. Figure 7 compares
the performance qualities in two cases of the selected parameter of loudness of applied pcBA for
adjusted cluster size with none of the selected altered loudness setting. Visibly, the average fitness
values of the pcBA method in the case of adjusting Ai for optimal WSN are better than the regular case
of convergence for removing the hotspot problem.

Table 9 compares the performance quality and running time for optimizing the objective function
Equation (18) in WSNs of four methods of the pcBA −WSN, PSOTVAC −WSN, PSOTVIW −WSN,
and the BA−WSN. Clearly, the average value of pcBA for the objective function is faster than those
obtained by other approaches of PSO. The applied pcBA for optimizing the clustering WSN is not as
different as convergence much of using BA. However, the total time consumption of pcBA method is
fastest at only 2.045 min due to working memory variables being smaller. The obtained results are the
average of the outcomes from all runs and are compared with a variety of versions of BA, and others in
the literature.
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Table 9. The comparison of outcomes and computation time of pcBA-WSN with other methods, e.g.,
BA-WSN, PSO-TVAC, and PSO-TVIW for minimizing objective function.

Methods Pop. Size Iterations/a run Min Max Mean Std. Running
Time (m)

PSO− TVAC [21] 40 2000 5.72E+01 8.41E+02 2.57E+02 2.87E+02 3.01E+00
PSO− TVIW [21] 40 2000 6.80E+01 6.35E+02 2.25E+02 2.83E+02 3.10E+00

BA-WSN [42] 40 2000 6.93E+01 7.57E+02 2.03E+02 2.69E+02 3.26E+00
The applied
pcBA-WSN 1x4 2000 5.65E+01 7.65E+02 2.01E+02 2.32E+02 2.04E+00

In other experiments, the performances of applied pcBA can be compared to previous methods
(LEACH, LEACH-C [24,41], and HEED [43]), as illustrated in Table 10, in which FND and LND are the
first nodes die, and the last nodes die respectively. Apparently, the overall performance of the applied
pcBA results in a longer lifetime of the nodes than other methods.

Table 10. Comparisons of the obtained average of applied pcBA with using other methods for a case of
N = 100 nodes of WSN.

Number of Nodes Methods The Round
at FND

The Round
at LND

Total SMS
Packages

100
(0, 0)

Applied pcBA 4328 4446 439389
HEED [43] 3684 4432 432564

LEACH-C [41] 4140 4272 414937
LEACH [24] 3504 3902 383441

100
(center)

Applied pcBA 4612 6627 654988
HEED [43] 4612 6798 669816

LEACH-C [41] 4308 4333 428438
LEACH [24] 3586 4182 404223

The energy consumption in the network is the majority of CHs. Figure 9 compares the average
residual energy of performance measures for a case of a 100 nodes system of LEACH, LEACH-C,
HEED, and the related pcBA methods. Obviously, the average residual power consumption of applied
pcBA optimized is better than those obtained from LEACH, LEACH-C, HEED, for this network.
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Figure 10 shows the applied pcBA performance for 200 nodes in WSN regarding some nodes alive
in comparison with those obtained from LEACH, LEACH-C, HEED methods. Obviously, the figure of
the proposed pcBA is better than those obtained from LEACH, LEACH-C in both cases of Sink at the
root (0, 0) and at the center.
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Figure 10. Comparison of the number of nodes alive for a configured network with 200 nodes of the
applied pcBA with LEACH, LEACH-C, HEED methods. (a) Comparison of the number of nodes alive
for 200 network nodes of the applied pcBA with LEACH, LEACH-C, HEED methods with Sink at the
root (0, 0); (b) Comparison the number of nodes alive for 200 network nodes of the applied pcBA with
LEACH, LEACH-C, HEED methods with Sink at the center (xmax/2, ymax/2).

6. Conclusions

In this paper, we proposed pcBA, a new optimal method based on a hybrid of the parallel and
compact techniques for the Bats algorithm (BA) for optimization problems and applied it to an energy
balance problem in Wireless sensor networks (WSN). The implementation of hybrid technology shows
significant advantages from each of the test algorithms and achieves improved collaboration in the
optimization algorithm. These methods avoid the optimum local issue in compound constrained
optimization problems and allow fast convergence and memory saving. Additionally, we improved the
compacting technique by using a controlling weight for adjusting the balance of the probability vector,
and we enhanced the parallel techniques by making a communication strategies dynamic. In the
simulation section, a set of the selected optimization problems and balanced energy consumption
methods in WSNs are used to evaluate the accuracy, executing the time and the saving memory
variable of the proposed algorithm. The compared results with BA and the other algorithms in the
literature show that the proposed algorithm outperforms its competitors. Also, for balancing the
energy consumption problem in WSNs, the result indicates that the proposed approach provides an
effective way of utilizing the saving memory variable.
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