
 information

Article

Multi-PQTable for Approximate
Nearest-Neighbor Search

Xinpan Yuan 1 , Qunfeng Liu 2, Jun Long 2,* , Lei Hu 2 and Songlin Wang 1

1 School of Computer, Hunan University of Technology, Zhuzhou 412000, China; xpyuan@hut.edu.cn (X.Y.);
WangSL110@163.com (S.W.)

2 School of Computer Science and Engineering, Central South University, Changsha 410083, China;
qunfengliu@csu.edu.cn (Q.L.); hudalei@csu.edu.cn (L.H.)

* Correspondence: jlong@csu.edu.cn; Tel.: +86-0731-8253-9926

Received: 26 April 2019; Accepted: 28 May 2019; Published: 1 June 2019
����������
�������

Abstract: Image retrieval or content-based image retrieval (CBIR) can be transformed into the
calculation of the distance between image feature vectors. The closer the vectors are, the higher
the image similarity will be. In the image retrieval system for large-scale dataset, the approximate
nearest-neighbor (ANN) search can quickly obtain the top k images closest to the query image, which
is the Top-k problem in the field of information retrieval. With the traditional ANN algorithms, such as
KD-Tree, R-Tree, and M-Tree, when the dimension of the image feature vector increases, the computing
time will increase exponentially due to the curse of dimensionality. In order to reduce the calculation
time and improve the efficiency of image retrieval, we propose an ANN search algorithm based
on the Product Quantization Table (PQTable). After quantizing and compressing the image feature
vectors by the product quantization algorithm, we can construct the image index structure of the
PQTable, which speeds up image retrieval. We also propose a multi-PQTable query strategy for ANN
search. Besides, we generate several nearest-neighbor vectors for each sub-compressed vector of the
query vector to reduce the failure rate and improve the recall in image retrieval. Through theoretical
analysis and experimental verification, it is proved that the multi-PQTable query strategy and the
generation of several nearest-neighbor vectors are greatly correct and efficient.

Keywords: image retrieval; ANN; product quantization; mutil-PQTable

1. Introduction

With the rapid development of mobile internet and social multimedia, images and videos are
growing explosively every day. How to quickly and accurately obtain similar images in large-scale
image dataset has become a hot and difficult topic for multimedia researchers. Image retrieval or
content-based image retrieval (CBIR) can be transformed into calculating the distance of their feature
vectors. The closer the feature vectors are, the higher the similarity of the image is. In traditional
machine learning, the main methods of extracting image features are Scale-Invariant Feature Transform
(SIFT) [1,2], Speeded Up Robust Features (SURF) [3,4], GIST descriptors [5,6], Fisher Vector [7],
Vector of Locally Aggregated Descriptors (VLAD) [8,9]. In deep learning, the main methods include
Convolutional Neural Network (CNN) [10,11], Siamese Network [12–14], Triplet Network [15–17].
However, the image feature vectors extracted by these methods are all high-dimensional. It is difficult
to satisfy the performance requirement directly through brute search or linear scanning. In order to
reduce the computing time, the approximate nearest-neighbor (ANN) search becomes feasible.

In the image retrieval system for large-scale image dataset, when the dimension of the image feature
vector increases, the computing time will increase exponentially due to the curse of dimensionality.
The traditional ANN algorithms, such as KD-Tree [18], R-Tree [19], and M-Tree [20], perform poorly

Information 2019, 10, 190; doi:10.3390/info10060190 www.mdpi.com/journal/information

http://www.mdpi.com/journal/information
http://www.mdpi.com
https://orcid.org/0000-0001-9509-0755
https://orcid.org/0000-0003-0163-0007
http://dx.doi.org/10.3390/info10060190
http://www.mdpi.com/journal/information
https://www.mdpi.com/2078-2489/10/6/190?type=check_update&version=2

Information 2019, 10, 190 2 of 17

when dealing with high-dimensional image feature vectors. Their performance is not even as good
as that of linear search [21]. The locally sensitive hashing (LSH) algorithm solves the problem of
high-dimensional vector search from another angle. It encodes high-dimensional vectors into a
fixed-length hash code through a series of hashing functions and calculates the similarity between
images quickly by hamming distance [22,23], while it does not make full use of the data itself during
the construction of hashing functions and the generation of hashing codes. If the hashing algorithm
wants to obtain a high retrieval accuracy, the length of the hash code needs to be long enough. This will
reduce the collision probability of similar samples during random transformation and reduce the
recall rate.

Recently, Herve Jegou et al. proposed the product quantization (PQ) algorithm for nearest
neighbor search [24]. PQ is a popular and successful method to compress a high-dimensional vector
into a short code (e.g., 32 bit). Meanwhile, PQ can quickly calculate the approximate distance between
the original vector and the compressed code by symmetric distance computation (SDC) or asymmetric
distance computation (ADC). Under the same compression ratio, the retrieval accuracy of the PQ
algorithm is higher than that of the hashing algorithm. After the PQ algorithm was proposed, a series
of related quantization algorithms were developed to improve the computing speed and accuracy for
ANN search, such as, the Optimized Product Quantization (OPQ) [25,26], Locally Optimized Product
Quantization (LOPQ) [27], Stacked Quantization (SQ) [28,29], and Additive Quantization (AQ) [30]
algorithms. Besides, some research work has been performed about how to parallelize the image
retrieving process [31,32].

Inspired by the successes of the PQ and its extensions for ANN search, our main contributions are
as follows:

1. We propose a product quantization table (PQTable) algorithm on the basis of the PQ algorithm,
according to the ability of the Hash Table to quickly find the required content. This algorithm can
implement a non-exhaustive approximate nearest-neighbor search algorithm, aiming at quickly
and accurately retrieving the vector candidate sets in a large-scale dataset.

2. We also propose a multi-PQTable query strategy for ANN search. Besides, we generate several
nearest-neighbor vectors for each sub-compressed vector of the query vector to reduce the failure
rate and improve the recall in image retrieval.

The rest of the paper is organized as follows: Section 2 discusses the product quantization
algorithm. Section 3 describes the multi-PQTable in detail. Section 4 verifies the correctness and
efficiency of the algorithm through experiments. Section 5 gives conclusions.

2. Product Quantization

In 2011, Herve Jegou et al. proposed a PQ algorithm based on vector quantization (VQ). The PQ
algorithm speeds up image retrieval in large-scale image datasets. In the PQ algorithm, the product
refers to the cartesian product, and the quantization refers to vector quantization.

Given a set X and a set Y, their cartesian product is also a set composed of all the ordered pairs
from the set X and the set Y, which can be recorded as X × Y:

X ×Y =
{
(x, y)

∣∣∣x ∈ X ∧ y ∈ Y
}

(1)

Let X = [x1, x2, . . . , xD], X ∈ RD, where X represents a D-dimension vector. The quantization
process for the vector X can be expressed as:

q(X) ∈ C = {ci|i = 1, 2, 3, . . . , k} (2)

where q(.) denotes a quantization function, the set C represents a codebook of length k, and the element
ci is a codeword or centroid.

Information 2019, 10, 190 3 of 17

In the process of vector quantization, the quantization error e(x) is usually expressed by the
minimum mean-square error, as shown in Equation (3). The smaller the mean-square error, the better
the quantization performance.

e(x) = min‖q(x) − x‖2 (3)

The PQ algorithm decomposes a high-dimensional vector into several low-dimensional vectors
and constructs their Cartesian product. Then, the PQ algorithm quantizes and compresses these
low-dimensional vectors separately through the K-means algorithm. The product quantization process
for the vector X is shown as in Equation (4).

x1, . . . , xD∗︸ ︷︷ ︸
u1(x)

, . . . , xD−D∗+1, . . . , xD︸ ︷︷ ︸
uM(x)

q1(u1(x)), . . . , qM(uM(x))

(4)

The process in detail is as follows:

(1) Uniformly split the vector X into M distinct sub-vectors uj(x), 1 ≤ j ≤M. The dimension of the
sub-vector is D* and D* = D/M, where D is a multiple of M. Therefore, the vector X can be seen as
a series of sub-vectors, and X = [u1(x), u2(x), . . . uM(x)].

(2) Each sub-vector is quantized and compressed by the K-means algorithm, and the corresponding
codebook set Cj is obtained.

(3) The Codebook C of the vector X is the Cartesian product generated from all the set Cj, and C = C1

× C2 × · · · × CM.

After quantizing the vector, product quantization provides two methods for quickly calculating
the distance of vectors: SDC and ADC, as shown in Figure 1.

Information 2019, 10, 190 3 of 18

In the process of vector quantization, the quantization error e(x) is usually expressed by the
minimum mean-square error, as shown in Equation (3). The smaller the mean-square error, the better
the quantization performance.

() () 2
e x min q x x= − (3)

The PQ algorithm decomposes a high-dimensional vector into several low-dimensional vectors
and constructs their Cartesian product. Then, the PQ algorithm quantizes and compresses these low-
dimensional vectors separately through the K-means algorithm. The product quantization process
for the vector X is shown as in Equation (4).

* *

1

1 1

() ()

1 1

 ,..., ,..., ,...,

 (()),..., (())
M

DD D D

u x u x

M M

x x x x

q u x q u x

− +
 (4)

The process in detail is as follows:

(1) Uniformly split the vector X into M distinct sub-vectors uj(x), 1 ≤ j ≤ M. The dimension of the
sub-vector is D* and D* = D/M, where D is a multiple of M. Therefore, the vector X can be seen
as a series of sub-vectors, and 𝑋 = [𝑢 𝑥 , 𝑢 𝑥 , … 𝑢 𝑥].

(2) Each sub-vector is quantized and compressed by the K-means algorithm, and the corresponding
codebook set Cj is obtained.

(3) The Codebook C of the vector X is the Cartesian product generated from all the set Cj, and C =
C1 × C2 × ⋯ × CM.

After quantizing the vector, product quantization provides two methods for quickly calculating
the distance of vectors: SDC and ADC, as shown in Figure 1.

y q(y)

x q(x)

y q(y)

x

Figure 1. Symmetric distance computation and asymmetric distance computation.

SDC: the vector x and the vector y can be represented by their corresponding centroids q(x) and
q(y). The distance D(x, y) between vector x and vector y can be approximated to the distance
D(q(x),q(y)) between their centroids q(x) and q(y). That is to say, 𝐷 𝑥, 𝑦 ≈ 𝐷 𝑞 𝑥 , 𝑞 𝑦 , as shown in
Equation (5).

() () ()() () ()()2
, , y ,

M

j j
j

D x y D q x q D q x q y≈ = (5)

where D(x, y) denotes the Euclidean distance between the vector x and the vector y. D(qj(x),qj(y))2 can
be quickly obtained from the lookup table according to the index value of the j-th sub-quantizer. The
lookup table contains the square of the distance between all the sub-quantizer centroids.

ADC: this method only needs to represent the vector y with its centroid q(y). The distance D(x,
y) between the vector x and the vector y can be approximated to the distance D(x, q(y)). That is, 𝐷 𝑥, 𝑦 ≈ 𝐷 𝑥, 𝑞 𝑦 , as shown in Equation (6).

Figure 1. Symmetric distance computation and asymmetric distance computation.

SDC: the vector x and the vector y can be represented by their corresponding centroids q(x) and
q(y). The distance D(x, y) between vector x and vector y can be approximated to the distance D(q(x), q(y))
between their centroids q(x) and q(y). That is to say, D(x, y) ≈ D(q(x), q(y)), as shown in Equation (5).

D(x, y) ≈ D(q(x), q(y)) =

√√√√ M∑
j

D
(
q j(x), q j(y)

)2
(5)

where D(x, y) denotes the Euclidean distance between the vector x and the vector y. D(qj(x), qj(y))2

can be quickly obtained from the lookup table according to the index value of the j-th sub-quantizer.
The lookup table contains the square of the distance between all the sub-quantizer centroids.

Information 2019, 10, 190 4 of 17

ADC: this method only needs to represent the vector y with its centroid q(y). The distance
D(x, y) between the vector x and the vector y can be approximated to the distance D(x, q(y)). That is,
D(x, y) ≈ D(x, q(y)), as shown in Equation (6).

D(x, y) ≈ D(x, q(y)) =

√√√√ M∑
j

D
(
u j(x), q j

(
u j(y)

))2
(6)

3. Multi-PQTable for ANN Search

This section detailly introduces the multi-PQTable for ANN search. Section 3.1 briefly describes
how to convert image retrieval into distance calculation between feature vectors. Section 3.2 records
the PQTable algorithm, mainly including the process of constructing the PQTable and vector search.
Section 3.3 describes the multi-PQTable query strategy in detail.

3.1. Problem Description

Given a query image Iq and the image dataset I = {I1, I2, . . . , IN}, N represents the size of the dataset.
The target of the ANN search is to quickly obtain the top-k images, namely, the candidate dataset

Y = {Y1, Y2, . . . , Yk}, which are closest to the query image Iq from the dataset I. The image retrieval task
can be transformed into vector retrieval, as shown in Figure 2. The specific steps of image retrieval are
as follows:

(1) Extract the features for the query image Iq and for the image dataset I by feature extraction tools
such as SIFT, GIST, CNN, and so on. Correspondingly obtain the image feature vector Q = [q1, q2,
. . . , qn] and the image feature dataset X = {X1, X2, . . . , XN}, where Q is the feature vector of the
query image Iq, Xi = [xi1, xi2, . . . , xiD], and D is the dimension of the feature vector.

(2) Obtain the top-k vector candidate subsets Sc = {S1, S2, . . . , Sk} through calculating and sorting
according to the query vector Q.

(3) Correspondingly obtain the top-k image candidate sub-dataset Y = {Y1, Y2, . . . , Yk} via the linking
relationship between the vectors and the images.

Information 2019, 10, 190 4 of 18

() ()() () ()()()2
, x, y ,

M

j j j
j

D x y D q D u x q u y≈ = (6)

3. Multi-PQTable for ANN Search

This section detailly introduces the multi-PQTable for ANN search. Section 3.1 briefly describes
how to convert image retrieval into distance calculation between feature vectors. Section 3.2 records
the PQTable algorithm, mainly including the process of constructing the PQTable and vector search.
Section 3.3 describes the multi-PQTable query strategy in detail.

3.1. Problem Description

Given a query image Iq and the image dataset I = {I1, I2, …, IN}, N represents the size of the dataset.
The target of the ANN search is to quickly obtain the top-k images, namely, the candidate dataset

Y = {Y1, Y2, …, Yk}, which are closest to the query image Iq from the dataset I. The image retrieval task
can be transformed into vector retrieval, as shown in Figure 2. The specific steps of image retrieval
are as follows:

(1) Extract the features for the query image Iq and for the image dataset I by feature extraction tools
such as SIFT, GIST, CNN, and so on. Correspondingly obtain the image feature vector Q = [q1,
q2, …, qn] and the image feature dataset X = {X1, X2, …, XN}, where Q is the feature vector of the
query image Iq, Xi = [xi1, xi2, …, xiD], and D is the dimension of the feature vector.

(2) Obtain the top-k vector candidate subsets Sc = {S1, S2, …, Sk} through calculating and sorting
according to the query vector Q.

(3) Correspondingly obtain the top-k image candidate sub-dataset Y = {Y1, Y2, …, Yk} via the linking
relationship between the vectors and the images.

X1=[x11, x12, ..., x1D]

X2=[x21, x22, ..., x2D]

XN=[xN1, xN2, ..., xND]

...

Q=[q1, q2, ..., qD]

...

...

Pixel MatrixImage Feature Extraction Feature Vector

Distance Calculation

Top k

Vector Retrieval

Image Y1

Image Y2

Image Yk

Sc={S1, S2, … , Sk}

SIFT/GIST/CNN

Image Iq

SIFT/GIST/CNN

Image X1

SIFT/GIST/CNN

Image X2

SIFT/GIST/CNN

Image XN

... ...

Sort

Candidate Dataset

Link

Figure 2. The image retrieval task is transformed into vector retrieval.

According to the PQ algorithm, the computational cost of SDC and ADC is O(KD + NM), which
is fast for small N and still linear in N. However, when N is very large, the calculation time is still
long. In order to further reduce the computation time and improve the retrieval efficiency, this paper
proposes a product PQTable algorithm on the basis of PQ algorithm, according to the ability of the
Hash Table to quickly find the required content. This algorithm can implement a non-exhaustive
approximate nearest-neighbor search algorithm, aiming at quickly and accurately retrieving the
vector candidate sets in massive databases.

3.2. PQTable Algorithm

Figure 2. The image retrieval task is transformed into vector retrieval.

According to the PQ algorithm, the computational cost of SDC and ADC is O(KD + NM), which
is fast for small N and still linear in N. However, when N is very large, the calculation time is still
long. In order to further reduce the computation time and improve the retrieval efficiency, this paper
proposes a product PQTable algorithm on the basis of PQ algorithm, according to the ability of the
Hash Table to quickly find the required content. This algorithm can implement a non-exhaustive

Information 2019, 10, 190 5 of 17

approximate nearest-neighbor search algorithm, aiming at quickly and accurately retrieving the vector
candidate sets in massive databases.

3.2. PQTable Algorithm

The main idea of the PQTable algorithm is to construct the vector index structure of the PQTable,
after quantizing and compressing the vector by the PQ algorithm. The PQTable algorithm can quickly
obtain the candidate sets through a look-up table. In the process of vector quantization and compression,
it is assumed that the number of clustering centers of the K-means algorithm is K.

Given a vector dataset X = {X1, X2, . . . , XN}, Xi ∈ RD, Xi =
[
X1

i , X2
i , . . . , XM

i

]
. PQ(Xi) represents

the product quantization process of vector Xi, as shown in Equation (7).

Xi → PQ(Xi) =
[
PQ

(
X1

i

)
, PQ

(
X2

i

)
, . . . , PQ

(
XM

i

)]
(7)

where Xi ∈ RD, X j
i ∈ RD/M, 1 ≤ i ≤ N, 1 ≤ j ≤M.

Each sub-vector X j
i has K choices during quantization and compression. After the set X is quantized

and compressed by the product quantization algorithm, we can create an L × M two-dimensional
product quantization table (PQTable), as shown in Figure 3, where L = KM.

Information 2019, 10, 190 5 of 18

The main idea of the PQTable algorithm is to construct the vector index structure of the PQTable,
after quantizing and compressing the vector by the PQ algorithm. The PQTable algorithm can quickly
obtain the candidate sets through a look-up table. In the process of vector quantization and
compression, it is assumed that the number of clustering centers of the K-means algorithm is K.

Given a vector dataset X = {X1, X2, …, XN}, Xi ∈ RD, Xi = [𝑋 , 𝑋 , . . . , 𝑋]. PQ(Xi) represents the
product quantization process of vector Xi, as shown in Equation (7).

() () () ()1 2, ,..., M
i i i i iX PQ X PQ X PQ X PQ X → = (7)

where Xi ∈ RD, 𝑋 ∈ RD/M, 1 ≤ i ≤ N, 1 ≤ j ≤ M.
Each sub-vector 𝑋 has K choices during quantization and compression. After the set X is

quantized and compressed by the product quantization algorithm, we can create an L × M two-
dimensional product quantization table (PQTable), as shown in Figure 3, where L = KM.

X1

X2

Xi

...

XN

...

ID11 ID12 ...
ID21 ID22 ...

IDi1 IDi2 ...

ID.. ID.. ...

...

124 135 168 … 190 190 … 253

54 122 35 … 74 82 … 97

54 122 35 … 74 82 … 97

14 43 58 … 39 67 … 103

Identifier

... ...

M

0 0 0 … 0 0 … 0

0 0 0 … 0 0 … 1

… … … … … … … …

14 43 58 … 39 67 … 103

… … … … … … … …

54 122 35 … 74 82 … 97

… … … … … … … …

124 135 168 … 141 199 … 226

… … … … … … … …

K-1 K-1 K-1 … K-1 K-1 … K-1

PQ

PQTableThe Compressed Vector

Figure 3. The process of constructing the product quantization table (PQTable).

The vector retrieval process in the PQTable is shown in Figure 4. The steps of vector retrieval in
detail are as follows: Firstly, each sub-vector of the query vector Q is quantized by the quantizers q =
{q1, q2, …, qm}, and we can obtain a compression vector PQ(Q), where the quantizers come from the
quantization process of set X. Then, we can use the compression vector PQ(Q) to search in the
PQTable. Finally, we can quickly get the candidate set according to the mapping relationship between
the original vector and the compressed vector.

Figure 3. The process of constructing the product quantization table (PQTable).

The vector retrieval process in the PQTable is shown in Figure 4. The steps of vector retrieval
in detail are as follows: Firstly, each sub-vector of the query vector Q is quantized by the quantizers
q = {q1, q2, . . . , qm}, and we can obtain a compression vector PQ(Q), where the quantizers come from
the quantization process of set X. Then, we can use the compression vector PQ(Q) to search in the
PQTable. Finally, we can quickly get the candidate set according to the mapping relationship between
the original vector and the compressed vector.

Information 2019, 10, 190 6 of 17
Information 2019, 10, 190 6 of 18

M

Search

PQTable

Q

ID11 ID12 ...

ID21 ID22 ...

IDi1 IDi2 ...

ID.. ID.. ...

Candidate Set

...

Identifier

54 122 35 … 74 82 … 97

... ...

...
PQ

X
PQ

0 0 0 … 0 0 … 0

0 0 0 … 0 0 … 1

… … … … … … … …

14 43 58 … 39 67 … 103

… … … … … … … …
54 122 35 … 74 82 … 97

… … … … … … … …

124 135 168 … 141 199 … 226

… … … … … … … …

K-1 K-1 K-1 … K-1 K-1 … K-1

Figure 4. The process of vector retrieval in the PQTable.

3.3. Multi-PQTable Query Strategy

The PQTable is a two-dimensional table with the size of L×M, where L = KM. The computational
cost of retrieval vectors in PQTable is O(LM), and the computational cost of the PQ algorithm is O(KD
+ NM) ≈ O(NM). When N = 1 × 109, K = 256 = 28, M = 8, L = KM = (28)M = 256M = 2568 = 1.84 × 1019, there
is obviously L >> N. Thus, their computing time is sorted as O(LM) >> O(NM). In other words, the
PQTable increases the computational time of vector retrieval. When L >> N, the identifiers in the
PQTable are mostly empty and sparse, which easily leads to retrieval failure.

In order to solve these problems, this article proposes a PQTable query strategy and generates
several nearest-neighbor vectors.

1. The Multi-PQTable Query Strategy

We divide the compressed vector into T sub-compressed vectors whose size is M* = M/T. Then,
we construct a sub-quantized table for each sub-compressed vector. In this way, we can get T sub-
PQTables, and the size of the table is L* × M*, where L* = KM*. When searching via the query vector Q,
the compression vector PQ(Q) is also divided into T sub-compression vectors, namely, PQ(Q) =
[subPQ(Q)1, subPQ(Q)2, …, subPQ(Q)T]. Then, we query the subPQ(Q)t in the subPQTablet and get the
corresponding candidate set 𝑆 , where 1 ≤ t ≤ T. Finally, we union the T candidate sets and obtain
the final candidate set SC, as shown in Equation (8).

1 2 t T
C C C C CS S S S S= (8)

When T = 2, M* = M/T = M/2, there is L* = KM* = (28)M/2 = (24)M = 16M = 168 = 4.2 × 109. When T = 4,
M* = M/T = M/4, there is L* = KM* = (28)M/4 = (22)M = 4M = 48 = 65,536. Apparently, L* << L, and O(L*M)
<< O(LM). According to the above analysis, it is found that the multi-PQTable query strategy greatly
reduces the computational time and effectively improves the speed of vector retrieval. When T = 2,
the process of the PQTable query strategy is as shown in Figure 5.

Figure 4. The process of vector retrieval in the PQTable.

3.3. Multi-PQTable Query Strategy

The PQTable is a two-dimensional table with the size of L×M, where L = KM. The computational
cost of retrieval vectors in PQTable is O(LM), and the computational cost of the PQ algorithm is O(KD
+ NM) ≈ O(NM). When N = 1 × 109, K = 256 = 28, M = 8, L = KM = (28)M = 256M = 2568 = 1.84 × 1019,
there is obviously L >> N. Thus, their computing time is sorted as O(LM) >> O(NM). In other words,
the PQTable increases the computational time of vector retrieval. When L >> N, the identifiers in the
PQTable are mostly empty and sparse, which easily leads to retrieval failure.

In order to solve these problems, this article proposes a PQTable query strategy and generates
several nearest-neighbor vectors.

1. The Multi-PQTable Query Strategy

We divide the compressed vector into T sub-compressed vectors whose size is M* = M/T.
Then, we construct a sub-quantized table for each sub-compressed vector. In this way, we can get T
sub-PQTables, and the size of the table is L* ×M*, where L* = KM*. When searching via the query
vector Q, the compression vector PQ(Q) is also divided into T sub-compression vectors, namely,
PQ(Q) = [subPQ(Q)1, subPQ(Q)2, . . . , subPQ(Q)T]. Then, we query the subPQ(Q)t in the subPQTablet

and get the corresponding candidate set St
C, where 1 ≤ t ≤ T. Finally, we union the T candidate sets and

obtain the final candidate set SC, as shown in Equation (8).

SC = S1
C ∪ S2

C ∪ · · · ∪ St
C ∪ · · · ∪ ST

C (8)

When T = 2, M* = M/T = M/2, there is L* = KM* = (28)M/2 = (24)M = 16M = 168 = 4.2 × 109.
When T = 4, M* = M/T = M/4, there is L* = KM* = (28)M/4 = (22)M = 4M = 48 = 65,536. Apparently,
L* << L, and O(L*M) << O(LM). According to the above analysis, it is found that the multi-PQTable
query strategy greatly reduces the computational time and effectively improves the speed of vector
retrieval. When T = 2, the process of the PQTable query strategy is as shown in Figure 5.

Information 2019, 10, 190 7 of 17
Information 2019, 10, 190 7 of 18

subPQTable 1Q

ID11 ID12 ...
ID21 ID22 ...

IDi1 IDi2 ...

ID.. ID.. ...

...

0 0 0 …

0 0 0 …

… … … …

14 43 58 …

… … … …

54 122 35 …

… … … …

124 135 168 …

… … … …

K K K …

0 0 … 0

0 0 … 1

… … … …

39 67 … 103
… … … …

74 82 … 97

… … … …

141 199 … 226

… … … …

K K … K

subPQTable 2

PQ

...

Search

54 122 35 …

74 82 … 97
ID11 ID12 ...
ID21 ID22 ...

IDi1 IDi2 ...

ID.. ID.. ...

...

...

M/T,T=2

Identifier

Identifier

Search

Split

1
CS

2
CS

Figure 5. Process of the PQTable query strategy when T = 2.

2. Generating Several Nearest-Neighbor Vectors

Based on the multi-PQTable query strategy, this paper generates several nearest-neighbor
vectors (NNV) for each sub-compressed vector subPQ(Q)t of the query vector Q. The purpose is to
reduce the failure rate and improve the recall rate. The specific steps for generating several neighbor
vectors are as follows:

(1) Creating a generator table. We define K* − 1 as the largest parameter and create a two-
dimensional generator table with a size of U × V, where K is a positive integer, and K* << K, U =
K*M*, V = M*, M* = M/T. We sequentially fill the table with integers from 0 to K* − 1 and get a
generator table (GenTable).

(2) Generating several nearest-neighbor vectors. Each subPQ(Q)t is added and subtracted to every
row data in the GenTable. Then, we can get the corresponding nearest-neighbor vector set
(NNVS).

(3) Filtering the elements in nearest-neighbor vectors. We validate each vector in the NNVS and
filter out the vectors whose elements are less than zero. Finally, we get the final NNVS.

When K* = 4, M* = 4, subPQ(Q)t = [54,122,35,63], U = 44 = 64, V = 4; the process of generating NNVS
is shown in Figure 6. The generating nearest-neighbor vector set (genNNVS) algorithm is shown in
Algorithm 1.

Algorithm 1. The input of the algorithm includes the generator table GenTable[U][V] and the sub-
compression vector subPQ[V]. The output is the nearest-neighbor vector set NNVS. Lines 3–10 shows
that each subPQ(Q)t is added and subtracted to every row data in the GenTable. Combining lines 7–
9 with lines 12–14, we obtain that the algorithm filters out the vectors whose elements are less than
zero.

Algorithm 1 Generating Nearest-Neighbor Vector Set (genNNVS).

Figure 5. Process of the PQTable query strategy when T = 2.

2. Generating Several Nearest-Neighbor Vectors

Based on the multi-PQTable query strategy, this paper generates several nearest-neighbor vectors
(NNV) for each sub-compressed vector subPQ(Q)t of the query vector Q. The purpose is to reduce the
failure rate and improve the recall rate. The specific steps for generating several neighbor vectors are
as follows:

(1) Creating a generator table. We define K* − 1 as the largest parameter and create a two-dimensional
generator table with a size of U × V, where K is a positive integer, and K* << K, U = K*M*, V = M*,
M* = M/T. We sequentially fill the table with integers from 0 to K* − 1 and get a generator table
(GenTable).

(2) Generating several nearest-neighbor vectors. Each subPQ(Q)t is added and subtracted to every
row data in the GenTable. Then, we can get the corresponding nearest-neighbor vector set (NNVS).

(3) Filtering the elements in nearest-neighbor vectors. We validate each vector in the NNVS and filter
out the vectors whose elements are less than zero. Finally, we get the final NNVS.

When K* = 4, M* = 4, subPQ(Q)t = [54,122,35,63], U = 44 = 64, V = 4; the process of generating
NNVS is shown in Figure 6. The generating nearest-neighbor vector set (genNNVS) algorithm is shown
in Algorithm 1.

Algorithm 1. The input of the algorithm includes the generator table GenTable[U][V] and the
sub-compression vector subPQ[V]. The output is the nearest-neighbor vector set NNVS. Lines 3–10
shows that each subPQ(Q)t is added and subtracted to every row data in the GenTable. Combining
lines 7–9 with lines 12–14, we obtain that the algorithm filters out the vectors whose elements are less
than zero.

Information 2019, 10, 190 8 of 17

Algorithm 1: Generating Nearest-Neighbor Vector Set (genNNVS).

Input:
GenTable[U][V], subPQ[V]

Output:
NNVS

1: for i <= U do
2: Flag = true;
3: for j <= V do
4: V0[j] = subPQ [j] + GenTable[i][j];
5: V1[j] = subPQ [j] − GenTable[i][j];
6: if V1[j] < 0 then
7: flag = false;
8: end if
9: end for
10: NNVS add V0;
11: if flag == true then
12: NNVS add V1;
13: end if
14: end for

Information 2019, 10, 190 8 of 18

Input:
 GenTable[U][V], subPQ[V]
Output:
 NNVS
 1: for i <= U do
 2: Flag = true;
 3: for j <= V do
 5: V0[j] = subPQ [j] + GenTable[i][j];
 6: V1[j] = subPQ [j] − GenTable[i][j];
 7: if V1[j] < 0 then
 8: flag = false;
 9: end if
10: end for
11: NNVS add V0;
12: if flag == true then
13: NNVS add V1;
14: end if
15: end for

Q PQ 54 122 35 63

74 82 42 97

Add

Subtract

GenTable (K*=4、M*=4)

M*=4,T=2

54 122 35 64

54 122 35 62

56 122 36 66

52 122 34 60

57 125 38 66

51 119 32 60

54 122 35 63

0 0 0 0

0 0 0 1

0 0 0 2

0 0 0 3

0 0 1 0

… … … …

2 0 1 3

… … … …

3 3 3 3

...

...

NNVS

Split

Figure 6. Process of generating NNVS when K* = 4, M* = 4, subPQ(Q)t = [54,122,35,63].

3. Implementation of the Multi-PQTable Query Strategy

Given the query vector Q and the vector dataset X = {X1, X2, …, XN}, the process of quickly
obtaining the candidate set SC through the multi-PQTable is shown in Figure 7. Besides, the
approximate nearest-neighbor search algorithm based on the multi-PQTable is shown in Algorithm
2.

Figure 6. Process of generating NNVS when K* = 4, M* = 4, subPQ(Q)t = [54,122,35,63].

3. Implementation of the Multi-PQTable Query Strategy

Given the query vector Q and the vector dataset X = {X1, X2, . . . , XN}, the process of quickly
obtaining the candidate set SC through the multi-PQTable is shown in Figure 7. Besides, the approximate
nearest-neighbor search algorithm based on the multi-PQTable is shown in Algorithm 2.

Algorithm 2. The input of the algorithm includes the candidate set size k, the query vector Q,
the generator table GenTable[U][V], and T subPQTables, where subPQTables = {subPQTable1, subPQTable2,
. . . , subPQTableT}. The output is the candidate set SCk, whose size is k. Line 1 indicates that the query
vector q is quantized and compressed by the PQ algorithm. Line 2 indicates that the compressed vector
PQ(Q) is split into T sub-compressed vectors, i.e., subPQs = {subPQ1[V], subPQ2[V], . . . , subPQT[V]}.
Line 5 represents the generating NNVS for each sub-compressed vector subPQt[V]. Lines 6–10 describe
that the algorithm searches all vector in the subPQTablet and gets the corresponding candidate set
St

C, where 1 ≤ t ≤ T. Line 13 indicates that the algorithm obtains the final candidate set SCk through
calculating similarity and sorting for their original vectors. The algorithm can also set the similarity
threshold (e.g., α = 0.5) in advance and only add the vector whose similarity is greater than the
threshold to the candidate set SCk.

Information 2019, 10, 190 9 of 17

Algorithm 2: The Approximate Nearest-Neighbor (ANN) Search Algorithm based on the Multi-PQTable

Input:
k, Q, GenTable[U][V], subPQTables = {subPQTable1, subPQTable2, . . . , subPQTableT}

Output:
SCk

1: PQ(Q);
2: subPQs = {subPQ1[V], subPQ2[V], . . . , subPQT[V]};
3: while t <= T do
4: t = t + 1;
5: NNVSt = genNNVS(GenTable[U][V], subPQt[V]);
6: foreach vector ∈ NNVS do
7: IDs←search vector in subPQTablest;
8: sc←obtain the vector set through IDs;
9: SC

t = SC
t
∪sc;

10: end foreach
11: SC = SC∪SC

t;
12: end while
13: SCk = SC;
14: size←get size of SC;
15: if size > k then
16: SCk←calculate similarity and sort;
17: end if

Information 2019, 10, 190 9 of 18

subPQTable 1

subPQTable T

54 122 … …

… 74 63 …

… … 42 97

subPQ(Q) 1

subPQ(Q) 2

subPQ(Q) T

...

...
...

0 0 … 1

0 0 … 2

… … … …

54 122 … …

… … … …

K-1 K-1 … K-2

K-1 K-1 … K-1

0 0 … 1

0 0 … 2

… … … …

… 74 63 …

… … … …

K-1 K-1 … K-2

K-1 K-1 … K-1

0 0 … 1

0 0 … 2

… … … …

… … 42 97

… … … …

K-1 K-1 … K-2

K-1 K-1 … K-1

subPQTable 2

...

Search

Search

54 122 … …

54+(K*-1) 122+(K*-1) … …

54-(K*-1) 122-(K*-1) … …

… 74 63 …

… 74+(K*-1) 63+(K*-1) …

… 74-(K*-1) 63-(K*-1) …

...

… … 42 97

… … 42+(K*-1) 97+(K*-1)

… … 42-(K*-1) 97-(K*-1)

...

NNVS 1M*

Search

SC
1

SC
2

SC
T

...

SCk

Union
and
Sort

NNVS 2

NNVS T

Figure 7. The process of obtaining the candidate set SC through the multi-PQTable.

Algorithm 2. The input of the algorithm includes the candidate set size k, the query vector Q,
the generator table GenTable[U][V], and T subPQTables, where subPQTables = {subPQTable1,
subPQTable2, …, subPQTableT}. The output is the candidate set SCk, whose size is k. Line 1 indicates that
the query vector q is quantized and compressed by the PQ algorithm. Line 2 indicates that the
compressed vector PQ(Q) is split into T sub-compressed vectors, i.e., subPQs = {subPQ1[V], subPQ2[V],
…, subPQT[V]}. Line 5 represents the generating NNVS for each sub-compressed vector subPQt[V].
Lines 6–10 describe that the algorithm searches all vector in the subPQTablet and gets the
corresponding candidate set 𝑆 , where 1 ≤ t ≤ T. Line 13 indicates that the algorithm obtains the final
candidate set SCk through calculating similarity and sorting for their original vectors. The algorithm
can also set the similarity threshold (e.g., α = 0.5) in advance and only add the vector whose similarity
is greater than the threshold to the candidate set SCk.

Algorithm 2: The Approximate Nearest-Neighbor (ANN) Search Algorithm based on the Multi-

PQTable

Input:

 k, Q, GenTable[U][V], subPQTables = {subPQTable1, subPQTable2, …, subPQTableT}

Output:

 SCk

 1: PQ(Q);

 2: subPQs={subPQ1[V], subPQ2[V], …, subPQT[V]};

 3: while t <= T do

 4: t = t + 1;

 5: NNVSt = genNNVS(GenTable[U][V], subPQt[V]);

Figure 7. The process of obtaining the candidate set SC through the multi-PQTable.

4. Experiments and Analysis

This section verifies the correctness and efficiency of the algorithm model through experiments.
Section 4.1 briefly describes the experimental settings, including the experimental dataset and the
network model for extracting image features. Section 4.2 introduces in detail the experimental results
of the ANN search algorithm based on the multi-PQTable.

Information 2019, 10, 190 10 of 17

4.1. Experimental Settings

In our previous research work, we proposed the Triplet Spatial Pyramid Pooling Network
(TSPP-Net) through combing the triplet convolution neural network with the spatial pyramid
pooling [33], which can process any size images without cutting or scaling, as shown in Figure 8.
The network model improves the generalization ability of the network and the accuracy of the image
similarity measurement.

Information 2019, 10, 190 10 of 18

 6: foreach vector ∈ NNVS do

 7: IDs←search vector in subPQTablest;

 8: sc←obtain the vector set through IDs;

 9: SCt = SCt∪sc;

10: end foreach

11: SC = SC∪SCt;

12: end while

13: SCk = SC;

14: size←get size of SC;

15: if size > k then

16: SCk←calculate similarity and sort;

17: end if

4. Experiments and Analysis

This section verifies the correctness and efficiency of the algorithm model through experiments.
Section 4.1 briefly describes the experimental settings, including the experimental dataset and the
network model for extracting image features. Section 4.2 introduces in detail the experimental results
of the ANN search algorithm based on the multi-PQTable.

4.1. Experimental Settings

In our previous research work, we proposed the Triplet Spatial Pyramid Pooling Network
(TSPP-Net) through combing the triplet convolution neural network with the spatial pyramid
pooling Error! Reference source not found., which can process any size images without cutting or

Improved
Triplet
Loss

Branch1:CNN+SPP-Net

Branch2: CNN+SPP-Net

Branch3: CNN+SPP-Net

Share Weights

Anchor

Positive

Negative
F(N)

Share Weights

F(A)

F(P)

Figure 8. The construction of the Triplet Spatial Pyramid Pooling Network (TSPP-Net).

Besides, we improved the original learning target and proposed a new learning goal, as shown
in Figure 9. The new goal can achieve twice the distance learning, including minimizing the distance
between an anchor and a positive, maximizing the distance between an anchor and a negative, and
maximizing the distance between a positive and a negative.

Figure 8. The construction of the Triplet Spatial Pyramid Pooling Network (TSPP-Net).

Besides, we improved the original learning target and proposed a new learning goal, as shown in
Figure 9. The new goal can achieve twice the distance learning, including minimizing the distance
between an anchor and a positive, maximizing the distance between an anchor and a negative, and
maximizing the distance between a positive and a negative.Information 2019, 10, 190 11 of 18

Anchor

Negative

Positive

Anchor

Negative

Positive

Learning

Figure 9. The improved learning goal of the Triple Network.

On the basis of the original triple loss function and the new distance learning goals, we easily
developed the improved triplet loss function, as shown in Equation (9). Compared with the original
triple loss function, the improved triple loss function can realize twice the distance learning only
through a triple sample.

() () (){ }
() (){ }

1, , , , , , ,0

1 , , , 0

N
a P n a p a n

i i i i
i

N
p a p n

i i i i
i

L x x x max D x x D x x
N

max D x x D x x
N

α β α

β

= − +

+ − +

 (9)

In this paper, we also use the TSPP-Net model to extract image features from Caltech 101 dataset
and obtain the corresponding image feature vectors. We analyze the effect and performance of the
multi-PQTable algorithm in the approximate nearest-neighbor search of the image. However, the
Caltech 101 dataset only contains 9146 images, which approximately corresponds to 1 × 104 levels.
Therefore, we randomly select an image from the MNIST dataset and obtain a one-dimensional pixel
matrix. We add some random factors into the one-dimensional pixel matrix and repeat them three
times to synthesize a three-dimensional pixel matrix. We input the three-dimensional pixel matrix
into the TSPP-Net model and get the corresponding feature vectors. After repeating the process for 1
× 109 times, we can make the scale of image feature vectors reach 100 million levels. Since the image
in MNIST is quite different from the image in Caltech 101, the above operation has no effect on the
result of image retrieval. At the same time, we quantize and compress vectors through PQ, OPQ, and
LOPQ and then construct the corresponding multi-PQTables.

Figure 9. The improved learning goal of the Triple Network.

On the basis of the original triple loss function and the new distance learning goals, we easily
developed the improved triplet loss function, as shown in Equation (9). Compared with the original
triple loss function, the improved triple loss function can realize twice the distance learning only
through a triple sample.

L
(
xa, xP, xn,α, β

)
= 1

N

N∑
i

max
{
D
(
xa

i , xp
i

)
−D

(
xa

i , xn
i

)
+ α, 0

}
+ 1

N

N∑
i

max
{
D
(
xp

i , xa
i

)
−D

(
xp

i , xn
i

)
+ β, 0

} (9)

In this paper, we also use the TSPP-Net model to extract image features from Caltech 101 dataset
and obtain the corresponding image feature vectors. We analyze the effect and performance of the
multi-PQTable algorithm in the approximate nearest-neighbor search of the image. However, the
Caltech 101 dataset only contains 9146 images, which approximately corresponds to 1 × 104 levels.
Therefore, we randomly select an image from the MNIST dataset and obtain a one-dimensional pixel
matrix. We add some random factors into the one-dimensional pixel matrix and repeat them three
times to synthesize a three-dimensional pixel matrix. We input the three-dimensional pixel matrix
into the TSPP-Net model and get the corresponding feature vectors. After repeating the process for

Information 2019, 10, 190 11 of 17

1 × 109 times, we can make the scale of image feature vectors reach 100 million levels. Since the image
in MNIST is quite different from the image in Caltech 101, the above operation has no effect on the
result of image retrieval. At the same time, we quantize and compress vectors through PQ, OPQ, and
LOPQ and then construct the corresponding multi-PQTables.

4.2. Experimental Results

In this paper, we mainly confirm the validity and efficiency of the approximate nearest-neighbor
search based on the multi-PQTable algorithm by the mean average precision (mAP), the precision rate
varying with recall rate, the average retrieval time, and the image retrieval examples. The results and
analysis of the experiment are as follows:

1. Mean Average Precision

We refer to the relevant vector quantization algorithms, i.e., PQ [24], OPQ [25,26], LOPQ [27] and
we set a series of multi-PQTable parameters: K-means clustering center K= 256, size of the compression
vector M = 8, number of sub-PQTable T = 2, 4, variable of the generator table K* = 0, 2, 4. In the
multi-PQTable query strategy, we calculate the mAP on the basis of the results of image retrieval.
The experimental results are shown in Figure 10. In particular, the original PQ, OPQ, and LOPQ do not
have multi-PQTable query strategies.

Information 2019, 10, 190 12 of 18

4.2. Experimental Results

In this paper, we mainly confirm the validity and efficiency of the approximate nearest-neighbor
search based on the multi-PQTable algorithm by the mean average precision (mAP), the precision
rate varying with recall rate, the average retrieval time, and the image retrieval examples. The results
and analysis of the experiment are as follows:

1. Mean Average Precision

We refer to the relevant vector quantization algorithms, i.e., PQ 24, OPQ[25,26], LOPQ 27 and
we set a series of multi-PQTable parameters: K-means clustering center K= 256, size of the
compression vector M = 8, number of sub-PQTable T = 2, 4, variable of the generator table K* = 0, 2,
4. In the multi-PQTable query strategy, we calculate the mAP on the basis of the results of image
retrieval. The experimental results are shown in Figure 10. In particular, the original PQ, OPQ, and
LOPQ do not have multi-PQTable query strategies.

(a) The original quantization algorithm and the number of sub-PQTables T = 2. OPQ: Optimized

Product Quantization, LOPQ: Locally Optimized Product Quantization.

(b) The number of sub-PQTables T = 4.

Figure 10. The mean average precision (mAP) of the multi-PQTable query strategy varies with the variable K*
of the generator table.

As can be seen from the Figure 10, compared with the original PQ, OPQ, and LOPQ, as the
number T of the sub-PQTable increases, the mAP of the image retrieval also gradually increases. This
shows that the more the sub-PQTables, the lower the index sparseness, the lower the image retrieval
failure, the better the image retrieval effect. At the same time, when the variable K* of the generator

50

55

60

65

70

75

80

85

90

95

Original Algorithm T=2, K*=0 T=2, K*=2 T=2, K*=4

m
A

P(
%

)

PQ OPQ LOPQ

50

55

60

65

70

75

80

85

90

95

T=4, K*=0 T=4, K*=2 T=4, K*=4

m
A

P(
%

)

PQ OPQ LOPQ

Figure 10. The mean average precision (mAP) of the multi-PQTable query strategy varies with the
variable K* of the generator table.

Information 2019, 10, 190 12 of 17

As can be seen from the Figure 10, compared with the original PQ, OPQ, and LOPQ, as the number
T of the sub-PQTable increases, the mAP of the image retrieval also gradually increases. This shows
that the more the sub-PQTables, the lower the index sparseness, the lower the image retrieval failure,
the better the image retrieval effect. At the same time, when the variable K* of the generator table
increases, the set of neighbor vectors generated by the generator table also increases gradually, and
the mAP of image retrieval also increases gradually. When the parameters T and K* are the same, the
image retrieval effect of the original vector quantization algorithm is LOPQ > OPQ > PQ, and the
image retrieval effect based on the PQTable algorithm is LOPQ > OPQ > PQ. This shows that LOPQ is
more advantageous than OPQ and PQ in the approximate nearest-neighbor search.

2. Precision Rate Varying with the Recall Rate

According to the image retrieval results of PQ, OPQ, and LOPQ and their corresponding
multi-PQTable algorithms, we calculate the precision rate varying with the recall rate. The experimental
results are shown in Figures 11 and 12.

Information 2019, 10, 190 13 of 18

table increases, the set of neighbor vectors generated by the generator table also increases gradually,
and the mAP of image retrieval also increases gradually. When the parameters T and K* are the same,
the image retrieval effect of the original vector quantization algorithm is LOPQ > OPQ > PQ, and the
image retrieval effect based on the PQTable algorithm is LOPQ > OPQ > PQ. This shows that LOPQ
is more advantageous than OPQ and PQ in the approximate nearest-neighbor search.

2. Precision Rate Varying with the Recall Rate

According to the image retrieval results of PQ, OPQ, and LOPQ and their corresponding multi-
PQTable algorithms, we calculate the precision rate varying with the recall rate. The experimental
results are shown in Figures 11 and 12.

Figure 11. The precision of the original quantization algorithms varies with the recall rate.

(A) T = 2, K* = 0 (a) T = 4, K* = 0

(B) T = 2, K* = 2 (b) T = 4, K* = 2

0

0.2

0.4

0.6

0.8

1

0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1

Pr
ec

isi
on

Recall

PQ

OPQ

LOPQ

0

0.2

0.4

0.6

0.8

1

0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1

Pr
ec

isi
on

Recall

PQTable

OPQTable

LOPQTable

0

0.2

0.4

0.6

0.8

1

0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1

Pr
ec

isi
on

Recall

PQTable

OPQTable

LOPQTable

0

0.2

0.4

0.6

0.8

1

0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1

Pr
ec

isi
on

Recall

PQTable

OPQTable

LOPQTable

0

0.2

0.4

0.6

0.8

1

0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1

Pr
ec

isi
on

Recall

PQTable

OPQTable

LOPQTable

Figure 11. The precision of the original quantization algorithms varies with the recall rate.

Information 2019, 10, 190 13 of 18

table increases, the set of neighbor vectors generated by the generator table also increases gradually,
and the mAP of image retrieval also increases gradually. When the parameters T and K* are the same,
the image retrieval effect of the original vector quantization algorithm is LOPQ > OPQ > PQ, and the
image retrieval effect based on the PQTable algorithm is LOPQ > OPQ > PQ. This shows that LOPQ
is more advantageous than OPQ and PQ in the approximate nearest-neighbor search.

2. Precision Rate Varying with the Recall Rate

According to the image retrieval results of PQ, OPQ, and LOPQ and their corresponding multi-
PQTable algorithms, we calculate the precision rate varying with the recall rate. The experimental
results are shown in Figures 11 and 12.

Figure 11. The precision of the original quantization algorithms varies with the recall rate.

(A) T = 2, K* = 0 (a) T = 4, K* = 0

(B) T = 2, K* = 2 (b) T = 4, K* = 2

0

0.2

0.4

0.6

0.8

1

0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1

Pr
ec

isi
on

Recall

PQ

OPQ

LOPQ

0

0.2

0.4

0.6

0.8

1

0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1

Pr
ec

isi
on

Recall

PQTable

OPQTable

LOPQTable

0

0.2

0.4

0.6

0.8

1

0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1

Pr
ec

isi
on

Recall

PQTable

OPQTable

LOPQTable

0

0.2

0.4

0.6

0.8

1

0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1

Pr
ec

isi
on

Recall

PQTable

OPQTable

LOPQTable

0

0.2

0.4

0.6

0.8

1

0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1

Pr
ec

isi
on

Recall

PQTable

OPQTable

LOPQTable

Figure 12. Cont.

Information 2019, 10, 190 13 of 17
Information 2019, 10, 190 14 of 18

(C) T = 2, K* = 4 (c) T = 4, K* = 4

Figure 12. The precision of the multi-PQTable algorithms varies with the recall rate.

From Figure 11, in the original quantization algorithms, PQ decreases relatively faster than OPQ
and LOPQ, which indicates that the accuracy of PQ is greatly affected by the recall rate. According
to the small graphs (A), (B), (C) or (a), (b), (c) in Figure 12, in the multi-PQTable query strategy, as the
generator table parameter K* increases gradually, the set of nearest-neighbor vectors generated by
the generator table increases gradually, and the curve decreases slowly, which shows that the
accuracy is less and less affected by the recall rate. As can be seen from the small graphs (A) and (a),
(B) and (b), (C) and (c), when the recall rate and the parameter K* are the same, the larger the number
T of sub-PQTables is, the harder the sparsity is, and the higher the precision rate of image retrieval
is. In addition, when the recall rate and the parameters K* and T are the same, the precision rate of
image retrieval is LOPQ >OPQ >PQ. It also shows that LOPQ has better effects and advantages than
OPQ and PQ in approximate nearest-neighbor search.

3. Average Retrieval Time

In the process of image retrieval, we also calculate the average retrieval time. The experimental
results are shown in Table 1.

Table 1. Mean Average Precision.

No. Parameter Settings
Average Retrieval Time (×103/ms)

PQ OPQ LOPQ
1 Original Algorithm 14.29 14.23 14.16
2 T = 2, K* = 0 45.93 45.86 45.77
3 T = 2, K* = 2 63.56 62.95 62.84
4 T = 2, K* = 4 217.69 198.31 197.92
5 T = 4, K* = 0 0.004 0.002 0.003
6 T = 4, K* = 2 0.012 0.008 0.009
7 T = 4, K* = 4 0.21 0.16 0.17

From the sequence numbers 1, 2, and 5, it can be found that when T = 2, the average retrieval
time of the multi-PQTable algorithms is greater than that of the original vector quantization
algorithm. However, when T = 4, the average retrieval time of the multi-PQTable algorithms is much
smaller than that of the original vector quantization algorithm, being reduced by about 3500 times. It
shows that when T is very small, the multi-PQTable algorithms have no practical effect. Only when
T(T < M) is large enough can the retrieval time be reduced and the retrieval efficiency improved.
When the parameters T and K* are the same, there is no significant difference in the average retrieval
time between PQ, OPQ, LOPQ and their corresponding multi-PQTable algorithms.

0

0.2

0.4

0.6

0.8

1

0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1

Pr
ec

isi
on

Recall

PQTable

OPQTable

LOPQTable

0

0.2

0.4

0.6

0.8

1

0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1

Pr
ec

isi
on

Recall

PQTable

OPQTable

LOPQTable

Figure 12. The precision of the multi-PQTable algorithms varies with the recall rate.

From Figure 11, in the original quantization algorithms, PQ decreases relatively faster than OPQ
and LOPQ, which indicates that the accuracy of PQ is greatly affected by the recall rate. According to
the small graphs (A), (B), (C) or (a), (b), (c) in Figure 12, in the multi-PQTable query strategy, as the
generator table parameter K* increases gradually, the set of nearest-neighbor vectors generated by the
generator table increases gradually, and the curve decreases slowly, which shows that the accuracy
is less and less affected by the recall rate. As can be seen from the small graphs (A) and (a), (B) and
(b), (C) and (c), when the recall rate and the parameter K* are the same, the larger the number T of
sub-PQTables is, the harder the sparsity is, and the higher the precision rate of image retrieval is.
In addition, when the recall rate and the parameters K* and T are the same, the precision rate of image
retrieval is LOPQ > OPQ > PQ. It also shows that LOPQ has better effects and advantages than OPQ
and PQ in approximate nearest-neighbor search.

3. Average Retrieval Time

In the process of image retrieval, we also calculate the average retrieval time. The experimental
results are shown in Table 1.

Table 1. Mean Average Precision.

No. Parameter Settings
Average Retrieval Time (×103/ms)

PQ OPQ LOPQ

1 Original Algorithm 14.29 14.23 14.16
2 T = 2, K* = 0 45.93 45.86 45.77
3 T = 2, K* = 2 63.56 62.95 62.84
4 T = 2, K* = 4 217.69 198.31 197.92
5 T = 4, K* = 0 0.004 0.002 0.003
6 T = 4, K* = 2 0.012 0.008 0.009
7 T = 4, K* = 4 0.21 0.16 0.17

From the sequence numbers 1, 2, and 5, it can be found that when T = 2, the average retrieval
time of the multi-PQTable algorithms is greater than that of the original vector quantization algorithm.
However, when T = 4, the average retrieval time of the multi-PQTable algorithms is much smaller
than that of the original vector quantization algorithm, being reduced by about 3500 times. It shows
that when T is very small, the multi-PQTable algorithms have no practical effect. Only when T(T < M)
is large enough can the retrieval time be reduced and the retrieval efficiency improved. When the
parameters T and K* are the same, there is no significant difference in the average retrieval time
between PQ, OPQ, LOPQ and their corresponding multi-PQTable algorithms.

From the sequence numbers 2, 3, and 4 or 5, 6, and 7, as the parameter K* of the generator table
increases, the retrieval time will also increase. The main reason is that when the parameter K* increases,

Information 2019, 10, 190 14 of 17

the size of the nearest-neighbor vector set increases, which leads to the increase of the retrieval time.
According to the curves of precision and recall in Figures 11 and 12, the larger the parameter K* is, the
less the precision rate is affected by the recall rate, and the better the image retrieval effect is, but the
longer the average retrieval time is. Therefore, in the actual application process, we need to choose
reasonable parameters and balance the retrieval effect and retrieval time, so as to achieve the best
performance of the retrieval system.

4. Image Retrieval Examples

We selected three categories from the Caltech101 dataset, i.e., airplane, sunflower, and face, and
randomly selected an image from these three categories as the query target. We cn obtained the top
10 images from the search results, and the retrieval examples are shown in Figure 13. We extract
the image feature vectors through the TSPP-Net model and then construct the index structure of the
multi-PQTable correspondingly after quantizing and compressing the vectors. In the approximate
nearest-neighbor search, we can quickly and successfully retrieve images with similar content or
same categories.

Information 2019, 10, 190 15 of 18

From the sequence numbers 2, 3, and 4 or 5, 6, and 7, as the parameter K* of the generator table
increases, the retrieval time will also increase. The main reason is that when the parameter K*
increases, the size of the nearest-neighbor vector set increases, which leads to the increase of the
retrieval time. According to the curves of precision and recall in Figures 11 and 12, the larger the
parameter K* is, the less the precision rate is affected by the recall rate, and the better the image
retrieval effect is, but the longer the average retrieval time is. Therefore, in the actual application
process, we need to choose reasonable parameters and balance the retrieval effect and retrieval time,
so as to achieve the best performance of the retrieval system.

4. Image Retrieval Examples

We selected three categories from the Caltech101 dataset, i.e., airplane, sunflower, and face, and
randomly selected an image from these three categories as the query target. We cn obtained the top
10 images from the search results, and the retrieval examples are shown in Figure 13. We extract the
image feature vectors through the TSPP-Net model and then construct the index structure of the
multi-PQTable correspondingly after quantizing and compressing the vectors. In the approximate
nearest-neighbor search, we can quickly and successfully retrieve images with similar content or
same categories.

(a) airplane

(b) sunflow

Figure 13. Cont.

Information 2019, 10, 190 15 of 17
Information 2019, 10, 190 16 of 18

(c) face

Figure 13. The top 10 images from the search results.

5. Conclusions

In this paper, we propose an approximate nearest-neighbor search algorithm based on the
PQTable. After quantizing and compressing the image feature vectors by the product quantization
algorithm, we can construct the image index structure of the PQTable, which speeds up image
retrieval. We also propose a multi-PQTable query strategy for ANN search. Besides, we generate
several nearest-neighbor vectors for each sub-compressed vector of the query vector to reduce the
failure rate and improve the recall in image retrieval. Through theoretical analysis and experimental
verification, it is proved that the multi-PQTable query strategy and the generation of several nearest-
neighbor vectors are greatly correct and efficient. Meanwhile, we use the multi-PQTable algorithms
for image retrieval and design image similarity detection systems. In the image similarity detection
process for the National Natural Science Foundation project, the system can quickly and accurately
detect images with similar contents. The system is extremely stable and achieves our desired results.

The vector quantization algorithms, such as PQ, OPQ, LOPQ, can obtain low-dimensional
codebooks by quantizing and compressing high-dimensional vectors and achieve good performances
in approximate-nearest neighbor search. However, there are some quantization errors in the process
of vector quantization and compression via the K-means clustering algorithm. Therefore, how to
combine deep learning with vector quantization algorithms to learn the distribution of data and
obtain a more accurate codebook is a hot topic that needs further research in the future.

Author Contributions: Conceptualization, X.Y. and Q.L.; formal analysis, J.L. and Q.L.; funding acquisition, J.L.;
investigation, Q.L.; methodology, J.L. and Q.L.; project administration, X.Y. and Q.L.; software, X.Y. and Q.L.;
supervision, X.Y.; validation, L.H; visualization, X.Y.; writing (original draft), Q.L. and S.W.; writing (review and
editing), Q.L.

Funding: This work was supported in part by the National Natural Science Foundation of China (61402165,
61702560), the Key Research Program of Hunan Province (2016JC2018, 2018GK2052), the Natural Science
Foundation of Hunan Province (2018JJ2099).

Conflicts of Interest: The authors declare no conflict of interest.

Figure 13. The top 10 images from the search results.

5. Conclusions

In this paper, we propose an approximate nearest-neighbor search algorithm based on the PQTable.
After quantizing and compressing the image feature vectors by the product quantization algorithm,
we can construct the image index structure of the PQTable, which speeds up image retrieval. We also
propose a multi-PQTable query strategy for ANN search. Besides, we generate several nearest-neighbor
vectors for each sub-compressed vector of the query vector to reduce the failure rate and improve the
recall in image retrieval. Through theoretical analysis and experimental verification, it is proved that
the multi-PQTable query strategy and the generation of several nearest-neighbor vectors are greatly
correct and efficient. Meanwhile, we use the multi-PQTable algorithms for image retrieval and design
image similarity detection systems. In the image similarity detection process for the National Natural
Science Foundation project, the system can quickly and accurately detect images with similar contents.
The system is extremely stable and achieves our desired results.

The vector quantization algorithms, such as PQ, OPQ, LOPQ, can obtain low-dimensional
codebooks by quantizing and compressing high-dimensional vectors and achieve good performances
in approximate-nearest neighbor search. However, there are some quantization errors in the process of
vector quantization and compression via the K-means clustering algorithm. Therefore, how to combine
deep learning with vector quantization algorithms to learn the distribution of data and obtain a more
accurate codebook is a hot topic that needs further research in the future.

Author Contributions: Conceptualization, X.Y. and Q.L.; formal analysis, J.L. and Q.L.; funding acquisition, J.L.;
investigation, Q.L.; methodology, J.L. and Q.L.; project administration, X.Y. and Q.L.; software, X.Y. and Q.L.;
supervision, X.Y.; validation, L.H; visualization, X.Y.; writing (original draft), Q.L. and S.W.; writing (review and
editing), Q.L.

Funding: This work was supported in part by the National Natural Science Foundation of China (61402165,
61702560), the Key Research Program of Hunan Province (2016JC2018, 2018GK2052), the Natural Science
Foundation of Hunan Province (2018JJ2099).

Conflicts of Interest: The authors declare no conflict of interest.

Information 2019, 10, 190 16 of 17

References

1. Lowe, D.G. Distinctive Image Features from Scale-Invariant Keypoints. Int. J. Comput. Vis. 2004, 60, 91–110.
[CrossRef]

2. Figat, J.; Kornuta, T.; Kasprzak, W. Performance Evaluation of Binary Descriptors of Local Features.
In Proceedings of the International Conference on Computer Vision and Graphics, Warsaw, Poland, 15–17
September 2014; pp. 187–194.

3. Bay, H.; Tuytelaars, T.; Gool, L.V. SURF: Speeded Up Robust Features. In European Conference on Computer
Vision; Springer: Berlin/Heidelberg, Germany, 2006; pp. 404–417.

4. Boulkenafet, Z.; Komulainen, J.; Hadid, A. Face Antispoofing Using Speeded-Up Robust Features and Fisher
Vector Encoding. IEEE Signal Process. Lett. 2017, 24, 141–145.

5. Oliva, A.; Torralba, A. Modeling the Shape of the Scene: A Holistic Representation of the Spatial Envelope.
Int. J. Comput. Vis. 2001, 42, 145–175. [CrossRef]

6. Oliva, A.; Torralba, A. Building the gist of a scene: The role of global image features in recognition.
Prog. Brain Res. 2006, 155, 23–36. [PubMed]

7. Sánchez, J.; Redolfi, J. Exponential family Fisher vector for image classification. Pattern Recognit. Lett. 2015,
59, 26–32. [CrossRef]

8. Jégou, H.; Douze, M.; Schmid, C.; Pérez, P. Aggregating local descriptors into a compact image representation.
In Proceedings of the IEEE Conference on Computer Vision & Pattern Recognition, San Francisco, CA, USA,
13–18 June 2010.

9. Amato, G.; Bolettieri, P.; Falchi, F.; Gennaro, C. Large Scale Image Retrieval Using Vector of Locally Aggregated
Descriptors. In International Conference on Similarity Search & Applications; Springer: Berlin/Heidelberg,
Germany, 2013.

10. Sun, P.X.; Lin, H.T.; Luo, T. Learning discriminative CNN features and similarity metrics for image retrieval.
In Proceedings of the IEEE International Conference on Signal Processing, Communications and Computing,
Hong Kong, China, 5–8 August 2016.

11. Fu, R.; Li, B.; Gao, Y.; Wang, P. Content-based image retrieval based on CNN and SVM. In Proceedings of the
IEEE International Conference on Computer and Communications, Chengdu, China, 14–17 October 2016;
pp. 638–642.

12. Melekhov, I.; Kannala, J.; Rahtu, E. Siamese network features for image matching. In Proceedings of the
International Conference on Pattern Recognition, Cancun, Mexico, 4–8 December 2016; pp. 378–383.

13. Appalaraju, S.; Chaoji, V. Image Similarity Using Deep CNN and Curriculum Learning. arXiv 2017,
arXiv:1709.08761.

14. Li, Y.; Miao, Z.; Wang, J.; Zhang, Y. Deep binary constraint hashing for fast image retrieval. Electron. Lett.
2018, 54, 25–27. [CrossRef]

15. Hoffer, E.; Ailon, N. Deep Metric Learning Using Triplet Network. In Similarity-Based Pattern Recognition;
Springer: Berlin/Heidelberg, Germany, 2015; pp. 84–92.

16. Schroff, F.; Kalenichenko, D.; Philbin, J. FaceNet: A unified embedding for face recognition and clustering.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12
June 2015; pp. 815–823.

17. Liu, Y.; Chao, H. Scene Classification via Triplet Networks. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
2018, 11, 220–237. [CrossRef]

18. Kumar, Y.S.; Pavithra, N. KD-Tree approach in sketch based image retrieval. In Proceedings of the
International Conference on Mining Intelligence and Knowledge Exploration, Hyderabad, India, 9–11
December 2015; pp. 247–258.

19. Kao, B.; Lee, S.D.; Lee, F.K.; Cheung, D.W.; Ho, W.S. Clustering Uncertain Data Using Voronoi Diagrams and
R-Tree Index. IEEE Trans. Knowl. Data Eng. 2010, 22, 1219–1233.

20. Viet, H.H.; Anh, D.T. M-tree as an index structure for time series data. In Proceedings of the International
Conference on Computing, Management and Telecommunications, Ho Chi Minh City, Vietnam, 21–24
January 2013; pp. 146–151.

21. Wieschollek, P.; Wang, O.; Sorkine-Hornung, A.; Lensch, H. Efficient Large-scale Approximate Nearest
Neighbor Search on the GPU. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, Las Vegas, NV, USA, 27–30 June 2017; pp. 2027–2035.

http://dx.doi.org/10.1023/B:VISI.0000029664.99615.94
http://dx.doi.org/10.1023/A:1011139631724
http://www.ncbi.nlm.nih.gov/pubmed/17027377
http://dx.doi.org/10.1016/j.patrec.2015.03.010
http://dx.doi.org/10.1049/el.2017.3620
http://dx.doi.org/10.1109/JSTARS.2017.2761800

Information 2019, 10, 190 17 of 17

22. Amsaleg, L. Locality sensitive hashing: A comparison of hash function types and querying mechanisms.
Pattern Recognit. Lett. 2010, 31, 1348–1358.

23. Abdulhayoglu, M.A.; Thijs, B. Use of locality sensitive hashing (LSH) algorithm to match Web of Science and
Scopus. Scientometrics 2018, 116, 1229–1245. [CrossRef]

24. Jégou, H.; Douze, M.; Schmid, C. Product Quantization for Nearest Neighbor Search. IEEE Trans. Pattern
Anal. Mach. Intell. 2011, 33, 117–128. [CrossRef]

25. Ge, T.; He, K.; Ke, Q.; Sun, J. Optimized Product Quantization for Approximate Nearest Neighbor Search.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Portland, OR, USA,
23–28 June 2013; pp. 2946–2953.

26. Ge, T.; He, K.; Ke, Q.; Sun, J. Optimized Product Quantization. IEEE Trans. Pattern Anal. Mach. Intell. 2014,
36, 744–755. [CrossRef]

27. Kalantidis, Y.; Avrithis, Y. Locally Optimized Product Quantization for Approximate Nearest Neighbor Search.
Available online: http://openaccess.thecvf.com/content_cvpr_2014/papers/Kalantidis_Locally_Optimized_
Product_2014_CVPR_paper.pdf (accessed on 15 May 2018).

28. Martinez, J.; Hoos, H.H.; Little, J.J. Stacked Quantizers for Compositional Vector Compression. arXiv 2014,
arXiv:1411.2173.

29. Wang, J.; Li, Z.; Du, Y.; Qu, W. Stacked Product Quantization for Nearest Neighbor Search on Large Datasets.
In Proceedings of the IEEE Trustcom, Tianjin, China, 23–26 August 2016; pp. 787–795.

30. Babenko, A.; Lempitsky, V. Additive Quantization for Extreme Vector Compression. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014;
pp. 931–938.

31. Yuan, X.; Liu, Q.; Long, J.; Hu, L.; Wang, Y. Deep Image Similarity Measurement based on the Improved
Triplet Network with Spatial Pyramid Pooling. Information 2019, 10, 129. [CrossRef]

32. Hu, F.; Zhu, Z.; Mejia, J.; Tang, H.; Zhang, J. Real-time indoor assistive localization with mobile omnidirectional
vision and cloud GPU acceleration. AIMS Electron. Electr. Eng. 2017, 1, 74–99. [CrossRef]

33. Bing, Z.; Xin-xin, Y.A. A content-based parallel image retrieval system. In Proceedings of the International
Conference on Computer Design and Applications (ICCDA), Qinhuangdao, China, 25–27 June 2010;
pp. 332–336.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s11192-017-2569-6
http://dx.doi.org/10.1109/TPAMI.2010.57
http://dx.doi.org/10.1109/TPAMI.2013.240
http://openaccess.thecvf.com/content_cvpr_2014/papers/Kalantidis_Locally_Optimized_Product_2014_CVPR_paper.pdf
http://openaccess.thecvf.com/content_cvpr_2014/papers/Kalantidis_Locally_Optimized_Product_2014_CVPR_paper.pdf
http://dx.doi.org/10.3390/info10040129
http://dx.doi.org/10.3934/ElectrEng.2017.1.74
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Product Quantization
	Multi-PQTable for ANN Search
	Problem Description
	PQTable Algorithm
	Multi-PQTable Query Strategy

	Experiments and Analysis
	Experimental Settings
	Experimental Results

	Conclusions
	References

