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Abstract: In this contribution, a gain adaptation for sliding mode control (SMC) is proposed that
uses both linear model predictive control (LMPC) and an estimator-based disturbance compensation.
Its application is demonstrated with an electromagnetic actuator. The SMC is based on a second-order
model of the electric actuator, a direct current (DC) drive, where the current dynamics and the
dynamics of the motor angular velocity are addressed. The error dynamics of the SMC are stabilized
by a moving horizon MPC and a Kalman filter (KF) that estimates a lumped disturbance variable.
In the application under consideration, this lumped disturbance variable accounts for nonlinear
friction as well as model uncertainty. Simulation results point out the benefits regarding a reduction
of chattering and a high control accuracy.

Keywords: sliding mode control; model predictive control; adaptive control; disturbance
estimation; actuators

1. Introduction and Literature Review

1.1. Adaptive Sliding Mode Control and Model Predictive Control

While belonging to perhaps the most robust and versatile control strategies, sliding mode control
(SMC) tends to suffer from high energy consumption and high-frequency oscillations in system inputs,
states or even outputs, which certainly is to be avoided in tracking problems. Currently, many remedies
have been proposed and successfully realized to deal with these problems. A very important one is
the so-called boundary layer approach, see e.g., [1], which introduces a permissible region around
the sliding surface. This layer is characterized by its thickness, inside which no switching of the
control input takes place. Another frequently applied approach to chattering reduction is higher-order
SMC [2], which can also be combined with a boundary layer concept [3]. Nevertheless, powerful
alternatives exist towards a model-based or signal-based adaptation of the switching amplitudes.
A model-based approach is shown in [4], where model reference adaptive control (MRAC) is employed
to adjust the SMC gain in an application of a brushless direct current (DC) motor. The signal-based
approaches discussed in the literature are generally based on integral-type scheduling rules, typically
case distinctions depending on a norm or an absolute value of the sliding surface, see e.g., [5,6].
The contribution at hand looks at an innovative model-based adaptation. Thanks to countermeasures
like these against chattering, SMC is suitable to be widely used in industry. In the context of drive
applications, for example, it has even been used to reduce torque ripple [7].
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Model predictive control (MPC) still constitutes a developing research field in the context of
machines and drives, though many applications already use such control strategies, e.g., in [8] for
a permament magnet synchronous machine (PMSM) or in [9] and in [10] for a DC drive. The MPC
approach takes into account model-based predictions and determines the control inputs by minimizing
a cost function. However, compared to classical controllers like proportional-integral-derivative (PID)
control, this method from the field of optimal control requires a relatively high modeling accuracy
in order to yield acceptable results. SMC, on the other hand, is known for being robust against
disturbances, model mismatch and parametric uncertainties.

1.2. Estimation and Kalman Filters

Thanks to the high computing power of modern processors, micro-controllers, or even
field-programmable gate arrays (FPGAs), it has become possible to deploy intelligent and sophisticated
control approaches, e.g., observer-based control, utilizing only a minimal number of sensors, see [11,12].
Contributions like [13–16] reflect the progress in theoretical studies of Kalman filters (KFs), especially
concerning robustness and the ability to deal with unknown or inaccessible disturbances or model
uncertainty. In many situations, time-varying disturbances like friction effects can be modeled as
additional unknown inputs. In [17] for instance, a two-stage KF is implemented to estimate the pressure
disturbance inside a cylinder of an internal combustion engine and its effect on the controlled output.

1.3. Actuators

As important mechatronic components, electromagnetic actuators are used in many technical
applications, in particular in the automotive industry and in industrial production systems.
In production systems, they play a key role in motion control and precise positioning. Mechanical,
pneumatic or hydraulic components tend to be replaced by electromagnetic actuators due to their high
efficiency, excellent dynamic behavior and cleanliness. An important effect that needs to be considered
in the mechanical part of actuators is nonlinear friction. An extended survey of friction modeling is
given in [18] including a large number of literature references. Recent contributions mark progress in
terms of identification of friction phenomena and their compensation [19].

1.4. Main Contribution

In this paper, a combination of SMC and linear MPC is proposed to create an adaptive control
method. Here, LMPC adapts the switching height of the discontinuous control part and, thereby,
reduces the undesired chattering effect. The combination of SMC and LMPC allows for an exploitation
of the benefits of both worlds, gaining both robustness and a degree of optimality with regard to the
specific MPC cost function—at the cost of a more sophisticated control design as well as an increased
implementation and computation effort. The introduction of a cost function and, therefore, of an
optimality measure allows the intuitive balancing of the error convergence rate versus chattering
amplitude penalties, in order to achieve a reasonable trade-off. Linear MPC is a straight-forward,
easily implementable way of minimizing such a cost function. Furthermore, an augmented linear
KF is employed with the primary goal to contribute to a fast convergence to the sliding surface, thus
to unburden the switching control part of the SMC and to reduce undesired chattering. To achieve
this goal, the KF estimates the disturbance (and also the first derivative with regard to time), which is
considered as an unknown input, and is subsequently used for a compensation in the SMC law. Also,
since the cost function that is minimized by the MPC includes the predicted tracking error stemming
from a model-based prediction scheme, an accurate model of the SMC sliding surface dynamics is
necessary to allow for an optimally small SMC gain. To ensure that the underlying model assumptions
of the MPC design are met, a compensation of lumped disturbances is mandatory. Thanks to the
disturbance compensation using the estimates of the KF, an accurate prediction over a finite horizon
becomes possible in compliance with the underlying assumptions at the KF design. The disturbance
compensation may also be interpreted as a lowering of the necessary minimum SMC gain because
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part of the disturbances are compensated for by the KF estimates—and the SMC is disburdened.
In order to demonstrate the properties of the proposed control method in a practice-relevant field,
this paper considers a DC drive system that is subject to both nonlinear friction and model uncertainty.
The nonlinearity is represented by the sum of the Coulomb friction model and a quadratic term
depending on the relative velocity.

To conclude, the goal of this contribution, which represents an extension of a conference
paper [20], is to conceive an SMC with optimal adaptivity that can be implemented as simply as
possible. Its effectiveness is demonstrated in simulations, subject to realistic conditions regarding
disturbances and model uncertainty, controlling the angular velocity of a DC drive including a
nonlinear friction model.

The paper is structured as follows:

• Section 2 presents the physically-based model of a DC drive that is affected by a nonlinear friction
torque and model uncertainty.

• The feedback control design is described in Section 3, where
• Section 3.1 contains details on the employed SMC techniques which involve a combination of a

continuous control action and a discontinuous switching part, and where
• in Section 3.2, the height of the switching control action is adapted using MPC techniques to

counteract undesired chattering.
• Moreover, an unknown lumped disturbance—accounting for nonlinear friction and model

uncertainty in the equation of motion—is estimated in Section 3.3 by a KF. This estimate is
employed subsequently in the error dynamics for compensation purposes and, as a result,
contributes to the reduction of the necessary switching height determined by MPC.

• The benefits are shown by meaningful simulation results in Section 4.
• Finally, conclusions are given in Section 5.

2. System Modelling

The system model is based on physical considerations and involves ordinary differential equations
for the armature current i(t) and the motor angular velocity ω(t)

di(t)
dt

=
1
L
(u(t)− Ri(t)− KTω(t)) , (1)

dω(t)
dt

=
1
J
(KTi(t)− Tr(ω(t))) . (2)

Here, a nonlinear friction torque

Tr(ω(t)) =
(

K f ω2(t) + Tr0

)
sign(ω(t)) (3)

is introduced, where K f > 0 denotes a coefficient related to the quadratic term in the motor angular
velocity, and Tr0 characterizes the Coulomb friction part. The nonlinear friction torque Tr(ω) =

Tr(ω(t)) is depicted in Figure 1. This friction model is implemented in a regularized form and used in
the simulation studies to represent nonlinear friction.
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Figure 1. Nonlinear friction characteristic Tr(ω).

Given this model description, two alternatives seem to be promising to address nonlinear friction:

1. Feedback disturbance compensation: In this solution, the friction term (3) is assumed as known
and explicitly included in the sliding mode control design. The corresponding parameters
are identified beforehand by the least-squares method. In the envisaged sliding-mode control
design this would involve a time differentiation of the friction model and a compensation by
means of feedback. It is clear that any changes of the friction model afterwards results in an
imperfect compensation.

2. Estimator-based disturbance compensation: In this approach, the detailed physical model
for the nonlinear friction (3) is not employed at all in the control design. Instead, nonlinear
friction is estimated by a Kalman filter. It turns out that the approach can be generalized by
considering a lumped disturbance torque d(t) = Tr(ω(t)) + Tu(t), where Tu(t) represents any
further external loads torques, unmodelled dynamic effects and model uncertainty. The estimate
can be subsequently used for a disturbance compensation. The modified system model is then
given by

di(t)
dt

=
1
L
(u(t)− Ri(t)− KTω(t)) , (4)

dω(t)
dt

=
1
J
(KTi(t)− d(t))) . (5)

In the sequel, the latter approach using a KF is followed because it promises a higher tracking accuracy.
Moreover, the estimator dynamics can be specified appropriately in the KF design.

3. Control Design

The implementation of the overall control structure corresponds to the block diagram shown in
Figure 2. The control input involves an equivalent control action, a disturbance compensation and
a robustifying switching term. In this contribution, the switching height is adapted by means of a
quasi-linear MPC.
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Figure 2. Implementation of the sliding mode control (SMC) in combination with a Kalman filter (KF)
for state and parameter estimation and an model predictive control (MPC) for the adaptation of the
switching height. The gray block represents the direct current (DC) drive.

3.1. Feedback Control Design Using SMC

Since the lumped disturbance d(t) is estimated by a KF and used for a subsequent disturbance
compensation, the state-space representation (4) and (5) can be used in the derivation of an integral
SMC. It is worth mentioning that the estimated disturbance compensates the largest part of the lumped
disturbance and significantly increases the tracking accuracy. As a result, the SMC has to cope with
model imperfections that are related to the dynamics of the estimator only—leading to a significant
reduction of the necessary switching height and, thereby, reducing the undesired chattering effect.
The SMC design aims at a highly accurate tracking of desired trajectories for the angular velocity with
smallest possible tracking errors e(t) := ωd(t)−ω(t). For that purpose, an integral sliding surface is
introduced as follows

s(t) = ė(t) + αe(t) + η
∫ t

0
e(τ)dτ − e(0), (6)

where e(0) represents an initial error. Its presence in s(t) could eliminate the reaching phase (s(0) = 0),
see [21]. In this contribution, however, e(0) is assumed to be unknown and is set to zero in the
implementation. The coefficients α ∈ R and η ∈ R have to be positive. The time derivative of the
sliding surface can be easily computed and results in

ṡ(t) = ω̈d(t)− ω̈(t) + α(ω̇d(t)− ω̇(t)) + η (ωd(t)−ω(t))

= ω̈d(t)−
(

KT
J

di(t)
dt
− 1

J
ḋ(t)

)
+ α

[
ω̇d(t)−

(
KT
J

i(t)− 1
J

d(t)
)]

+ η (ωd(t)−ω(t))

= ω̈d(t)−
[

KT
J

(
1
L

u(t)− R
L

i(t)− KT
L

ω(t)
)
− 1

J
ḋ(t)

]
+ α

[
ω̇d(t)−

(
KT
J

i(t)− 1
J

d(t)
)]

+ η (ωd(t)−ω(t))

= ω̈d(t)−
KT
JL

u(t) +
KT R

JL
i(t) +

K2
T

JL
ω(t) +

1
J

ḋ(t) + α

[
ω̇d(t)−

KT
J

i(t) +
1
J

d(t)
]

+ η (ωd(t)−ω(t)) .

(7)

It becomes obvious that the time derivative ḋ(t) of the lumped disturbance affects the time derivative
of the sliding surface ṡ(t)—and, hence, is needed in the SMC law. This explains why it is estimated



Information 2019, 10, 182 6 of 19

as well using a Kalman filter with a suitable disturbance model. For the derivation of the SMC law,
a quadratic Lyapunov function candidate based on the integral sliding surface is considered

V(t) =
1
2

s(t)2. (8)

The time derivative of the Lyapunov function candidate can be easily calculated. It has to fulfill the
sliding condition, which is chosen as follows in this paper

V̇(t) = s(t)ṡ(t) ≤ s(t) (−λs(t)− βsgn(s(t))) = −λs(t)2 − β|s(t)|. (9)

Now, all known terms in the time derivative ṡ(t) are compensated for by feedback, which leads to the
following expression for the equivalent control

ueq(t) =
JL
KT

[
ω̈d(t) +

KT R
JL

i(t) +
K2

T
JL

ω(t) + α

[
ω̇d(t)−

KT
J

i(t)
]
+ η (ωd(t)−ω(t))

]
. (10)

Then, the time derivative of the sliding surface becomes

ṡ = −KT
JL

[u(t)− ueq(t)] +
1
J

ḋ(t) +
α

J
d(t). (11)

The unknown disturbance as well as its time derivative are estimated by a Kalman filter. A disturbance
compensation based on these estimates ˙̂d and d̂, hence, contributes to a reduction of the discontinuous
switching term, i.e., to a suppression of undesired chattering. The disturbance compensation law
results in

udc(t) =
L

KT

˙̂d(t) +
αL
KT

d̂(t). (12)

Finally, the switching part usw(t) can be derived from the sliding condition

ṡ(t) =
−KT

JL
usw(t) ≤ −λs(t)− βsgn(s(t)). (13)

If the equality sign holds, the switching part is given by

usw(t) =
JL
KT

(λs(t) + βsgn(s(t))) . (14)

The overall SMC law comprises the sum of all three terms

u(t) = ueq(t) + udc(t) + usw(t). (15)

Outside the boundary layer – during the convergence to the sliding surface – the time derivative ṡ(t)
is governed by the nonlinear error dynamics

ṡ(t) = −λs(t)− βsgn(s(t)). (16)

3.2. Adaption of the Switching Height Using MPC

The main idea of this paper is now to use MPC techniques to determine an optimal switching
height β(k). For that purpose, the error dynamics is discretized with regard to time using the explicit
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Euler method with a sampling time of Ts = 10 µs, and the switching height β(k) is introduced as
control input for the MPC

s(k + 1) = (1− λTs) s(k)− β(k)Tssgn(s(k)). (17)

3.2.1. Converge Properties Outside the Boundary Layer

Outside the boundary layer, from (17), a possible discrete-time state-space representation results

s(k + 1) = ak,rs(k) + bk,rβ(k), y(k) = cks(k), (18)

⇒ ak,r = 1− λTs, bk,r = −Tssgn(s(k)), ck = c = 1,

where subscript r indicates the reaching phase characteristics. By repeated evaluations of the difference
equation, the system behavior can be predicted as

ŷ(k + 1) = c ak,r s(k) + c bk,r β(k) (19)

ŷ(k + 2) = c a2
k,r s(k) + c ak,r bk,r β(k) + c bk+1,r β(k + 1),

ŷ(k + 3) = c a3
k,r s(k) + c a2

k,r bk,r β(k) + c ak,r bk+1,r β(k + 1) + c bk+2,r β(k + 2),

etc. It is straightforward to show that the following vector expression holds

ŷ(k) = grs(k) + Fk,ruk, (20)

with

ŷ(k) =


ŷ(k + 1)
ŷ(k + 2)

...
ŷ(k + p)

 , uk =


β(k)

β(k + 1)
...

β(k + p− 1)

 , (21)

and a prediction horizon of length p. The system matrices for use in the MPC become

gr =


c ak,r
c a2

k,r
...

c ap
k,r

 , Fk,r =


cbk,r 0 ... 0

cak,rbk,r cbk+1,r ... 0
... ... ... ...

cap−1
k,r bk,r cap−2

k,r bk+1,r ... cbk+p−1,r

 , (22)

where the prediction horizon p should not be chosen as too large, considering that bk,r might change
unpredictably. For p = 2, these matrices simplify to

gr =

[
1− λTs

(1− λTs)
2

]
, Fk,r = −Ts

[
sgn(s(k)) 0

(1− λTs) sgn(s(k)) sgn(s(k + 1))

]
. (23)

With given sgn(s(k)), sgn(s(k + 1)) can be obtained from the prediction step (18) using the second
element of the input vector uk−1 computed in the previous step. Given the system according to (20),
an optimal input β(k) has to be calculated that minimizes the following cost function

J(k) =
1
2

(
yd(k)− ŷ(k)

)T
Q
(

yd(k)− ŷ(k)
)
+

1
2

uT
k Ruk, (24)

where Q ≥ 0 and R > 0 are symmetric non-negative definite matrices. Moreoever, yd(k) is the sliding
surface reference trajectory for the next p time steps. In this case, its elements can simply be set to zero.
The corresponding solution can be stated in closed form

uk = (FT
k,rQFk,r + R)−1FT

k,rQ
(
yd(k)− gy(k)

)
, (25)
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where y(k) = s(k) holds and the sliding mode control switching gain β = β(k) is now chosen as the
first element of uk. The MPC with the predicted sliding surface is realized with matrices (18) that do
not depend on any specific systems parameters. As a result, this approach offers an intrinsic robustness
regarding the prediction.

3.2.2. Convergence Properties Inside the Boundary Layer

As a second measure against chattering—in addition to the disturbance compensation by means of
the Kalman filter—a regularized version of the switching law is employed. This leads to the definition
of a boundary layer resulting from the replacement of sgn(s(k)) by a smoothed version given by the
saturation function sat

(
s(k)
Φ

)
. Inside the boundary layer, the saturation function is linear, resulting in

sat
(

s(k)
Φ

)
= s(k)

Φ :

s(k + 1) = (1− Tsλ) s(k)− Ts
s(k)
Φ

β(k). (26)

This expression contains a multiplication of a state variable with the input variable and is, hence,
a nonlinear term. A first-order multivariate Taylor linearization of the function f (xT) =

s(k)
Φ β(k), where

the vector xT =
[

β(k) s(k)
]T

denotes the independent variables, can be performed in the operating

point x∗T =
[

β∗(k− 1) s∗(k− 1)
]T

, which contains known values at the discrete point at time k− 1.
Here, the star symbol (·)∗ denotes the operating point and allows for representing the corresponding
values in the following equations. The Taylor series expansion up to linear terms becomes

f (xT) ≈ f (x∗T) +∇ f (x∗T) (xT − x∗T) , (27)

where the operator ∇ indicates the gradient of f , a row vector. A detailed description can be stated
as follows

s(k)
Φ

β(k) ≈ s∗(k− 1)
Φ

β∗(k− 1) +
s∗(k− 1)

Φ
(β(k)− β∗(k− 1)) +

β∗(k− 1)
Φ

(s(k)− s∗(k− 1)) (28)

=
s∗(k− 1)

Φ
β∗(k− 1) +

s∗(k− 1)
Φ

β(k) +
β∗(k− 1)

Φ
s(k)− 2

s∗(k− 1)β∗(k− 1)
Φ

(29)

=
s∗(k− 1)

Φ
β(k) +

β∗(k− 1)
Φ

s(k)− s∗(k− 1)β∗(k− 1)
Φ

. (30)

By substituting this Taylor linearization into the difference equation, a linear first-order discrete-time
model can be derived

s(k + 1) =
(

1− Tsλ− Ts
β∗(k− 1)

Φ

)
︸ ︷︷ ︸

ak

s(k) +
−Tss∗(k− 1)

Φ︸ ︷︷ ︸
bk

β(k) + w∗(k− 1), (31)

where w∗(k − 1) = Ts
Φ s∗(k − 1)β∗(k − 1) represents a known term consisting on past information,

i.e., from the previous time step. The discrete-time system matrix and the input vector become scalars
and are given by ak and bk, respectively. Note that these terms are time-dependent. The output
equation is scalar as well and can be stated as

y(k) = ck s(k), ck = c = 1. (32)
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In analogy to the approach outside the boundary layer, the design of a quasi-linear MPC is presented
that is based on the discrete-time model above. The moving prediction horizon comprises two steps in
the future. With the following vectors and matrices

gk =

[
ak

ak · ak+1

]
=

[
1− Tsλ− Ts

β∗(k−1)
Φ(

1− Tsλ− Ts
β∗(k−1)

Φ

)
·
(

1− Tsλ− Ts
β∗(k)

Φ

)] , (33)

Fk =

[
c · bk 0

c · ak · bk c · bk+1

]
= −Ts

Φ

[
s∗(k− 1) 0(

1− Tsλ− Ts
β∗(k−1)

Φ

)
· s∗(k− 1) s∗(k)

]
, (34)

wk =

[
c

c · ak + c

]
=

[
1

2− Tsλ− Ts
β∗(k−1)

Φ

]
, (35)

the solution can be determined in a closed-form expression as follows

uk = (FT
k QFk + R)−1FT

k Q [yd(k)− gk · y(k)−wk · w∗(k− 1)] . (36)

Here, the output y(k) = s(k) is identical to the current value of the sliding surface, whereas the
time-varying SMC switching gain β is chosen again as the first element of the computed input

vector uk =
[

β̃k(k) β̃k(k + 1)
]T

. As the input β∗(k), which shows up in gk and represents the
linearization point for β, is not yet available, it is substituted by the second element of the input uk−1,
which corresponds to previous time step.

3.3. KF for the Estimation of a Lumped Disturbance Torque

In the sequel, the combined estimation of the state variables and the external disturbance as well
as its time derivative is described. The design of a corresponding KF is based on the modified system
model, including a double-integrator disturbance model

di(t)
dt

=
1
L
(u(t)− Ri(t)− KTω(t)) (37)

dω(t)
dt

=
1
J
(KTi(t)− d(t))) (38)

dd(t)
dt

= ḋ(t) (39)

dḋ(t)
dt

= 0 (40)

and aims at providing estimates for both state variables, an estimate d̂ for the unknown lumped
disturbance and its derivative ˙̂d. It is worth mentioning that the chain of two integrators has no
input so far. Nevertheless, this integrator chain is driven by the output error feedback as well as the
process noise—the stochastic part—in the framework of the KF design. As a result, the estimator
states vary during the operation of the KF and highly accurate estimates are obtained for a subsequent
compensation in the control structure.

Whenever feedback control is applied, it is necessary to measure selected system outputs. Under
realistic conditions, however, measurements are affected by errors like deterministic offsets and
stochastic disturbances, e.g., white noise processes. In such cases, a KF can be advantageously
employed and provides estimates with minimum covariances. The optimality conditions include an
accurate system model and the knowledge about the noise characteristics. In the given case, the system
model (4) and (5)—that contains a perfectly-known part and the unknown lumped disturbance—is
both complete and correct. As confirmed by the simulation results, the quality of the estimates is
high and, hence, an accurate system model is obtained due to the estimates. The typical design of a
KF addresses uncorrelated process noise and measurement noise that are assumed to be Gaussian,



Information 2019, 10, 182 10 of 19

white and with a vanishing mean value. Despite the fact that in practice the stochastic noise processes
are often not perfectly known, the KF algorithm is usually still capable of providing meaningful state
and disturbance estimates. The covariances can then be considered as tuning parameters like in the
linear-quadratic regulator (LQR) control design. The model defining the KF prediction step can be
stated in state-space form, with the input variable u(t),

xKF(t) =
[
[i(t) ω(t) d(t) ḋ(t)

]T
, (41)

ẋKF(t) = AKFxKF(t) + bKFu(t), (42)

ym(t) = CKFxKF(t) (43)

with matrices

AKF =


− R

L −K
L 0 0

K
J 0 − 1

J 0
0 0 0 1
0 0 0 0

 , bKF =


1
L
0
0
0

 , CKF =

[
1 0 0 0
0 1 0 0

]
. (44)

The discrete-time state space model can be obtained using explicit Euler discretization with step width
Ts, after which the random variables wKF and vKF are introduced to represent white, uncorrelated
process and measurement noise, respectively, with normal probability distributions [22].

xKF(k + 1) = AKFdxKF(k) + bKFdu(k) + wKF(k), (45)

yKF(k) = CKFxKF(k) + vKF(k), (46)

AKFd = I4×4 + TsAKF, (47)

bKFd = TsbKF. (48)

Based on this, the a-priori estimates are calculated in the prediction step of the Kalman filter algorithm
according to

x̂−KF(k + 1) = AKFdx̂+KF(k) + bKFdu(k). (49)

For the first step, initial values x̂+KF(0) can be either specified by the user or simply set to zero. The
same applies to the initial uncertainty P+(0) in the following equation. The a-priori estimate of the
covariance matrix is

P−(k + 1) = AKFdP+(k)AT
KFd + QKF, (50)

where QKF represents a R4×4 matrix quantifying the covariance matrix of the process noise wKF,

QKF(k) = E
(

wKF(k)wKF(k)T
)
=


qi 0 0 0
0 qω 0 0
0 0 qd 0
0 0 0 qḋ

 . (51)

Here, QKF is assumed to be constant, diagonal and positive and is treated as a tuning parameter matrix.
Parameter qd is set to zero since Equation (39) is a certain relationship, while qḋ is assigned a large
value since Equation (40) is not. Parameters qi and qω reflect the modeling uncertainty concerning
Equations (38) and (37). The Kalman gain can now be calculated as

K(k + 1) = P−(k + 1)CT
KF(CKFP−(k + 1)CT

KF + RKF)
−1, (52)
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with the measurement matrix CKF according to the measured outputs ym(t) = CxKF(t). Here,
the measurement covariance matrix RKF is related to the measurement noise vKF and has properties
similar to QKF

RKF = E
(

vKF(k)vKF(k)T
)
=

[
ri 0
0 rω

]
. (53)

In the correction step of the Kalman filter algorithm, the a-posteriori estimates for covariance and
states are calculated as follows

P+(k + 1) = (I4×4 −K(k + 1)CKF) P−(k + 1), (54)

x̂+KF(k + 1) = x̂−KF(k + 1) + ∆xKF(k + 1), (55)

where the correction ∆xKF(k+ 1) consists of the innovation term weighted by the Kalman gain K(k+ 1)

∆xKF(k + 1) = K(k + 1)
(
ym(k + 1)− CKF x̂−KF(k + 1)

)
, (56)

with the measured current and velocity ym =
[
im ωm

]T
. The estimated states as well as the estimated

disturbance and its time derivative are used in the SMC control law.

4. Simulations

In this section, simulation results are presented. They were obtained using a sampling time of
Ts = 10 µs. The velocity profile to be tracked was generated from step-like signals using a second-order
low-pass command-shaping filter

GLP(s) =
1

1
102 s2 + 2

10 s + 1
. (57)

4.1. Simulation Settings and Scenarios

The covariance matrices of the Kalman filter were chosen according to

RKF = diag (0.001, 500) , QKF = diag (0.001, 0.001, 0, 0.5) , (58)

where the third and fourth element on the diagonal of QKF relate to the double integrator disturbance
model, and with the initial conditions

P+(0) = diag
(

103, 103, 0, 103
)

, x̂+KF(0) =
[
0 0 0 0

]T
. (59)

The proposed control strategy, i.e., an adaption of the SMC switching height β by means of MPC,
is compared with two other, more classical variants. These three variants are as follows:

1. SMC with β = const. and switching control law (14),
2. SMC with β = const. and usw = JL

KT
(λs(t) + βsat(s(t)/Φ)),

3. SMC with adaptive β = β(k) and usw = JL
KT

(λs(t) + β(k)sat(s(t)/Φ)), i.e., the proposed strategy.

The SMC design parameter λ affecting the linear term in the sliding condition was set to zero in
all variants. This corresponds to the classical choice of the sliding condition. To allow for a fair
comparison, the switching height β = const. = 2× 107 and the boundary layer thickness Φ = 200
were iteratively tuned to achieve good tracking properties while maintaining robustness and only
small chattering in the presence of disturbances. These disturbances were implemented as load torques,
see Figure 3 (right).
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Figure 3. Friction torque Tr (left) and load torque Tl (right).

Two alternative load variants were tested: The red signal shows a sinusoidal signal with steps
at 0.5 s and 1.5 s; all other figures were created using this load profile. It must be pointed out that
also with pulsed load torques, i.e., the blue signal, the results were equally good. It becomes obvious
that such strong discontinuities can be managed properly by an integrator disturbance model upon
which the KF design is based—even though they represent the worst case for the observer part of
the combined control system. Step-like changes are estimated accordingly complying with the KF
estimation error dynamics.

4.2. Results

The resulting velocity tracking is demonstrated in Figure 4, where the tracking error and error
energy are depicted, and Figure 5, which shows the angular velocity itself.

Figure 4. Simulated values for the tracking errors e(t) for all the variants (left) and the integrated
squared error for all the variants (right).
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Figure 5. Tracking behaviour of the angular velocity ω: comparison of desired and simulated values
for all variants (top, left); detailed views at point with the lowest angular velocity (top, right; bottom).

While all the variants manage to track the desired velocity profile almost perfectly (top left of
Figure 5), variant 1 shows a little more ripple (top right) than variants 2 and 3 (bottom). Additionally,
variant 3 shows smaller deviations in the case of load torque steps (Figure 6), thanks to a momentarily
larger switching height β. This effect results in a significantly smaller error energy, see Figure 4 (right).

Figure 6. Detailed view of the velocity tracking after load torque steps.

The value of β can be seen in Figure 7, where spikes at 0.5 s and 1.5 s are the cause for the
phenomenon mentioned above. The rest of the time, β takes relatively small values but shows a
high variability.
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Figure 7. Simulated values for the switching height β (left) and a detailed view (right).

Thanks to a smaller switching height β, a significant reduction in control input chattering is
achieved. This becomes visible in Figure 8 (bottom right vs. bottom left and top right). However,
the major influence stems from the equivalent control part, Equation (10), and the disturbance
compensation, Equation (12), which are shown at the top left of the figure.

Figure 8. Comparison of the control inputs u: contribution of the equivalent control law and the
disturbance compensation (top, left); detailed plots for all the variants (top, right; bottom).

The disturbance estimates used for compensation are provided by the KF, using only
measurements of current and velocity. These estimates are shown in Figure 9. The currents resulting
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from those input voltages are displayed in Figure 10 and indicate only a negligible difference between
the three variants. Finally, the sliding surface s(t) is depicted in Figure 11, where the influence of the
external load torque becomes obvious. The SMC variants employing a boundary layer clearly achieve
superior behaviour in comparison with the classical switching variant, which has a strong chattering
impact in the sliding surface.

Figure 9. d(t), ḋ(t) and their estimates provided by the KF.

Figure 10. Simulated currents i for all the variants.

Figure 11. Simulated values for the sliding surface s(t) for all the variants.
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4.3. Discussion

Note that in contrast to the authors’ previous work [20], upon which this contribution is based,
the sliding function s(t) remains in the close vicinity of zero. This positive effect can be attributed to
the employed disturbance compensation provided by the KF. Some slight but negligible influence
of the load torque in s(t) becomes visible, which is the price of a significantly reduced chattering.
In [20], due to the violation of the SMC sliding condition mentioned there, s(t) was partially non-zero
in the presence of large disturbances, with no tendency to converge to zero, —despite the fact
that a nearly perfect velocity tracking was achieved. This phenomenon can be explained by a
model mismatch concerning the dynamics of the sliding surface in closed loop, due to a missing
disturbance compensation, which can yield a mismatched MPC. This problem has been solved in
the given paper by means of the disturbance compensation. To further point out the benefits of
the proposed approach—the combination of a disturbance estimation by a KF, finite horizon MPC
and SMC gain adaptation—it is benchmarked in closed-loop simulation studies against two other
widespread methods:

• A disturbance observer (DOB) according to [23] and
• A time-delay estimation (TDE), see [5].

Both are implemented to provide estimates for d(t) and ḋ(t), using the same (noisy) measurements
that are available to the KF as well: current i(t) and velocity ω(t). The resulting estimates can be
compared in Figures 12–14. Both of these alternatives lead to similar but slightly increased error
energies (the unit is omitted here) in comparison with the KF approach: 0.009024 (KF), 0.009076 (TDE)
and 0.009383 (DOB). Despite a negligible difference in tracking performance, the use of either DOB or
TDE in closed-loop control shows significantly larger chattering amplitudes as compared to the KF
variant: usw is in the range of ±0.04 V for DOB and TDE, where a range of ±0.02 V holds for the KF
(apart from spikes of about ±1 V at 0.5 s and 1.5 s, respectively). Since TDE is based on the feedback of
the acceleration ω̇, which needs to be determined via numerical differentiation of a noisy measurement
signal, the performance degradation as compared to the KF becomes evident.

Figure 12. Disturbance estimates for d and ḋ using disturbance observer (DOB).
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Figure 13. Disturbance estimates for d and ḋ using time-delay estimation (TDE).

Figure 14. Disturbance estimates for d and ḋ using KF, DOB and TDE in comparison.

In fact, to achieve reasonably useful results, the necessary numerical derivative of the velocity
ω(t) had to be low-pass filtered using a cut-off frequency of 5000 rad/s. Lower frequencies resulted in
considerably worse tracking, while higher corner frequencies led to even more noise than depicted in
Figure 14. The KF offers a superior behaviour in the presence of noise because it explicitly considers
noise processes. Furthermore, since the KF constitutes a disturbance estimator with an integrated
de-noising state observer, its state estimates for current and velocity are used to supply the SMC with
state feedback, anyway. This renders the KF a perfect solution in cases like these, where state and
disturbance estimates are needed. A formal proof, however, regarding the compliance with the SMC
sliding condition as stated in Equation (9) using suitable choices of the MPC weighting matrices Q and
R, still remains an open problem.

5. Conclusions

This contribution presents an adaptive tuning of the switching gain of an SMC that is achieved by
means of an MPC scheme designed on the basis of the sliding surface error dynamics. To properly
address disturbances and the impact of external load torque in the control approach, they are
compensated for using estimates provided by a KF. The overall design is benchmarked in simulations
considering a frequently used application of high practical relevance—a DC drive. The simulations
clearly show that the MPC-based adaptation of the switching height represents an effective means of
counteracting a drawback of classical SMC—chattering caused by a conservative choice of the switching
height, which is unnecessarily high most of the time and should be reduced when permissible.
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