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Abstract: We write the mutual information between an input speech utterance and its reconstruction
by a code-excited linear prediction (CELP) codec in terms of the mutual information between the
input speech and the contributions due to the short-term predictor, the adaptive codebook, and the
fixed codebook. We then show that a recently introduced quantity, the log ratio of entropy powers,
can be used to estimate these mutual informations in terms of bits/sample. A key result is that for
many common distributions and for Gaussian autoregressive processes, the entropy powers in the
ratio can be replaced by the corresponding minimum mean squared errors. We provide examples of
estimating CELP codec performance using the new results and compare these to the performance of
the adaptive multirate (AMR) codec and other CELP codecs. Similar to rate distortion theory, this
method only needs the input source model and the appropriate distortion measure.

Keywords: autoregressive models; entropy power; linear prediction model; CELP voice codecs;
mutual information

1. Introduction

Voice coding is a critical technology for digital cellular communications, voice over Internet
protocol (VoIP), voice response applications, and videoconferencing systems [1,2]. Code-excited linear
prediction (CELP) is the most widely deployed method for speech coding today, serving as the primary
speech coding method in the adaptive multirate (AMR) codec [3] and in the more recent enhanced
voice services (EVS) codec [4], both of which are used in cell phones and VoIP. At a high level, a CELP
codec consists of a linear prediction model excited by an adaptive codebook and a fixed codebook.
The linear prediction model captures the vocal tract dynamics (short-term memory) and the adaptive
codebook folds in the long-term periodicity due to speaker pitch. The fixed codebook tries to represent
the excitation for unvoiced speech and any remaining excitation energy not modeled by the adaptive
codebook [2,5].

The encoder uses an analysis-by-synthesis paradigm to select the best fixed codebook excitation
based on minimizing a frequency-weighted perceptual error signal. However, the linear prediction
coefficients and the long-term predictor parameters are calculated to minimize the unweighted
mean squared error and then substituted into the codec structure prior to the analysis-by-synthesis
optimization.

No characterization of the relative contributions of the several CELP codec components to the
overall CELP codec perceptual performance is known. That is, given a segment of an input speech
signal, what is the relative importance of the short-term predictor, the long-term predictor, and the
fixed codebook to the perceptual quality achieved by the CELP codec? The mean squared prediction
error can be calculated for the first two, and a translation of mean squared error to perceptual quality
has been devised for calculating rate distortion bounds for speech coders in Gibson and Hu [6].
An indication of the relative reduction in bits/sample provided by each component for a given
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quality would be very useful in optimizing codec performance and for investigating new adaptive
codec structures.

In this paper, we develop and extend an approach suggested by Gibson [5] and decompose the
mutual information between the input speech and the speech reconstructed by a CELP codec into
the sum of unconditional and conditional mutual informations between the input speech and the
linear prediction component, the adaptive codebook, and the fixed codebook, and show that this
decomposition can be used to predict CELP codec performance based upon analyzing the input speech
utterance, without actually implementing the CELP codec and processing the speech. We present
examples comparing the estimated CELP codec performance and the actual performance achieved
by CELP codecs. The approach is highly novel and the agreement between the actual and estimated
performance is surprising.

The paper is outlined as follows. Section 2 provides an overview of the principles of Code-Excited
Linear Prediction (CELP) needed for the remainder of the paper, while Section 3 develops the
decomposition of the mutual information between the input speech and the speech reconstructed by
the CELP codec. The concept of entropy power as defined by Shannon [7] is presented in Section 4,
and the ordering of mutual information as a signal is passed through a cascaded signal processing
system is stated in Section 5. The recently proposed quantity, the log ratio of entropy powers, is given
in Section 6, where it is shown that the mean squared estimation errors can be substituted for the
entropy powers in the ratio for an important set of probability densities [5,8,9]. The mutual information
between the input speech and the short-term prediction sequence is discussed in Section 7 and the
mutual information provided by the adaptive and fixed codebooks about the input speech is developed
in Section 8. The promised analysis of CELP codecs using these prior mutual information results
based on only the input speech model and the distortion measure is presented in Section 9. Section 10
contains conclusions drawn from the results in the paper.

2. Code-Excited Linear Prediction (CELP)

Block diagrams of a code-excited linear prediction (CELP) encoder and decoder are shown in
Figures 1 and 2, respectively [1,2].

Figure 1. Code-excited linear prediction (CELP) encoder.
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Figure 2. CELP Decoder.

We provide a brief description of the various blocks in Figures 1 and 2 to begin. The CELP
encoder is an implementation of the Analysis-by-Synthesis (AbS) paradigm [1]. CELP, like most speech
codecs in the last 45 years, is based on the linear prediction model for speech, wherein the speech is
modeled as

s(k) =
N

∑
i=1

ais(k− i) + Gw(k), (1)

where we see that the current speech sample at time instant k is represented as a weighted linear
combination of N prior speech samples plus an excitation term at the current time instant. The weights,
ai, i = 1, 2, ...., N, are called the linear prediction coefficients. The synthesis filter in Figure 1 has the
form of this linear combination of past outputs and the fixed and adaptive codebooks model the
excitation, w(k). The LP analysis block calculates the linear prediction coefficients, and we see that the
block also quantizes the coefficients so that encoder and decoder use exactly the same coefficients.

The adaptive codebook is used to capture the long-term memory due to the speaker pitch and
the fixed codebook is selected to be an algebraic codebook, which has mostly zero values and only
a relatively few nonzero pulses. The pitch analysis block calculates the adaptive codebook long-term
memory. The process is AbS in that for a block of (say) M input speech samples, the linear prediction
coefficients and long-term memory are calculated and a perceptual weighting filter is constructed
using the linear prediction coefficients. Then, for every length M sequence (codevector) in the fixed
codebook, (say) there are L code vectors in the fixed codebook, a synthesized sequence of speech
samples are produced. This is the fixed codebook search block. The best codevector out of the L in the
fixed codebook in terms of the length M synthesized sequence that best matches the input block of
length M based on minimizing the perceptually weighted squared error is chosen and transmitted
to the CELP decoder along with the long-term memory, the predictor coefficients, and the codebook
gains. These operations are represented by the parameter encoding block in Figure 1 [1,10].

The CELP decoder uses these parameters to synthesize the block of M reconstructed speech
samples presented to the listener as shown in Figure 2. There is also post-processing, which is not
shown in the figure.

The quality and intelligibility of the synthesized speech is often determined by listening tests
that produce mean opinion scores (MOS), which for narrowband speech vary from 1 up to 5 [11,12].
A well-known codec such as G.711 is usually included to provide an anchor score value with respect
to which other narrowband codecs can be evaluated [13–15].
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It would be helpful to be able to associate a separate contribution to the overall performance by
each of the main components in Figure 2, namely the fixed codebook, the adaptive codebook, and the
synthesis filter. Signal to quantization noise ratio (SNR) is often used for speech waveform codecs, but
CELP does not attempt to follow the speech waveform, so SNR is not applicable. One characteristic of
CELP codecs that is well known is that those speech attributes not captured by the short-term predictor
must be accounted for, as best as possible, by the excitation codebooks, but an objectively meaningful
measure of the individual component contributions is yet to be advanced.

In the next section, we propose a decomposition in terms of the mutual information and
conditional mutual information with respect to the input speech provided by each component in the
CELP structure, that appears particularly useful and interesting for capturing the performance and the
trade-offs involved.

3. A Mutual Information Decomposition

Gibson [5] proposed the following decomposition of the several contributions to the synthesized
speech by the CELP codec components. In particular, letting X represent a frame of input speech
samples, we define XR, XN , and XC as the reconstructed speech, the prediction component, and the
combined fixed and adaptive codebook components, respectively. Then we can write the mutual
information between the input speech and the reconstructed speech as

I(X; XR) = I(X; XN , XC) = I(X; XN) + I(X; XC|XN). (2)

This expression states that the mutual information between the original speech X and the
reconstructed speech XR equals the mutual information between X and XN , the Nth order linear
prediction of X, plus the mutual information between X and the combined codebook excitations XC
conditioned on XN . Thus, to achieve or maintain a specified mutual information between the original
speech and the reconstructed speech, any change in XN must be offset by an adjustment of XC. This
fits what is known experimentally and was alluded to earlier. If we define XA to represent the adaptive
codebook contribution and XF to represent the fixed codebook contribution, we can further decompose
I(X; XC|XN) as

I(X; XC|XN) =I(X; XA, XF|XN)

=I(X; XA|XN) + I(X; XF|XN , XA),
(3)

where we have used the chain rule for mutual information [16]. The expressions in Equations (2) and
(3) correspond to the analysis chain illustrated in Figure 3, so X → XN → XA → XF. A(z) in Figure 3
represents the short-term prediction component as in Equation (1), and P(z) is the long-term predictor
as discussed later in Section 8.1.

Figure 3. Analysis chain.

We can also write a chain rule mutual information expression for the synthesis chain in Figure 4 as

I(X; XR) =I(X; XC) + I(X; XN |XC)

=I(X; XA, XF) + I(X; XN |XC)

=I(X; XF) + I(X; XA|XF) + I(X; XN |XA, XF)),

(4)

so XF → XA → XN → X.
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Figure 4. Synthesis chain.

Notice that we are not attempting to model the mutual informations in the CELP encoder and
decoder of Figures 1 and 2 directly; we are effectively creating analysis and synthesis Markov chains
that use the choices for XF, XA, XN produced by the CELP encoder in the original analysis-by-synthesis
CELP structure prior to the adoption of the adaptive codebook approximation [17].

While these expressions in Equations (2)–(4) are interesting, the challenge that remains is to
characterize each of these mutual informations without actually having to calculate them directly from
data, which is a difficult problem in and of itself [18].

An interesting quantity introduced and analyzed by Gibson in a series of papers is the log ratio
of entropy powers [5,8,9]. Specifically, the log ratio of entropy powers is related to the difference in
mutual information, and further, in many cases, the entropy powers can be replaced with the minimum
mean squared prediction error (MMSPE) in the ratio. Using the MMSPE, the difference in mutual
informations can be easily calculated. The following sections develop these concepts before we apply
them to an analysis of the CELP structure.

4. Entropy Power/Entropy Rate Power

Given a random variable X with probability density function p(x), we can write the differential
entropy h(X) = −

∫ ∞
−∞ p(x) log p(x)dx, where the variance var(X) = σ2. Since the Gaussian

distribution has the maximum differential entropy of any distribution with mean zero and variance
σ2 [16],

h(X) ≤ 1
2

log 2πeσ2, (5)

from which we obtain
Q =

1
(2πe)

exp 2h(X) ≤ σ2 , (6)

where Q was defined by Shannon to be the entropy power associated with the differential entropy
of the original random variable [7]. In addition to defining entropy power, this equation shows that
the entropy power is the minimum variance that can be associated with the not-necessarily-Gaussian
differential entropy h(X).

5. Cascaded Signal Processing

Figure 5 shows a cascade of N signal processing operations with the estimator blocks at the output
of each stage as studied by Messerschmitt [19]. He used the conditional mean at each stage and the
corresponding conditional mean squared errors to obtain a representation of the distortion contributed
by each stage. We analyze the cascade connection in terms of information theoretic quantities, such
as mutual information, differential entropy, and entropy rate power. Similar to Messerschmitt, we
consider systems that have no hidden connections between stages other than those explicitly shown.
Therefore, we conclude directly from the data processing inequality [16] that

I(X; Y1) ≥ ... ≥ I(X; YN−1) ≥ I(X; YN) ≥ I(X; X̂). (7)

Since I(X; Yn) = h(X)− h(X|Yn), it follows from Equation (7) that for non-negative h(·),

h(X|Y1) ≤ ... ≤ h(X|YN−1) ≤ h(X|YN) ≤ h(X). (8)
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For the optimal estimators at each stage, the basic data processing inequality also yields I(X; Yn) ≥
I(X; X̂n), and thus h(X|Yn) ≤ h(X|X̂n).

Figure 5. N-link system block diagram (adapted from [19]).

These are the fundamental results, that additional processing cannot increase the mutual information.
Now we notice that the series of inequalities in Equation (8) along with the entropy power

expression in Equation (6) gives us the series of inequalities in terms of entropy power at each stage in
the cascaded signal processing operations:

QX|Y1
≤ ... ≤ QX|YN−1

≤ QX|YN
≤ QX . (9)

We can also write that
QX|Yn ≤ QX|X̂n

. (10)

In the context of Equation (9), the notation QX|Yn denotes the minimum variance when
reconstructing an approximation to X given the sequence at the output of stage n in the chain [8].

6. Log Ratio of Entropy Powers

We can use the definition of the entropy power in Equation (6) to express the logarithm of the
ratio of two entropy powers in terms of their respective differential entropies as [8]

log
QX
QY

= 2[h(X)− h(Y)]. (11)

We can write a conditional version of Equation (6) as

QX|Yn =
1

(2πe)
exp 2h(X|Yn) ≤ Var(X|Yn), (12)

and from which we can express Equation (11) in terms of the entropy powers at successive stages in
the signal processing chain (Figure 5), as

1
2

log
QX|Yn

QX|Yn−1

= h(X|Yn)− h(X|Yn−1). (13)

If we add and subtract h(X) to the right-hand side of Equation (13), we then obtain an expression
in terms of the difference in mutual information between the two stages as

1
2

log
QX|Yn

QX|Yn−1

= I(X; Yn−1)− I(X; Yn). (14)

From the series of inequalities on the entropy power in Equation (9), we know that both
expressions in Equations (13) and (17) are greater than or equal to zero.
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These results are from [8] and extend the data processing inequality by providing a new
characterization of the information loss between stages in terms of the entropy powers of the two
stages. Since differential entropies are difficult to calculate, it would be particularly useful if we could
obtain expressions for the entropy power at two stages and then use Equations (13) and (17) to find the
difference in differential entropy and mutual information between these stages.

We are interested in studying the change in the differential entropy and mutual information
brought on by different signal processing operations by investigating the log ratio of entropy powers.

In the following, we highlight several cases where Equation (11) holds with equality when the
entropy powers are replaced by the corresponding variances. The Gaussian and Laplacian distributions
often appear in studies of speech processing and other signal processing applications [10,15,20], so we
show that substituting the variances for entropy powers in the log ratio of entropy powers for these
distributions satisfies Equation (11) exactly. For two i.i.d. Gaussian distributions with zero mean and
variances σ2

X and σ2
Y, we have directly that QX = σ2

X and QY = σ2
Y, so

1
2

log
QX
QY

=
1
2

log
σ2

X
σ2

Y
= [h(X)− h(Y)], (15)

which satisfies Equation (11) exactly. Of course, since the Gaussian distribution is the basis for the
definition of entropy power, this result is not surprising.

For two i.i.d. Laplacian distributions with variances λ2
X and λ2

Y [21], their corresponding entropy
powers QX = 2eλ2

X/π and QY = 2eλ2
Y/π, respectively, so we form

1
2

log
QX
QY

=
1
2

log
λ2

X
λ2

Y

=[h(X)− h(Y)].

(16)

Since h(X) = ln(2eλX), the Laplacian distribution also satisfies Equation (11) exactly [5]. We
thus conclude that we can substitute the variance, or for zero mean Laplacian distributions, the mean
squared value for the entropy power, in Equation (11), and the result is the difference in differential
entropies.

Interestingly, using mean squared errors or variances in Equation (11) is accurate for many other
distributions as well. It is straightforward to show that Equation (11) holds with equality when
the entropy powers are replaced by mean squared error for the logistic, uniform, and triangular
distributions as well. Furthermore, the entropy powers can be replaced by the ratio of the squared
parameters for the Cauchy distribution.

Therefore, the satisfaction of Equation (11) with equality occurs in more than one or two special
cases. The key points are first that the entropy power is the smallest variance that can be associated
with a given differential entropy, so the entropy power is some fraction of the mean squared error
for a given differential entropy. Second, Equation (11) utilizes the ratio of two entropy powers, and
thus, if the distributions corresponding to the entropy powers in the ratio are the same, the scaling
constant (fraction) multiplying the two variances will cancel out. Therefore, we are not saying that the
mean squared errors equal the entropy powers in any case but for Gaussian distributions. It is the new
quantity, the log ratio of entropy powers, that enables the use of the mean squared error to calculate
the loss in mutual information at each stage.

7. Mutual Information in the Short-Term Prediction Component

Gibson [5] used Equation (17) to investigate the change in mutual information as the predictor
order, denoted in the following by N, is increased for different speech frames. Based on several
analyses of the MMSPE and the fact that the log ratio of entropy powers can be replaced with the log
ratio of MMSPEs for several different distributions, as outlined in Section 6 and in [9], we can use
the expression



Information 2019, 10, 179 8 of 14

1
2

log
MMSPE(X, XN−1)

MMSPE(X, XN)
= I(X; XN)− I(X; XN−1), (17)

as in [5], to associate a change in mutual information with a change in the predictor order. Figure 6
(bottom) shows 160 time domain samples from a narrowband (200 to 3400 Hz) speech sentence
sampled at 8000 samples/s, and the top plot is the magnitude of the spectral envelope calculated
from the linear prediction model using Equation (1). We show the MMSPE and the corresponding
change in mutual information for predictor orders N = 1, 2, ..., 10 in Table 1. Notice that the chain rule
assumption indicated by Figure 5 is retained by the analysis chain in Figure 3 even as we increment N
as in Equation (17) and in Table 1 if we use a lattice implementation of the prediction [15]. However,
for most of our analyses in what follows, we consider fixed order predictors. From Table 1, we see that
the mutual information between the input speech frame and a 10th order predictor is 1.52 bits/sample.
We can examine the mutual information between the input speech and a 10th order linear predictor for
other frames in the same speech utterance.

Table 1. Change in mutual information from Equation (17) as the predictor order is increased: Frame
3237, SPER = 9.15 dB; MMSPE, minimum mean squared prediction error.

N MMSPE(X, XN) I(X; XN)− I(X; XN−1)

0 1.0 0 bits/letter

0–1 0.402 0.656 bits/letter

1–2 0.328 0.147 bits/letter

2–3 0.294 0.0795 bits/letter

3–4 0.2465 0.125 bits/letter

4–5 0.239 0.0234 bits/letter

5–6 0.2117 0.0869 bits/letter

6–7 0.212 0.0 bits/letter

7–8 0.125 0.381 bits/letter

8–9 0.1216 0.0206 bits/letter

9–10 0.1216 0.0 bits/letter

0–10 Total 0.1216 1.52 bits/letter

To categorize the differences in the speech frames for easy reference, we use a common indicator
of predictor performance, the signal-to-prediction error (SPER) in dB [22], also called the prediction
gain [15], defined as

SPER(dB) = 10 log10
MSE(X)

MMSPE(X, X10)
, (18)

where MSE(X) is the average energy in the utterance, and MMSPE(X, X10) is the minimum mean
squared prediction error achieved by a 10th order predictor. The SPER can be calculated for any
predictor order, but we choose N = 10, a common choice in narrowband speech codecs and the
predictor order that, on average, captures most of the possible reduction in mean squared prediction
error without including long-term pitch prediction. For a normalized MSE(X) = 1.0, we see that for
the speech frame in Figure 6, the SPER = 9.15 dB.

Several other speech frames by the same speaker are analyzed in [5], and the results for these
frames are tabulated in Table 2. From this table, it is evident that the mutual information between
the input speech and a 10th order linear predictor can change quite dramatically across frames, even
with the same speaker. We observe that the change in mutual information in some sense mirrors
a change in SPER, with a larger SPER implying a larger mutual information. However, the explicit
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characterization in terms of mutual information is new and allows new analyses of the performance
of CELP codecs in terms of bits/sample reduction in rate that can be associated with the short-term
predictor. We provide this analysis in Section 9.

Figure 6. Frame 3237 time domain waveform (bottom) and spectral envelope, signal-to-prediction
error (SPER) = 9.15 dB.

Table 2. Change in mutual information from Equation (17) for 10th order predictors and corresponding
SPERs for several speech frames [5]

Speech Frame No. SPER in dB I(X; X10)− I(X; X0)

45 16 2.647 bits/letter
23 11.85 1.968 bits/letter

3314 7.74 1.29 bits/letter
87 5 0.83 bits/letter

8. Mutual Information in the Fixed and Adaptive Codebooks

How do we find the change in mutual information provided by the adaptive codebook and
the fixed codebook? The adaptive codebook relies on long-term prediction to model the vocal tract
excitation due to the speaker pitch. As such, an approach similar to that used for the short-term or linear
predictor is possible. The fixed codebook contribution in terms of bits/sample is less direct. We could
attempt to estimate the codebook complexity, or we could simply use the number of bits/sample used
to transmit the fixed codebook excitation. We elaborate on each of these in the following subsections.

8.1. Adaptive Codebook: Long-Term Prediction

The long-term predictor that makes up the adaptive codebook in CELP may have one or three
taps and is of the form

P(z) = β−1z−(P−1) + β0z−P + β1z−(P+1), (19)

where βi, i = −1, 0, 1, are the predictor coefficients that are updated on a frame-by-frame basis, and P
is the lag of the periodic correlation that captures the pitch excitation of the vocal tract. A three-tap
predictor as shown in Equation (19) requires a stability check to guarantee that this component does
not cause divergence [23]. The single tap form given by

P(z) = βz−P (20)
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only needs the stability check that |β| < 1, which should hold for any normalized autocorrelation. The
three-tap form can often provide improved performance over the single tap predictor, but at increased
complexity.

We denote the long-term predicted value as XP
P to distinguish it from the short-term predictor of

order N, XN , which contains all terms up to and including N. Thus, we can write the MMSPE between
X and XP

P as MMSPE(X, XP
P).

The prediction gain in dB is often used as a performance indicator for a pitch predictor. The
long-term prediction gain has the form of Equation (18) but with MMSPE(X, X10) replaced by
MMSPE(X, XP

P), where XP
P is the long-term predicted value for a pitch lag of P samples, where

usually P = 20 up to P = 140 samples at 8000 samples/s. Rather than calculate the prediction gain for
selected speech frames, we consult the literature to get a range of values that might be expected.

Cuperman and Pettigrew [24] indicate a pitch prediction gain of 1 to 5 dB, but of around 2 dB
on average. Other sources indicate that the prediction gains can be 3–4 dB [25] or up to 5–6 dB [26].
Table 3 shows the mutual information in bits/letter that can be associated with prediction gains of 1, 2,
3, 4, and 6 dB.

It is interesting to consult the standardized speech codecs to see how many bits/sample are
allocated to coding the pitch gain (coefficient or coefficients) and the pitch delay (lag). For the
narrowband form of the AMR codec, we see that for 7.95 bits/s rate, the pitch gain and pitch delay are
allocated 16 and 28 bits, respectively, per 20 ms frame, or 44 bits/160 samples = 0.275 bits/sample [3].
For the highest rate of 12.2 kbits/s, pitch gain and delay are allocated 46 bits/160 samples =
0.2875 bits/sample. Consulting Table 3, we see that this corresponds to a SPER of between 1 and 2 dB.

Table 3. Change in mutual information from Equation (17) for various pitch predictors and
corresponding SPER.

SPER in dB I(X; XP
P )− I(X; X0)

1 0.1667 bits/letter
2 0.33 bits/letter
3 0.5 bits/letter
4 0.65 bits/letter
6 1.0 bits/letter

8.2. Fixed Codebook

The most often used fixed codebooks in popular speech coders are sparse and have several shifted
phase tracks, where each track consists of equally spaced pulses with 4 or 5 zero values in between.
The best codeword or excitation from the fixed codebook is then selected by searching these tracks in
some specific order. Getting an estimate of the number of bits/sample to be associated with a fixed
codebook is therefore challenging. However, we know a few specific things.

The initial studies of analysis-by-synthesis codecs used Gaussian random sequences as the
excitation. In particular, Atal and Schroeder used 1024 Gaussian random sequences that were
40 samples long. Thus, this codebook used 10 bits/40 samples or 0.25 bits/sample [17]. However,
this does not include the fixed codebook gain. The U.S. Federal Standard FS1016 CELP at 4.8 kbits/s
has allocations of 56 bits per frame of 240 samples or 0.233 bits/sample to the fixed codebook [10].
For a CELP codec that operates at 6 kbits/s and above and a sparse codebook with five tracks and
8 pulses per track, an estimate of 3 bits plus a sign bit per track gives a fixed codebook rate of
0.5 bits/sample [25].

The narrowband AMR codec at 7.95 kbits/s allocates 88 bits/20 ms frame or 0.55 bits/sample
to the fixed codebook, and at 12.2 kbits/s, 1 bit/sample is devoted to the fixed codebook gain and
delay [3]. Thus, we see that at around 4 kbits/s the allocation is about 0.25 bits/sample, at 8 kbits/s
the fixed codebook gets about 0.5 bits/sample, and at 12.2 kbits/s, 1 bit/sample.
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We now have estimates of the bits/sample devoted to the short-term predictor, adaptive codebook,
and fixed codebook for a CELP codec operating at different bit rates. In the following, we show how to
exploit these estimates to predict the rate of CELP codecs for different speech sources.

9. Estimated versus Actual CELP Codec Performance

The analyses determining the mutual information in bits/sample between the input speech and
the short-term linear prediction, the adaptive codebook, and the fixed codebook individually, are
entirely new and provide new ways to analyze CELP codec performance by only analyzing the input
source. In this section, we estimate the performance of a CELP codec by analyzing the input speech
source to find the mutual information provided by each CELP component about the input speech and
then subtract the three mutual informations from a reference codec rate in bits/sample for a chosen
MOS value to get the final estimate of the rate required in bits/sample to achieve the target MOS.

For waveform speech coding, such as differential pulse code modulation (DPCM), for a particular
utterance, we can study the rate in bits/sample versus the mean squared reconstruction error or SNR
to obtain some idea of the codec performance for this input speech segment [14,15]. However, while
SNR may order DPCM subjective codec performance correctly, it does not provide an indicator of the
actual difference in subjective performance. Subjective performance is most accurately available by
conducting subjective listening tests to obtain mean opinion scores (MOS). Alternatively, reasonable
views of subjective performance can be obtained from software such as PESQ /MOS [12]. We use the
latter. In either case, however, MOS cannot be generated on a per-frame basis as listening tests and
PESQ values are generated from longer utterances.

Therefore, we cannot use the per-frame estimates of mutual information from Section 7 and need
to calculate estimates of mutual information over longer sentences. To this end, Table 4 contains
autocorrelations for two narrowband (200 to 3400 Hz) utterances sampled at 8000 samples/s, “We
were away a year ago,” spoken by a male and “A lathe is a big tool. Grab every dish of sugar,’, spoken
by a female, including the decomposition of the sentences into five modes, namely voiced, unvoiced,
onset, hangover, and silence, and their corresponding relative frequencies. The two utterances are
taken from the Open Speech Repository [27]. These data are excerpted from tables in Gibson and
Hu [6] and are not calculated on a per-frame basis but averaged over all samples of the utterance
falling in the specified subsource model.

From Table 4, the voiced subsource models are set as N = 10th order, with the 1 in the column
vector representing the a0th = 1 term. The onset and hangover modes are modeled as N = 4th order
autoregressive (AR). We see from this table that the sentence “We were away . . . ,” is voiced, with
a relative frequency of 0.98, and that the sentence “A lathe is a big . . . ,” has a breakdown of voiced
(0.5265), silence (0.3685), unvoiced (0.0771), onset (0.0093), and hangover (0.0186). The MMSPEs for
each mode are also shown in the table.

We focus on G.726 as our reference codec. Generally, G.726 adaptive differential pulse code
modulation (ADPCM) at 32 kbits/s or 4 bits/sample for narrowband speech is considered to be“toll
quality”. G.726 is selected as the reference codec because ADPCM is a waveform-following codec
and is the best-performing speech codec that does not rely on a more sophisticated speech model.
In particular, G.726 utilizes only two poles and six zeros, and the parameter adaptation algorithms
rely only on polarities. G.726 will track pure tones as well as other temporal waveforms in addition to
speech. In G.726, no parameters are coded and transmitted, only the quantized and coded prediction
error signal. Finally, both mean squared reconstruction error or SNR and MOS have meaning for G.726,
which is useful since SPER plays a role in estimating the change in mutual information from the log
ratio of entropy powers.

From Tables 5 and 6, G.726 achieves a PESQ/MOS of about 4.0 for 4 bits/sample and for both
sentences, “We were away a year ago,” spoken by a male speaker and “A lathe is a big tool. Grab every
dish of sugar,” spoken by a female [6]. Therefore, we use 4 bits/sample as our reference point for toll
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quality speech for these two sentences. We then subtract from the rate of 4 bits/sample the rates in
bits/sample we associate with each of the CELP codec components as estimated from Sections 7 and 8.

Table 4. Composite source models for narrowband speech sentences [6]. V, voiced; UV, unvoiced; ON,
onset; H, hangover; S, silence.

Sequence Mode Autocorrelation Coefficients for V, ON, H Mean Square ProbabilityAverage Frame Energy for UV Prediction Error

“lathe”
V [1 0.8217 0.5592 0.3435 0.1498 0.0200 0.0656 0.5265

(Female)

−0.0517 −0.0732 −0.0912 −0.1471 −0.2340]

(active speech level: −18.1 dBov)

ON [1 0.8495 0.5962 0.3979 0.2518] 0.0432 0.0093

(sampling rate: 8 kHz)

H [1 0.2709 0.2808 0.1576 0.1182] 0.7714 0.0186

UV 0.1439 0.1439 0.0771

S 0.3685

“we were away”
V [1 0.8014 0.5176 0.2647 0.0432 −0.1313 0.0780 0.9842

(Male)

−0.2203 −0.3193 −0.3934 −0.4026 −0.3628]

(active speech level: −16.5 dBov)

ON [1 0.8591 0.7215 0.6128 0.5183] 0.0680 0.0053

(sampling rate: 8 kHz)

H 0

UV 0

S 0.0105

For “We were away . . . ,” we see from Table 4 that the 10th order model of the voiced mode
has a MMSPE = 0.078, which corresponds to a mutual information reduction of 1.84 bits/sample.
For this highly voiced sentence, we estimate the mutual information corresponding to the adaptive
codebook as 0.5 bits/sample, and at a codec rate of 8000 bits/s, the fixed codebook mutual information
would correspond to 0.5 bits/sample. Silence corresponds to about only 1 percent of the total
utterance. If we sum these contributions up and subtract them from 4 bits/sample, we obtain
4− 2.84 = 1.16 bits/sample. Inspecting Table 5, the rates for the AMR and G.729 codecs at this
MOS are 1.1 bits/sample, so there is surprisingly good agreement.

Table 5. Codec rates to achieve PESQ/mean opinion score (MOS) of 4.0 for “We were away . . . ” [6].
AMR, adaptive multirate.

Codec R Bits/Sample

G.726 4.0 bits/sample
G.729 1.1 bits/sample
AMR 1.1 bit/sample

From Table 4, we see that for the utterance, “A lathe is . . . ,” there is broader mix of speech
modes, including significant silence and unvoiced components. Neither of these modes had to be
dealt with for the sentence “We were away . . . ”. Since silence is almost never perfect silence and
usually consists of low level background noise, we associate the bits/sample for silence with a silence
detection/comfort noise generation (CNG) method [25]. From Table 6, we see that G.726 with CNG
is about 1.2 bits/sample lower than G.726, even though it occurs for only a 0.3685 portion of the
utterance. For the short-term prediction, the MMSPE = 0.0656, which corresponds to a mutual
information of 1.96 bits/sample. The adaptive codebook contribution at 8 kbits/s can again be
estimated as 0.5 bits/sample, and the fixed codebook component estimated at 0.5 bits/sample.

If we now combine all of these estimates with their associated relative frequencies of occurrence
as indicated in Table 4, we obtain a total mutual information of 0.5265(1.96+ 0.5) + 1.2+ 0.5(0.0771) =
2.5 bits/sample. Subtracting this from 4 bits/sample, we estimate that the CELP codec rate in
bits/sample for an MOS = 4.0 would be 1.5 bits/sample. We see from Table 6 that for AMR and G.729,
their rate is 1.0 bits/sample. This gap can be narrowed if the adaptive codebook contribution is toward
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the upper end of the expected SPER of say 6 dB. In this case, the voiced component has the mutual
information of 0.5265(1.96 + 1.0) = 1.56, so the total mutual information is 2.8, and then subtracting
from 4 bits/sample, we obtain a CELP codec rate estimate of 1.2 bits/sample to achieve an MOS =
4.0. The actual CELP rate needed by G.729 and AMR for this MOS is about 1.0 bits/sample, which
constitutes good agreement.

Table 6. Codec rates to achieve PESQ/MOS of 4.0 for “Lathe” [6]. CNG, comfort noise generation.

Codec R Bits/Sample

G.726 4.0 bits/sample
G.726 w/CNG 2.8 bits/sample

G.729 1.0 bits/sample
AMR 1.0 bit/sample

10. Conclusions

We have introduced a new approach to estimating CELP codec performance on a particular
speech utterance by analysis of the input speech source only. That is, a particular CELP codec does not
need to be implemented and used to process the speech. We have presented examples that illustrate the
steps in the process and the accuracy of the estimated performance. While the power of the approach
is evident, it is clear that many more sentences need to be processed to gain experience in estimating
the various components. However, this approach offers the possibility of conducting performance
analyses prior to the implementation of new CELP codec architectures and perhaps other new speech
codec designs. It is striking that estimates of codec performance are possible while only knowing
the source model and the distortion measure. Thus, in one sense, this new method parallels rate
distortion theory.
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Abbreviations

The following abbreviations are used in this manuscript:

AR Autoregressive
ADPCM Adaptive differential pulse code modulation
AMR Adaptive multirate
AbS Analysis-by-synthesis
CELP Code-excited linear prediction
CNG Comfort noise generation
DPCM Differential pulse code modulation
EVS Enhanced voice services
MOS Mean opinion score
MSPE Mean squared prediction error
MMSPE Minimum mean squared prediction error
MMSE Minimum mean squared error
SNR Signal to quantization noise ratio
SPER Signal to prediction error ratio
VoIP Voice over Internet protocol
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