
 information

Article

DGA CapsNet: 1D Application of Capsule Networks
to DGA Detection

Daniel S. Berman

Johns Hopkins University Applied Physics Laboratory (JHU/APL1), Laurel, MD 20723, USA;
daniel.berman@jhuapl.edu

Received: 26 February 2019; Accepted: 23 April 2019; Published: 27 April 2019
����������
�������

Abstract: Domain generation algorithms (DGAs) represent a class of malware used to generate large
numbers of new domain names to achieve command-and-control (C2) communication between the
malware program and its C2 server to avoid detection by cybersecurity measures. Deep learning
has proven successful in serving as a mechanism to implement real-time DGA detection, specifically
through the use of recurrent neural networks (RNNs) and convolutional neural networks (CNNs).
This paper compares several state-of-the-art deep-learning implementations of DGA detection found
in the literature with two novel models: a deeper CNN model and a one-dimensional (1D) Capsule
Networks (CapsNet) model. The comparison shows that the 1D CapsNet model performs as well as
the best-performing model from the literature.

Keywords: deep learning; deep neural networks; capsule networks; convolutional neural networks;
cybersecurity; domain generation algorithms

1. Introduction

Domain generation algorithms (DGAs) are a type of malware tool used by attackers to generate
a large number of domain names on the fly. By generating a massive quantity of domain names as
needed, attackers can hide their command and control (C2) server and evade detection by standard
cyber security methods. This scheme, called domain fluxing, is similar to hiding the proverbial needle
(the attacker’s C2 server) in a haystack [a long list of Internet Protocol (IP) addresses] [1]. Prior to
DGAs, malware used a static list of domain names, and cyber defenders neutralized the malware
by blacklisting specific domain names. However, with the introduction of DGAs, the domains are
constantly changing, and it becomes impossible for the cyber defender to block all of the attacker
domains via a blacklist. Furthermore, reverse engineering a DGA is a time-consuming task even if the
defender can achieve it. A more effective and faster approach involves the use of machine-learning
techniques to identify and flag suspected malicious domains.

The initial attempts at developing DGA detectors were aimed at classifying the DGA using a
variety of traits. McGrath and Gupta [2] used features such as “whois” records, lexical characteristics,
and known malicious IP addresses. Other researchers employed time-based, domain name server
(DNS) answer-based, and domain-based properties using J48 trees [3]. Features such as domain
length and hostname, among others, were used to identify advertising spam [4]. Other researchers
used features such as the distribution of characters, bigrams, and structural features of the domains,
like length and word presence, and techniques like regression [5], Alternating Decision Trees [6],
support vector machines (SVMs) [7], and evolving spiking neural networks (eSNNs) [8]. In addition,
deep learning and sequences of universal resource locators (URLs) using domain-based features and
momentary URL-based features have been used for DGA detection [9]. The main problem with these
methods is that they typically require some prepro cessing and thus cannot be implemented effectively
in real time.

Information 2019, 10, 157; doi:10.3390/info10050157 www.mdpi.com/journal/information

http://www.mdpi.com/journal/information
http://www.mdpi.com
http://www.mdpi.com/2078-2489/10/5/157?type=check_update&version=1
http://dx.doi.org/10.3390/info10050157
http://www.mdpi.com/journal/information

Information 2019, 10, 157 2 of 15

The first real-time DGA classifier used a featureless Long Short-Term Memory (LSTM) network,
a type of recurrent neural network (RNN) [10]. This approach requires no external features and
treats each character of the domain as a feature. It has been used with a variety of deep-learning
models including convolutional neural networks (CNNs)+LSTM [11], bidirectional LSTM [12] with
embedding [11], simple one-dimensional (1D) CNNs with only a convolution layer and no maximum
pooling layers [13], pre-trained CNN image classifiers [14], multiple CNNs in parallel [15], and
class-imbalance LSTMs specifically for identifying classes of DGAs [16]. These are all models included
in the review [17] that found they all performed similarly well. These achieved varying levels of
success. In particular, the embedding, CNN, and RNN layers have successfully resolved a variety of
language-related problems.

The focus of this study is to introduce the following two new real-time DGA detection models and
to then replicate and compare the performance of the most successful of the supervised deep learning
techniques presented in the literature to these models.

• A 1D version of Capsule Networks (CapsNet), a new CNN architecture that eliminates maximum
pooling layers in favor of new capsule layers

• A 1D CNN that contains multiple layers, including maximum pooling layers

Although capsule networks were recently applied to text classification [18], to the author’s
knowledge, this is the first time that methods using capsule networks were applied to the language
and text domain within the cybersecurity arena. Furthermore, because CNNs perform better with
more layers, a model with a deeper 1D CNN architecture was developed.

The two models tested and featured in this paper are compared to four models from the literature,
specifically LSTM [10], CNN+LSTM [11], bidirectional LSTM [11], and a shallow 1D CNN [13], and
parallel CNNs [15]. These five models were chosen because they only used the raw domain name
as input without feature engineering, as this facilitates real time detection of DGAs. Models that
performed feature engineering were not considered. Additionally, the model using a pretrained
CNN image classifier [14] was not selected for comparison because it was not as successful as the
others. The bidirectional LSTM demonstrated in [12] was also not chosen because the addition of an
embedding layer, as was implemented in [11], generally improves results.

The remainder of this paper is organized as follows: Section 2 provides background information
on deep learning. Sections 3 and 4, respectively, describe the models that were tested in greater detail
and the datasets that were used. Section 5 discusses the various metrics that were used to evaluate
the models. Section 6 presents the models’ training and testing results. Lastly, Section 7 presents the
conclusions that can be drawn.

2. Background

This section provides a brief overview of the various concepts discussed in the introduction.
A more in-depth technical description of the various methods is beyond the scope of this paper and is
provided in the literature.

2.1. Embedding

Embedding is a popular technique in deep learning for handling categorical data. It was specifically
developed for the use of words, and it is computationally efficient with big datasets [19]. Embedding
operates as a trainable layer in which categorical data are encoded as a dense vector of real values with
reduced dimensionality. This method is an alternative to one-hot encoding, which is not trainable.
Embedding stores the information of n words in an n × m matrix, where m� n, each word is stored
in a 1 × m vector, whereas one-hot encoding stores each word as a 1 × n vector with all but one
entry merely 0 (i.e., a sparse matrix). If one has a dataset of k phrases, where k� n, this is much more
efficient than one-hot encoding. Embedding also enables the analyst to explore words that are similar
to each other. (Using distance measures, words that are clustered together have similar meanings.)

Information 2019, 10, 157 3 of 15

2.2. Convolutional Neural Networks

A CNN is a type of neural network used to process inputs that are stored in arrays with fixed
dimensions [19–21]. It is a popular method used in deep-learning algorithms and is most frequently
applied to images. However, CNNs can also be applied to 1D arrays such as signals, text, and
sequences and to three-dimensional (3D) arrays such as videos and volumetric images. Regardless of
dimensionality, CNNs are used where there is some spatial or temporal ordering and proximity is
significant. A 1D CNN can be combined with an embedding layer to produce better results.

In addition to embedding and classification layers, there are two other types of layers that make
up a CNN, convolution and pooling, as shown in Figure 1. The convolution layers are the core of the
CNN. This layer essentially applies a filter to a subset of the input at a specific instance of time. The
application of the filter creates a weighted linear sum of the input’s subset to which the filter is applied.
Then, a non-linear function is applied by implementing a rectified linear unit that is applied across the
entirety of the height and width of the input. The end result of the application of a single convolutional
layer (i.e., a filtering function) and the application of the non-linearity yields a feature map. The output
of the CNN is a stack of feature maps, each capturing multiple convolutions of the input and each
using a different filter.

Information 2019, 10, x FOR PEER REVIEW 3 of 15

2.2. Convolutional Neural Networks

A CNN is a type of neural network used to process inputs that are stored in arrays with fixed
dimensions [19–21]. It is a popular method used in deep-learning algorithms and is most frequently
applied to images. However, CNNs can also be applied to 1D arrays such as signals, text, and
sequences and to three-dimensional (3D) arrays such as videos and volumetric images. Regardless of
dimensionality, CNNs are used where there is some spatial or temporal ordering and proximity is
significant. A 1D CNN can be combined with an embedding layer to produce better results.

In addition to embedding and classification layers, there are two other types of layers that make
up a CNN, convolution and pooling, as shown in Figure 1. The convolution layers are the core of the
CNN. This layer essentially applies a filter to a subset of the input at a specific instance of time. The
application of the filter creates a weighted linear sum of the input’s subset to which the filter is
applied. Then, a non-linear function is applied by implementing a rectified linear unit that is applied
across the entirety of the height and width of the input. The end result of the application of a single
convolutional layer (i.e., a filtering function) and the application of the non-linearity yields a feature
map. The output of the CNN is a stack of feature maps, each capturing multiple convolutions of the
input and each using a different filter.

Figure 1. A convolutional neural network for sentence classification [22].

The pooling layers apply non-linear down-sampling functions. For example, one would select
the maximum value over non-overlapping subsets of the feature map. These pooling layers are
generally applied periodically between convolution layers to reduce the size of the feature map as
the computation proceeds through the network. This has three main benefits:

• Reduces the number of parameters for the model,
• Reduces the memory required to perform computations, and
• Reduces overfitting.

Furthermore, the CNN includes fully connected layers that are used to perform classification
and regression, and it has regularization techniques that can help to reduce overfitting. One of the
most successful regularization methods is called dropout [23]. When training a model using dropout,
during each training iteration, a specified percentage of nodes in a given layer and their incoming
and outgoing connections are removed at random. Dropout is typically included in CNNs because it
improves the accuracy and generalizability of a model by increasing the likelihood that a node will
be useful. In addition, spatial dropout [24] is a type of dropout specific to CNNs; it applies dropout
to a filter at a layer in the CNN.

2.3. Capsule Networks

CapsNet is a relatively new type of neural network architecture that was first developed in 2017
[25] to address some of the shortcomings of CNNs. These shortcomings are fairly significant and can

Figure 1. A convolutional neural network for sentence classification [22].

The pooling layers apply non-linear down-sampling functions. For example, one would select
the maximum value over non-overlapping subsets of the feature map. These pooling layers are
generally applied periodically between convolution layers to reduce the size of the feature map as the
computation proceeds through the network. This has three main benefits:

• Reduces the number of parameters for the model,
• Reduces the memory required to perform computations, and
• Reduces overfitting.

Furthermore, the CNN includes fully connected layers that are used to perform classification
and regression, and it has regularization techniques that can help to reduce overfitting. One of the
most successful regularization methods is called dropout [23]. When training a model using dropout,
during each training iteration, a specified percentage of nodes in a given layer and their incoming
and outgoing connections are removed at random. Dropout is typically included in CNNs because it
improves the accuracy and generalizability of a model by increasing the likelihood that a node will be
useful. In addition, spatial dropout [24] is a type of dropout specific to CNNs; it applies dropout to a
filter at a layer in the CNN.

Information 2019, 10, 157 4 of 15

2.3. Capsule Networks

CapsNet is a relatively new type of neural network architecture that was first developed in
2017 [25] to address some of the shortcomings of CNNs. These shortcomings are fairly significant and
can inhibit a model’s generalizability. For example, classic CNNs cannot generalize to new viewpoints.
CapsNet attempts to address the Picasso problem, in which a face with all the correct parts but without
the correct spatial correlation are recognized as a face. In addition, Sabour et al. [25] claim that capsule
networks are pose invariant and can generalize better to new unlearned viewpoints. Lastly, CapsNet
could have a stronger resilience to certain types of adversarial attacks.

CapsNet, as shown in Figure 2, removes the pooling layers entirely and replaces them with
hierarchical capsule layers. Each capsule applies a subset of the filters applied in the conventional
convolutional layer. For example, if 256 filters are applied in the conventional convolutional layer, and
there are 32 capsule layers, each capsule layer would be composed of eight filters, each one called a
capsule. This is the PrimaryCaps layer. A non-linear weighting function, called a squashing function,
is applied to normalize the data and multiplied by a weight. Then, in a process similar to k-means
clustering called routing by agreement, the capsules with a similar orientation and magnitude are
more heavily weighted in an average across all capsules. This is performed by taking the mean of the
capsules, then calculating a weight for each capsule as a function of distance from the mean. A new
mean is calculated using those weights, and the weights are recalculated. This is repeated for a set
number of times. This is the ClassCaps layer. The squashing function is applied again, and a prediction
is made based on the length of the ClassCaps.

Information 2019, 10, x FOR PEER REVIEW 4 of 15

inhibit a model’s generalizability. For example, classic CNNs cannot generalize to new viewpoints.
CapsNet attempts to address the Picasso problem, in which a face with all the correct parts but
without the correct spatial correlation are recognized as a face. In addition, Sabour et al. [25] claim
that capsule networks are pose invariant and can generalize better to new unlearned viewpoints.
Lastly, CapsNet could have a stronger resilience to certain types of adversarial attacks.

CapsNet, as shown in Figure 2, removes the pooling layers entirely and replaces them with
hierarchical capsule layers. Each capsule applies a subset of the filters applied in the conventional
convolutional layer. For example, if 256 filters are applied in the conventional convolutional layer,
and there are 32 capsule layers, each capsule layer would be composed of eight filters, each one called
a capsule. This is the PrimaryCaps layer. A non-linear weighting function, called a squashing
function, is applied to normalize the data and multiplied by a weight. Then, in a process similar to
k-means clustering called routing by agreement, the capsules with a similar orientation and
magnitude are more heavily weighted in an average across all capsules. This is performed by taking
the mean of the capsules, then calculating a weight for each capsule as a function of distance from
the mean. A new mean is calculated using those weights, and the weights are recalculated. This is
repeated for a set number of times. This is the ClassCaps layer. The squashing function is applied
again, and a prediction is made based on the length of the ClassCaps.

Figure 2. A one-dimensional (1D) capsule network architecture.

2.4. LSTMs

An RNN is a type of neural network capable of receiving input sequences of variable lengths
because it processes the inputs one element at a time. An RNN uses the output of the previous input
as an additional input for the next element. As a result, RNNs are frequently applied to speech and
language problems.

The most commonly used type of RNN is the LSTM unit [26]. Although there are other types of
advanced RNNs, the LSTM network is the only one discussed in this paper because of its prominence.

Prior to the introduction of LSTMs, RNNs were difficult to train because the gradients can easily
vanish or explode [27]. With the introduction of the LSTM unit, the RNN is easier to train and it is
capable of maintaining a long memory. The LSTM approach maintains a “state vector” that contains
the “memory” of past events, and this becomes an additional input for the next time step.

Figure 3 shows three RNN models, each with an embedded layer, which are considered herein.
In this paper, the LSTM type of RNN is used. The first is a unidirectional RNN, the second is a
bidirectional RNN, and the third is a unidirectional RNN with a CNN layer.

Figure 2. A one-dimensional (1D) capsule network architecture.

2.4. LSTMs

An RNN is a type of neural network capable of receiving input sequences of variable lengths
because it processes the inputs one element at a time. An RNN uses the output of the previous input
as an additional input for the next element. As a result, RNNs are frequently applied to speech and
language problems.

The most commonly used type of RNN is the LSTM unit [26]. Although there are other types of
advanced RNNs, the LSTM network is the only one discussed in this paper because of its prominence.

Prior to the introduction of LSTMs, RNNs were difficult to train because the gradients can easily
vanish or explode [27]. With the introduction of the LSTM unit, the RNN is easier to train and it is
capable of maintaining a long memory. The LSTM approach maintains a “state vector” that contains
the “memory” of past events, and this becomes an additional input for the next time step.

Information 2019, 10, 157 5 of 15

Figure 3 shows three RNN models, each with an embedded layer, which are considered herein.
In this paper, the LSTM type of RNN is used. The first is a unidirectional RNN, the second is a
bidirectional RNN, and the third is a unidirectional RNN with a CNN layer.Information 2019, 10, x FOR PEER REVIEW 5 of 15

Figure 3. (a) A recurrent neural network (RNN) with an embedding layer, (b) a bidirectional RNN
with an embedding layer, (c) an RNN with an embedding layer and a Convolutional Neural Networks
(CNN) layer.

3. Model Implementation

All seven models were built and implemented in Python version 3.6.3 using the libraries
Tensorflow-gpu version 1.8.0 and Keras version 2.1.6 on four GeForce GTX 1080 Ti graphical processing
units (GPUs). Additionally, the metrics were calculated using the functions in the package scikit-learn
version 0.20.3. The following models from the literature were built using the descriptions from their
respective papers and the parameters specified: LSTM, CNN+LSTM, bidirectional LSTM, and a basic
1D CNN. If certain parameters were not provided, as was the case for the bidirectional LSTM and
CNN+LSTM models, the parameters that produced the best results were chosen so that the comparison
would be fair. Table 1 provides the parameters of the seven different deep learning models.

The CapsNet code in [28] is based on a two-dimensional (2D) implementation, and was adapted
for this study to make use of only 1D data.

All of the models were optimized with the Adam algorithm [29] and trained with a learning rate
of 0.001. The models were trained until the validation accuracy showed no signs of increased
improvement in batches of 10 epochs.

The domain names were processed without any modification to the characters, and any
capitalization was allowed if they existed in the dataset.

Figure 3. (a) A recurrent neural network (RNN) with an embedding layer, (b) a bidirectional RNN
with an embedding layer, (c) an RNN with an embedding layer and a Convolutional Neural Networks
(CNN) layer.

3. Model Implementation

All seven models were built and implemented in Python version 3.6.3 using the libraries
Tensorflow-gpu version 1.8.0 and Keras version 2.1.6 on four GeForce GTX 1080 Ti graphical processing
units (GPUs). Additionally, the metrics were calculated using the functions in the package scikit-learn
version 0.20.3. The following models from the literature were built using the descriptions from their
respective papers and the parameters specified: LSTM, CNN+LSTM, bidirectional LSTM, and a basic
1D CNN. If certain parameters were not provided, as was the case for the bidirectional LSTM and
CNN+LSTM models, the parameters that produced the best results were chosen so that the comparison
would be fair. Table 1 provides the parameters of the seven different deep learning models.

The CapsNet code in [28] is based on a two-dimensional (2D) implementation, and was adapted
for this study to make use of only 1D data.

All of the models were optimized with the Adam algorithm [29] and trained with a learning
rate of 0.001. The models were trained until the validation accuracy showed no signs of increased
improvement in batches of 10 epochs.

The domain names were processed without any modification to the characters, and any
capitalization was allowed if they existed in the dataset.

Information 2019, 10, 157 6 of 15

Table 1. Table of model parameters and layers.

Model Batch Size Model Parameters and Layers

1D Shallow CNN 256

Embedding(128)
Conv2D(filters=1000, kernel_size=2, padding=’same’,
kernel_initializer =’glorot_normal’)
Dropout(0.5)
Flatten()
Dense(100, kernel_initializer= ‘glorot_normal’)
Dense(1, kernel_initializer=’glorot_normal’)

1D CNN with
MaxPooling 32

Embedding(50)
Dropout(0.25)
Conv1D(filters=250, kernel_size=4, padding=’same’)
MaxPooling1D(pool_size=3)
Conv1D(filters=300, kernel_size=3, padding=’same’)
Flatten()
BatchNormalization()
Dense(300)
Dropout(0.2)
BatchNormalization()
Dense(1)

Long Short-Term
Memory (LSTM) 256

Embedding(128)
LSTM(128)
Dropout(0.5)
Dense(1)

Bidirectional LSTM 256

Embedding(50)
Bidirectional(LSTM(128, dropout=0.2, recurrent_dropout=0.2))
Dropout(0.5)
Dense(1)

CNN+LSTM 256

Embedding(128)
Conv1D(filters=250, kernel_size=4, padding=’same’)
LSTM(128)
Dropout(0.5)
Dense(1)

Parallel CNNs 256

def conv1DLayer(filter, kernel_size):

• Conv1D(filters=filter, kernel_size=kernel_size,
input_shape=(maxlen,32), padding=‘same’,
activation=‘relu’, strides=1)

• BatchNormalization()
• Lambda(lambda x:K.sum(x, axis=1),output_shape=(filter,))
• Dropout(.5)

x1 = Embedding(32)
[conv1DLayer(2,256), conv1DLayer(3,256), conv1DLayer(4,256),
conv1DLayer(5,256)]
Dense(1024, activation=’relu’)
Dropout(0.5)
Dense(1024, activation=’relu’)
Dropout(0.5)
Dense(1, activation=’sigmoid’)

Capsule Network
(CapsNet) 318

Embedding(128)
Conv1D(filters=256, kernel_size=8, padding=’valid’)
SpatialDropout1D(0.2)
Conv1D(filters=512, kernel_size=4, padding=’valid’)
Dropout(0.7)
Conv1D(filters=256, kernel_size=4, padding=’valid’)
PrimaryCaps(dim_capsule=8, n_channels=32, kernel_size=4,
strides=2, padding=’valid’)
CapsuleLayer(num_capsule=1, dim_capsule=16, routing=7)
Length(0.85, 0.15)

Information 2019, 10, 157 7 of 15

4. Datasets

The datasets used for these experiments were generated from two sources:

• The Alexa top one million domains, which formed the list of benign domain names [30].
• The Open-Source Intelligence (OSINT) DGA feed from Bambenek Consulting, which provided

the malicious domain names [31]. This data feed was based on 50 DGA algorithms that together
contained 852,116 malicious domain names. The dataset was downloaded on May 23, 2018 and
DGAs were generated on that day. Also, on April 18, 2019, an additional dataset of 855,197 DGA
generated domains was downloaded from OSINT for testing differences in model performance
based on time and is regarded as a separate test dataset.

Hence, the resulting dataset contained 1,852,116 domain names; one million were benign and
852,116 were malicious. This dataset contains two overarching types of DGAs: ones that produce
random looking domains with high character entropy (e.g., oxufyrqcqopty.net) ones with low character
entropy composed of real words (e.g., addressblamescore.com). There were seven DGAs that used
real words or websites in their generation of domain names: cryptowall, gozi, matsnu, pizd, suppobox,
unknowndropper, and Volatile Cedar/Explosive.

This study considered three different experiments. The first, called random assignment, used the
full dataset to create the training, validation, and test data using a 60, 20, and 20% split, respectively.
For this experiment, 46.03% of the domain names in the test dataset were malicious.

The second experiment takes the April 18, 2019 dataset downloaded from OSINT and tests the
models trained in experiment one. This is done to test the ability of the models to detect real word-based
DGAs after a change in the words used to generate these domain names.

The third experiment, called novel DGA, was constructed to test how well the models can
generalize to new previously unforeseen (or novel) DGAs. In this experiment, the malicious domain
names for the training and validation datasets were created with only 41 of the 50 DGAs, whereas
the malicious domain names for the testing dataset came from the remaining nine DGAs. (The 41
DGAs were selected at random.) Again, the benign domain names were assigned to the training,
validation, and test datasets using a 60, 20, and 20% split, respectively. In this experiment, 27.35% of
the domain names in the test dataset were malicious. It is expected that performance on the test set
will be lower in experiment two than in experiment one because the test dataset contains domains
from DGAs the model was never trained on. All seven models that were built were trained and tested
on these datasets.

The test datasets in both the randomly assigned and the novel DGA experiments contain both
types of DGAs. The random assignment dataset contains domain names from all of the real word-based
DGAs without considering their date of generation. The novel DGA experiment contains only one of
these DGAs: unknowndropper.

5. Evaluation Metrics

Four papers reported different metrics [10,11,13,14]. The most commonly used metric was the
Area under the [Receiver Operating Characteristic (ROC)] curve (AUC). The AUC is the area under a
curve of the false positive rate vs true positive rate for various threshold values. However, because the
AUCs differed by such small values, differences could be a result of statistical variation. Therefore, this
research considered the partial AUC, up to a false positive rate of 0.1%. A maximum false positive
rate of 0.1% was selected because any higher would make the model unusable in a real environment.
Additionally, this study considered five other different metrics: accuracy, recall, precision, false positive
rate, and F1-score.

All five evaluation metrics are derived from the four metrics found in the confusion matrix, which
is based on the calculated prediction versus the ground truth, as shown in Table 2:

Information 2019, 10, 157 8 of 15

Table 2. Results of random assignment experiment with the test dataset.

Predicted Class

Malicious Benign

Actual Class (Ground Truth):
Malicious True Positive (TP) False Negative (FN)

Benign False Positive (FP) True Negative (TN)

Accuracy (acc): The fraction of correctly classified examples. The usefulness of accuracy is limited
because there is significantly more risk with misclassifying a malicious domain name than with
misclassifying a benign domain name. However, it does provide useful insight when the classes
are balanced.

acc =
TP + TN

TP + TN + FP + FN

Recall (r): The fraction of malicious domains that are classified as malicious. This is also called true
positive rate (TPR).

r =
TP

TP + FN

Precision (p): The fraction of domains classified as malicious that are actually malicious.

p =
TP

TP + FP

False Positive Rate (FPR): The fraction of benign domains classified as malicious.

FPR =
FP

TN + FP

F1-Score (F1): The F1-score is the harmonic mean of precision (p) and the true positive rate (r).

F1 =
2

1
r +

1
p

= 2
p ∗ r
p + r

In addition, the amount of time required to classify one domain name will be determined to consider
the efficiency of the models.

6. Results

The models that were trained the fastest were the CNN models, followed by the LSTM models,
then the CapsNet model, which took nearly twice as long to train as the LSTM models. However,
a single training epoch took no more than 15 minutes. Tables 3 and 4 show the simulation results
for the two different experiments. Table 5 shows the breakdown of the accuracy in Table 3 for each
DGA and benign data. Table 6 shows the performance of the same models on the time split data
collected nearly one year later. Table 7 shows the breakdown of the accuracy in Table 4 for each DGA
and benign data. The best two methods for each metric are shown in bold. These tables show that
although the CNN+LSTM and CapsNet models provided excellent performance, the other methods’
performance was nearly as good. Furthermore, the performance for the random assignment experiment
was noticeably improved over that for the novel DGA experiment; however, the results with the
novel DGA experiment are still highly accurate. In the random assignment data experiment, both the
CNN+LSTM and the CapsNet models were in the top two best performing models for four of the
metrics. The CapsNet model had the second best the F1-score and the second worst performance in
the partial AUC metric. Additionally, the CapsNet model had the second highest accuracy averaged
across all the different types of DGAs and benign data. Performance was even better in the novel DGA
experiment, in which the CapsNet model achieved the highest accuracy, F1-score, and recall, and the

Information 2019, 10, 157 9 of 15

second highest partial AUC. It also had the highest accuracy averaged across all the different types of
DGAs and benign data.

The hardest DGAs to detect were the real word-based DGAs. In Table 5, the DGAs with the
lowest performance were cryptowall, gozi, matsnu, and virut. Three of those are real word-based DGAs.
Detection of Volatile Cedar/Explosive, pizd, suppobox, and unknowndropper varied depending on the model.
Table 6 shows that the performance of all the models dropped significantly in detecting pizd and
suppobox after the year. The reason for this is likely that the words used to create these domain names
changed, creating vulnerability. Only one of the real word-based DGAs was present in the test dataset
for the novel DGA experiment: unknowndropper, which was entirely undetected. The difficulty in
detecting this real word-based DGA exemplifies how difficult it is to detect novel real word-based
DGAs and real word-based DGAs when the words used to generate the domain name change.

Table 8 shows the evaluation times of the various models on a single domain. The times were
calculated by dividing the amount of time it took to classify each domain in the random assignment
test dataset individually by the number of domains. These results are in line with what would be
expected. The fastest methods are the two 1D CNN models, followed by CapsNet and lastly the LSTM
models. The LSTM models take an order of magnitude longer to process a single domain, making
them the most computationally expensive, with the bidirectional LSTM taking the longest because it
has to process the domain forward as well as backward.

Table 3. Results of random assignment experiment with the test dataset.

Model Accuracy Recall Precision FPR F1-Score Partial AUC

Shallow CNN 0.9927 0.9901 0.9940 0.0051 0.9920 0.9556

1D CNN 0.9936 0.9924 0.9937 0.0054 0.9931 0.9577

LSTM (128 embedding) 0.9932 0.9917 0.9935 0.0055 0.9926 0.9659

Bidirectional LSTM
(embedding) 0.9919 0.9893 0.9930 0.0060 0.9912 0.9670

Parallel CNNs 0.9884 0.9836 0.9913 0.0074 0.9874 0.9341

CNN+LSTM 0.9942 0.9930 0.9945 0.0047 0.9937 0.9626

CapsNet 0.9938 0.9916 0.9950 0.0042 0.9933 0.9481

Table 4. Results of the novel domain generation algorithm (DGA) experiment with the test dataset.

Model Accuracy Recall Precision FPR F1-Score Partial AUC

Shallow CNN 0.9613 0.8695 0.9875 0.0042 0.9247 0.8119

1D CNN 0.9684 0.8964 0.9868 0.0045 0.9394 0.8226

LSTM (128 embedding) 0.9689 0.8949 0.9904 0.0033 0.9402 0.8214

Bidirectional LSTM
(embedding) 0.9689 0.8990 0.9862 0.0047 0.9406 0.8298

Parallel CNNs 0.9585 0.8655 0.9806 0.0065 0.9194 0.7972

CNN+LSTM 0.9710 0.9013 0.9917 0.0028 0.9444 0.8535

CapsNet 0.9714 0.9044 0.9900 0.0034 0.9453 0.8403

Information 2019, 10, 157 10 of 15

Table 5. Accuracy of random assignment experiment with the test dataset for benign and DGA type.

Type of Data CNN+LSTM 1D CNN Shallow
CNN CapsNet LSTM Bidirectional

LSTM
Parallel
CNNs

Benign 0.9953 0.9946 0.9949 0.9958 0.9949 0.9940 0.9926

Cryptolocker 0.9917 0.9917 0.9875 0.9900 0.9883 0.9933 0.9817

P2P Gameover
Zeus 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Post Tovar GOZ 0.9999 1.0000 0.9999 1.0000 0.9998 0.9999 0.9999

Volatile
Cedar/Explosive 0.9848 0.9747 0.9848 1.0000 0.9899 0.9848 0.9343

bamital 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

banjori 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

bedep 1.0000 0.9394 1.0000 1.0000 0.9697 0.9697 0.9394

beebone 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

chinad 0.9966 1.0000 0.9761 0.9966 1.0000 1.0000 0.9795

corebot 1.0000 1.0000 0.9851 1.0000 1.0000 1.0000 1.0000

cryptowall 0.2727 0.2727 0.2273 0.2727 0.3182 0.2273 0.2273

dircrypt 0.9792 0.9792 0.9583 0.9722 0.9792 0.9792 0.9722

dyre 0.9994 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

fobber 0.9779 0.9779 0.9853 0.9779 0.9779 0.9853 0.9632

geodo 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

gozi 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

hesperbot 0.9487 0.9487 0.9487 0.9231 0.8974 0.9231 0.8718

kraken 0.9854 0.9769 0.9679 0.9831 0.9730 0.9730 0.9651

locky 0.9815 0.9760 0.9766 0.9834 0.9699 0.9656 0.9477

madmax 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

matsnu 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

murofet 0.9988 0.9974 0.9976 0.9985 0.9974 0.9979 0.9954

necurs 0.9818 0.9810 0.9715 0.9736 0.9756 0.9729 0.9539

nymaim 0.8998 0.8875 0.8662 0.8818 0.8621 0.8612 0.8342

padcrypt 0.9658 0.9487 0.9402 0.9658 0.9316 0.9658 0.8632

pandabanker 0.8750 1.0000 1.0000 1.0000 1.0000 0.8750 0.5000

pizd 0.9464 0.9196 0.8214 0.9196 0.8482 0.4821 0.0804

proslikefan 0.8980 0.8912 0.8707 0.8912 0.8299 0.8299 0.7823

pushdo 0.9178 0.9348 0.9207 0.8980 0.9008 0.8924 0.8499

pykspa 0.9613 0.9592 0.9462 0.9547 0.9469 0.9431 0.9290

qakbot 0.9892 0.9884 0.9834 0.9863 0.9850 0.9868 0.9813

ramdo 0.9974 0.9922 0.9974 0.9897 0.9974 0.9948 0.9716

ramnit 0.9804 0.9736 0.9699 0.9728 0.9719 0.9726 0.9571

ranbyus 0.9981 0.9981 0.9983 0.9971 0.9985 0.9981 0.9967

shifu 0.9533 0.9618 0.9278 0.9469 0.9384 0.9554 0.9618

shiotob/urlzone/bebloh 0.9861 0.9921 0.9905 0.9885 0.9869 0.9881 0.9711

simda 0.9895 0.9959 0.9817 0.9804 0.9841 0.9878 0.9414

sisron 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Information 2019, 10, 157 11 of 15

Table 5. Cont.

Type of Data CNN+LSTM 1D CNN Shallow
CNN CapsNet LSTM Bidirectional

LSTM
Parallel
CNNs

Sphinx 0.9938 0.9938 0.9875 0.9938 0.9938 0.9875 0.9813

Suppobox 0.9188 0.9086 0.6142 0.8782 0.6193 0.1980 0.0609

symmi 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9896

tempedreve 0.8696 0.8478 0.8043 0.8478 0.8478 0.8478 0.8478

tinba 0.9936 0.9940 0.9948 0.9914 0.9916 0.9914 0.9877

unknowndropper 0.9167 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

unknownjs 1.0000 1.0000 1.0000 1.0000 0.9231 0.9487 0.8718

vawtrak 0.8517 0.8485 0.8006 0.9075 0.8517 0.7703 0.5550

Vidro 0.9767 0.9535 0.9535 0.9302 0.9070 0.9302 0.9535

virut 0.3248 0.3419 0.2393 0.3419 0.1624 0.1368 0.1709

Micro Average 0.9040 0.9049 0.8892 0.9047 0.8880 0.8676 0.8319

Table 6. Accuracy of time split experiment with the test dataset for benign and DGA type.

Type of Data CNN+LSTM 1D CNN Shallow
CNN CapsNet LSTM Bidirectional

LSTM
Parallel
CNNs

Benign 0.9912 0.9878 0.9868 0.9878 0.9860 0.9903 0.9797

Cryptolocker 0.9995 0.9995 0.9975 1.0000 0.9990 1.0000 0.9990

P2P Gameover
Zeus 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998

Post Tovar GOZ 0.9950 0.9859 0.9950 0.9990 0.9940 0.9869 0.9789

Volatile
Cedar/Explosive 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Bamital 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Banjori 0.9857 0.9857 0.9714 0.9943 0.9800 0.9886 0.9629

Bedep 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Beebone 0.9889 0.9941 0.9915 0.9967 0.9941 0.9954 0.9759

Chinad 1.0000 0.9964 1.0000 0.9964 0.9964 0.9964 0.9893

corebot 0.2447 0.2021 0.3085 0.2660 0.2234 0.1915 0.1809

cryptowall 0.9875 0.9806 0.9806 0.9889 0.9764 0.9722 0.9528

Dircrypt 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999

dyre 0.9950 0.9833 0.9900 0.9917 0.9900 0.9833 0.9700

Fobber 0.9965 1.0000 1.0000 1.0000 0.9983 0.9965 0.9983

geodo 0.0833 0.0417 0.0417 0.0000 0.0833 0.0417 0.0417

Gozi 0.9479 0.9479 0.9479 0.9531 0.9271 0.9271 0.8750

hesperbot 0.9933 0.9851 0.9818 0.9923 0.9831 0.9817 0.9676

Kraken 0.9636 0.9644 0.9512 0.9619 0.9651 0.9621 0.9392

locky 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Madmax 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

matsnu 0.9983 0.9969 0.9959 0.9975 0.9974 0.9975 0.9954

Murofet 0.9818 0.9837 0.9774 0.9761 0.9754 0.9739 0.9499

Information 2019, 10, 157 12 of 15

Table 6. Cont.

Type of Data CNN+LSTM 1D CNN Shallow
CNN CapsNet LSTM Bidirectional

LSTM
Parallel
CNNs

Necurs 0.8930 0.8758 0.8590 0.8762 0.8615 0.8625 0.8097

nymaim 0.9670 0.9479 0.9427 0.9444 0.9514 0.9462 0.8490

padcrypt 0.9091 0.9697 0.9697 0.8788 1.0000 0.9394 0.8485

pandabanker 0.4686 0.5784 0.4451 0.4471 0.4490 0.1882 0.0745

Pizd 0.8808 0.8577 0.8269 0.8423 0.8513 0.8372 0.7449

proslikefan 0.9208 0.9256 0.9060 0.8815 0.8869 0.8869 0.8655

pushdo 0.9635 0.9577 0.9490 0.9610 0.9514 0.9430 0.9063

Pykspa 0.9893 0.9876 0.9831 0.9861 0.9855 0.9874 0.9767

Qakbot 0.9985 0.9965 0.9995 0.9970 0.9995 0.9955 0.9910

Ramdo 0.9861 0.9792 0.9815 0.9874 0.9769 0.9742 0.9521

Ramnit 0.9982 0.9979 0.9983 0.9977 0.9977 0.9980 0.9958

ranbyus 0.9717 0.9743 0.9648 0.9773 0.9605 0.9515 0.9369

shifu 0.9929 0.9944 0.9950 0.9955 0.9916 0.9867 0.9703

shiotob/urlzone/bebloh 0.9942 0.9973 0.9861 0.9919 0.9857 0.9836 0.9364

Simda 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Sisron 0.9869 0.9804 0.9869 0.9869 0.9896 0.9856 0.9817

Sphinx 0.0483 0.1016 0.0375 0.0582 0.0621 0.0325 0.0276

Suppobox 0.9375 0.9688 0.8750 0.9375 0.9375 0.9844 0.8594

symmi 0.9277 0.8795 0.8795 0.9317 0.8675 0.8554 0.8153

tempedreve 0.9964 0.9953 0.9974 0.9961 0.9940 0.9926 0.9880

tinba 0.9167 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

unknowndropper 0.8944 0.8611 0.8444 0.8333 0.9056 0.8333 0.7556

unknownjs 0.8962 0.8730 0.8606 0.9508 0.8711 0.7511 0.5667

Vawtrak 0.9100 0.9200 0.9200 0.9100 0.9100 0.9000 0.8600

Vidro 0.3633 0.3083 0.2217 0.3100 0.1767 0.1433 0.1150

virut 0.8742 0.8742 0.8656 0.8704 0.8673 0.8530 0.8246

Micro Average 0.9912 0.9878 0.9868 0.9878 0.9860 0.9903 0.9797

Table 7. Results of novel DGA experiment with the test dataset for benign and DGA type.

Type of Data CNN+LSTM 1D CNN Shallow
CNN CapsNet LSTM Bidirectional

LSTM
Parallel
CNNs

Benign 0.9972 0.9955 0.9958 0.9966 0.9958 0.9955 0.9935

dircrypt 0.9653 0.9458 0.9347 0.9569 0.9486 0.9597 0.9236

hesperbot 0.8698 0.8594 0.8333 0.8906 0.8594 0.8385 0.7500

pandabanker 0.5455 0.8485 0.7879 1.0000 0.5455 0.6667 0.5455

proslikefan 0.8141 0.8103 0.7590 0.7923 0.7987 0.8167 0.7269

pykspa 0.8127 0.8074 0.7695 0.8303 0.8167 0.8028 0.8015

ramnit 0.9548 0.9492 0.9276 0.9525 0.9508 0.9536 0.9135

sisron 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

unknowndropper 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

vawtrak 0.3756 0.3848 0.3152 0.4137 0.3994 0.3857 0.3448

Micro Average 0.7335 0.7601 0.7323 0.7833 0.7315 0.7419 0.7000

Information 2019, 10, 157 13 of 15

Table 8. Evaluation time (in ms) of a single domain.

Model Evaluation Time

Shallow CNN 1.95

1D CNN 1.82

LSTM (128 embedding) 21.58

Bidirectional LSTM (embedding) 60.16

Parallel CNNs 4.06

CNN+LSTM 25.88

CapsNet 2.86

7. Conclusions

DGAs play a significant role in a variety of cyber-attacks, and their seemingly random nature
makes machine-learning techniques an essential tool in detecting these attacks. Through a thorough
investigation of various types of deep-learning models and evaluation criteria, this study identified
several supervised learning models that are highly effective at detecting malicious domain names
generated by DGAs. In particular, CapsNet and CNN+LSTM performed very well, with CNN+LSTM
performing better in the randomly assigned data experiment, and CapsNet performing better in the
novel DGA experiment. The CapsNet model is also an order of magnitude faster in making predictions.
However, the CapsNet model took longer to train. All models’ performances are only slightly degraded
when they encounter novel DGAs. These results show that CapsNet can be used by an IT security team
to perform real-time DGA detection, as it combines the speed of the CNN models with the accuracy of
the CNN+LSTM model, even if the CapsNet is slightly slower to train. More generally, the CapsNet
architecture can perform well in 1D applications, not just 2D image classification applications, lending
itself to a variety of NLP problems. Finally, because CNNs have a variety of uses in the cybersecurity
space [32], and CapsNets can be applied in any instance CNNs are used, this opens a whole new space
of potential applications for CapsNets in the realm of cybersecurity.

The greatest weakness of all the models tested is their deficiencies in detecting real word-based
DGAs. In some cases, some of these real word-based DGAs use a limited dictionary to generate domain
names and change that dictionary after some time. This manifests in three ways. The first is that when
the model is trained on data from that DGA, time is not taken into account and the model fails to detect
the malicious domain names, as is the case for matsnu and gozi. The second is when the model can only
detect the malicious domain names when it is trained on data from that DGA, regardless of time, but
fails to detect it otherwise, as is the case for unknowndropper. Finally, there are models that initially
perform well but after time passes, performance significantly declines because of a change in the DGA
generator, as is the case with pizd and suppobox. Developing a model capable of detecting malicious
domains in all three of these situations is critical, and all models tested here fail to do so. Therefore,
future work will focus on these real word-based DGAs.

The most significant limitation in this study is that the benign domains in the training, validation,
and test datasets are only from the Alexa top 1 million dataset, which does not necessarily include
benign domains from ad networks. These domains might look more similar to some DGA domains.
However, producing this dataset was outside scope of this work and should such a dataset be made
publicly available, it would be useful to evaluate these models against it.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Information 2019, 10, 157 14 of 15

References

1. Domain Generation Algorithm (DGA). Available online: https://searchsecurity.techtarget.com/definition/

domain-generation-algorithm-DGA (accessed on 23 April 2019).
2. McGrath, D.K.; Gupta, M. Behind Phishing: An Examination of Phisher Modi Operandi. In Proceedings of

the First USENIX Workshop on Large-Scale Exploits and Emergent Threats, LEET ‘08, San Francisco, CA,
USA, 15 April 2008.

3. Bilge, L.; Kirda, E.; Kruegel, C.; Balduzzi, M. EXPOSURE: Finding Malicious Domains Using Passive DNS
Analysis. In Proceedings of the Network and Distributed System Security Symposium, NDSS 2011, San Diego,
CA, USA, 6–9 February 2011.

4. Ma, J.; Saul, L.K.; Savage, S.; Voelker, G.M. Beyond blacklists: Learning to detect malicious web sites
from suspicious URLs. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, Paris, France, 28 June–1 July 2009; pp. 1245–1254.

5. Yadav, S.; Reddy, A.K.K.; Reddy, A.L.N.; Ranjan, S. Detecting algorithmically generated domain-flux attacks
with DNS traffic analysis. IEEE/ACM Trans. Netw. 2012, 20, 1663–1677. [CrossRef]

6. Antonakakis, M.; Perdisci, R.; Nadji, Y.; Vasiloglou, N.; Abu-Nimeh, S.; Lee, W.; Dagon, D. From Throw-Away
Traffic to Bots: Detecting the Rise of DGA-Based Malware. In Proceedings of the 21st USENIX Security
Symposium, Bellevue, WA, USA, 8–10 August 2012.

7. Nhauo, D.; Sung-Ryul, K. Classification of malicious domain names using support vector machine and
bi-gram method. J. Secur. Appl. 2013, 7, 51–58.

8. Demertzis, K.; Iliadis, L. Evolving smart URL filter in a zone-based policy firewall for detecting algorithmically
generated malicious domains. In International Symposium on Statistical Learning and Data Sciences; Springer:
Cham, Switzerland, 2015; pp. 223–233.

9. Shibahara, T.; Yamanishi, K.; Takata, Y.; Chiba, D.; Akiyama, M.; Yagi, T.; Ohsita, Y.; Murata, M. Malicious
URL sequence detection using event de-noising convolutional neural network. In Proceedings of the 2017
IEEE International Conference on Communications, Paris, France, 21–25 May 2017; pp. 1–7.

10. Woodbridge, J.; Anderson, H.S.; Ahuja, A.; Grant, D. Predicting domain generation algorithms with long
short-term memory networks. arXiv preprint 2016, arXiv:1611.00791.

11. Mac, H.; Tran, D.; Tong, V.; Nguyen, L.G.; Tran, H.A. DGA Botnet Detection Using Supervised Learning
Methods. In Proceedings of the Eighth Symposium on Information and Communication Technology (SoICT
2017), Nha Trang, Vietnam, 7–8 December 2017; pp. 211–218.

12. Lison, P.; Mavroeidis, V. Automatic Detection of Malware-Generated Domains with Recurrent Neural Models.
arXiv preprint 2017, arXiv:1709.07102.

13. Yu, B.; Gray, D.L.; Pan, J.; De Cock, M.; Nascimento, A.C.A. Inline DGA detection with deep networks.
In Proceedings of the 2017 IEEE International Conference on Data Mining Workshops (ICDMW), New
Orleans, LA, USA, 18–21 November 2017; pp. 683–692.

14. Zeng, F.; Chang, S.; Wan, X. Classification for DGA-Based Malicious Domain Names with Deep Learning
Architectures. Int. J. Intell. Inf. Syst. 2017, 6, 67–71. [CrossRef]

15. Saxe, J.; Berlin, K. eXpose: A character-level convolutional neural network with embeddings for detecting
malicious URLs, file paths and registry keys. arXiv preprint 2017, arXiv:1702.08568.

16. Tran, D.; Mac, H.; Tong, V.; Tran, H.A.; Nguyen, L.G. A LSTM based framework for handling multiclass
imbalance in DGA botnet detection. Neurocomputing 2018, 275, 2401–2413. [CrossRef]

17. Yu, B.; Pan, J.; Hu, J.; Nascimento, A.; De Cock, M. Character level based detection of DGA domain names.
In Proceedings of the 2018 International Joint Conference on Neural Networks (IJCNN), Rio, Brazil, 8–13
July 2018; pp. 1–8.

18. Zhao, W.; Ye, J.; Yang, M.; Lei, Z.; Zhang, S.; Zhao, Z. Investigating capsule networks with dynamic routing
for text classification. arXiv preprint 2018, arXiv:1804.00538.

19. Bengio, Y.; Ducharme, R.; Vincent, P.; Jauvin, C. A neural probabilistic language model. J. Mach. Learn. Res.
2003, 3, 1137–1155.

20. LeCun, Y.; Boser, B.E.; Denker, J.S.; Henderson, D.; Howard, R.E.; Hubbard, W.E.; Jackel, L.D. Handwritten
digit recognition with a back-propagation network. In Proceedings of the Advances in Neural Information
Processing Systems, Denver, CO, USA, 26–29 November 1990; pp. 396–404.

https://searchsecurity.techtarget.com/definition/domain-generation-algorithm-DGA
https://searchsecurity.techtarget.com/definition/domain-generation-algorithm-DGA
http://dx.doi.org/10.1109/TNET.2012.2184552
http://dx.doi.org/10.11648/j.ijiis.20170606.11
http://dx.doi.org/10.1016/j.neucom.2017.11.018

Information 2019, 10, 157 15 of 15

21. LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc.
IEEE 1998, 86, 2278–2324. [CrossRef]

22. Kim, Y. Convolutional neural networks for sentence classification. arXiv 2014, arXiv:1408.5882.
23. Srivastava, N.; Hinton, G.E.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to

prevent neural networks from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.
24. Tompson, J.; Goroshin, R.; Jain, A.; LeCun, Y.; Bregler, C. Efficient object localization using convolutional

networks. In Proceedings of the 28th IEEE Conference on Computer Vision and Pattern Recognition, Boston,
MA, USA, 7–12 June 2015; pp. 648–656.

25. Sabour, S.; Frosst, N.; Hinton, G.E. Dynamic routing between capsules. In Proceedings of the Annual
Conference on Neural Information Processing Systems 2017, Long Beach, CA, USA, 4–9 December 2017;
pp. 3856–3866.

26. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
[PubMed]

27. Bengio, Y.; Simard, P.; Frasconi, P. Learning long-term dependencies with gradient descent is difficult. IEEE
Trans. Neural Netw. 1994, 5, 157–166. [CrossRef] [PubMed]

28. CapsNet-Keras. Available online: https://github.com/XifengGuo/CapsNet-Keras (accessed on 24 April 2019).
29. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv preprint 2014, arXiv:1412.6980.
30. Does Alexa have a list of its top-ranked websites? Available online: https://support.alexa.com/hc/en-us/

articles/200449834-Does-Alexa-have-a-list-of-its-top-ranked-websites (accessed on 25 May 2018).
31. Bambenek Consulting—Master Feeds. Available online: http://osint.bambenekconsulting.com/feeds/

(accessed on 22 May 2018).
32. Berman, D.S.; Buczak, A.L.; Chavis, J.S.; Corbett, C.L. A survey of Deep Learning Methods for Cyber Security.

Information 2019, 10, 122. [CrossRef]

© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276
http://dx.doi.org/10.1109/72.279181
http://www.ncbi.nlm.nih.gov/pubmed/18267787
https://github.com/XifengGuo/CapsNet-Keras
https://support.alexa.com/hc/en-us/articles/200449834-Does-Alexa-have-a-list-of-its-top-ranked-websites
https://support.alexa.com/hc/en-us/articles/200449834-Does-Alexa-have-a-list-of-its-top-ranked-websites
http://osint.bambenekconsulting.com/feeds/
http://dx.doi.org/10.3390/info10040122
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background
	Embedding
	Convolutional Neural Networks
	Capsule Networks
	LSTMs

	Model Implementation
	Datasets
	Evaluation Metrics
	Results
	Conclusions
	References

