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Abstract: Recommender systems are one of the fields of information filtering systems that have
attracted great research interest during the past several decades and have been utilized in a large
variety of applications, from commercial e-shops to social networks and product review sites. Since
the applicability of these applications is constantly increasing, the size of the graphs that represent
their users and support their functionality increases too. Over the last several years, different
approaches have been proposed to deal with the problem of scalability of recommender systems’
algorithms, especially of the group of Collaborative Filtering (CF) algorithms. This article studies the
problem of CF algorithms’ parallelization under the prism of graph sparsity, and proposes solutions
that may improve the prediction performance of parallel implementations without strongly affecting
their time efficiency. We evaluated the proposed approach on a bipartite product-rating network
using an implementation on Apache Spark.

Keywords: recommender systems; collaborative filtering; scalability; graph partitioning; distributed
systems; parallel execution; social networks

1. Introduction

Among the plethora of choices for communication at a professional or social level, online social
networks stand ahead as an option that allows individuals to connect, communicate and interact
within a virtual online environment. Social networks aim to facilitate individuals to connect through
social relations (e.g., friendship, follower, colleague links, etc.) and communicate with each other either
privately or publicly [1,2].

Product review sites (e.g., Epinions, Yelp, Amazon, etc.) have emerged as a new type of social
network that aims to support consumers in making buying decisions for products. In such networks,
consumers write reviews and provide ratings for products they have bought, form their opinion by
reading product reviews written by other users, or form trust bonds with other users whose opinions
they trust.

Graph representations and graph based algorithms have been very popular among researchers
that perform analysis of social networks [3]. In the graph representation of a typical social network,
users are represented as vertices and the relations that connect them are represented as edges, forming
the social graph, which is then used by algorithms to extract useful knowledge (influencers, cliques,
communities, etc.). In the simplest form of product reviewing social networks, a new type of vertices is
introduced to represent product items and a new type of weighted directed edge is added to represent
ratings assigned by users to products. Bipartite graphs are ideal for this representation, since they
define two disjoint sets of nodes (i.e., users, items) and directed edges that connect nodes from different
sets (a user with an item).
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Since the introduction of Recommender Systems in the users’ daily activities, the evolution both
in the way users interact with the web and with each other has been exceptional. The link between
these two domains is currently very tight and this is the result of approaches that applied knowledge
from one domain to improve user experience in the other. From one side, recommender systems
benefitted early from the content that users share in social networks, which has been used to create a
richer user profile [4]. From the other side, social networks took advantage of recommender systems
to filter the abundance of information available to their users and create a personalised experience.
Several research works attempted to combine both worlds, recommender systems and social networks,
in ways that aim to change how people connect with each other, how they interact and what content
items they share [5].

Lately, the field of application of recommender systems has expanded in a wide area of domains
such as creating movie or music recommendations, suggesting related news, finding useful scientific
research papers, recommending possible social connections or potential product users could be
interested in buying. However, the type of domains’ recommender systems are used for are not limited
to the above. There have been developed many domain-specific recommender systems such as for
finding experts based on a query string and the domain characteristics [6], or potential researchers for
collaborating with [7], even for supporting suggestions on loans, etc. [8], or just simply suggesting
pages of interest in Twitter [9]. In general, RSs aim to solve the information overload problem for the
users of a social network by recommending items, which can either be content, products, services or
even other users.

In the case of product review or product rating sites, the analysis of the bipartite graphs and the
information they carry has attracted the interest of researchers in recommender systems, and gave rise
to new solutions and algorithms. Recommender systems have become very popular on sites such as
IMDB, MovieLens and Netflix, where users rate the films they have seen and receive recommendations
for more films of potential interest to them.

It was back in October 2006 when Netflix launched an open contest, which challenged research
teams across the world to beat (in terms of the Root Mean Square Error of predicted ratings’” metrics)
their ratings prediction algorithm. The competition aimed to find the best algorithm that predicts user
ratings for films, based on their previous ratings and the ratings of other users. The winning algorithm
by the Bell and Koren’s team (BellKor Pragmatic Chaos) bested Netflix’s own algorithm by 10.06%
and was a Collaborative Filtering (CF) algorithm that gave rise to Matrix Factorisation approaches in
recommender systems [10,11].

Collaborative Filtering (CF) is one of the most well examined and primarily used techniques in
recommender systems to create personalized content that will be provided as recommendations to the
targeted users, tailored to each user’s preferences. The premise in CF is to use the information from the
preferences (typically expressed as ratings) of the user’s closest neighbors to generate recommendations.
The neighbors of a user can be found based on: (a) the similarity between users’ profile features such
as demographics, etc., (b) the items that users have reviewed in common and the ratings they have
provided for them, and (c) the proximity of a user with other users in the social graph.

When used in the context of social networks, recommender systems suggest users, content, or
both and this is based on the explicit or implicit preferences of the user. Explicit preferences are
expressed with likes and follows and implicit with views and other actions that denote interest.

Some of the most well-known social networks, such as Facebook or Twitter, have millions of users,
which means that the respective graph size is huge. In addition, the expansion rate of such networks
is also impressive, since thousands of new users are added daily, and this pushes the limits of the
recommendation algorithms, which must be able to scale up to billions of users and trillions of items
and implicit or explicit edges [12]. The maintenance of high performance and low latency of the social
network services is unquestionable, no matter how many new users are connecting or how many new
content items have been added.
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Using bipartite graphs to represent the user-item rating matrix is a straightforward option,
especially in social networks, where trust or friendship information is also available in the form
of a graph [13,14]. Deep learning and matrix factorization methods are gaining the hype in the
recommendation systems research. Although they operate differently than graph-based methods, they
are still based on the rating matrix information, but either process the whole matrix information in a
single node or randomly partition the matrix in (usually overlapping) sub-matrices for scalability [15].
In this work, we mainly use the bipartite graph representation as a means for partitioning the rating
matrix using a less random and more meaningful method. Our partitioning method can take advantage
of the social network structure or any other similarity information between users or items. Building on
this concept, we examine various methods that build on a better partition overlap and try for a better
collaborative filtering performance both in time and quality performance.

The diversity in the size and characteristics of the information created in social networks and
applications in many cases push the current state-of-the-art recommender systems algorithms to their
limits. The scalability of processing algorithms is further challenged by additional nodes and edges
added to the user graph, which may correspond to content items and user interactions with them [16].

The two main alternatives for scaling to large graphs (or large rating matrices in general) are
to either upgrade the infrastructure in order to cover the increasing processing requirements, or to
partition the graph (or the rating matrix) into smaller sub-graphs, which can be processed in parallel,
thus increasing performance without losing quality of the produced results.

Our previous work in the field showed the potential of graph partitioning solutions, which can
benefit from by the social graph formed in social networks [17]. People usually consider the opinions
of their friends more than the opinions of any random user, so the partitioning of the bipartite (ratings)
graph can be based on a pre-partitioning of the social graph. However, this partitioning has a limit,
due to the sparsity of the resulting bipartite partitions [18]. As a result, it is important to consider the
sparsity of the partitions of the bipartite graph and, if possible, to reduce this sparsity by replicating
edges (ratings) across partitions.

In our last work [18], we split the initial problem into sub-problems that can be solved more
efficiently using parallel and distributed algorithms, without loss of the effectiveness of the provided
solutions (measured by the quality of the generated recommendations). In this work, we study the
scalability and the efficiency of this approach in generating user-to-item recommendations using
the Collaborative Filtering algorithms of Apache Spark. More specifically, we experiment only with
Singular Value Decomposition (SVD++) algorithm [19] and its implementation in Apache Spark, which
is a state-of-the-art collaborative filtering algorithm [20]. The proposed approach is based on an initial
partitioning of the bipartite graph. For the sake of generality, we do not assume a social graph behind
the bipartite graph as we did in previous works. The partitioning of the bipartite graph is done at
random and only some of the ratings are replicated across partitions. We evaluate different edge
replication strategies across partitions, which aim to increase the performance of the CF algorithm in
each partition, and report on their performance.

The contributions of this manuscript focus on introducing an architecture for parallel collaborative
filtering addressing the problem of collaborative filtering parallelization in the case of sparse graphs
and proposing approaches for improving CF’s prediction performance.

The rest of the paper is organized as follows: in Section 2, we summarize related work on
distributed and parallel collaborative filtering solutions. In Section 3, we present our proposed method
for optimizing Collaborative Filtering in distributed or parallel environments, which is based on the
replication of selected edges (ratings) across partitions. In Section 4, we evaluate the various strategies
for selecting which edges to copy across partitions, using a dataset from Epinions for our experiments,
and discuss the results. Finally, in Section 5, we provide the conclusions and the next steps of our work.
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2. Related Work

Collaborative Filtering algorithms have been the state-of-the-art solution for the generation of
recommendations in various social network applications. Two of the main problems that CF algorithms
have to confront [21] are the information sparsity and the lack of scalability in huge datasets. Recent
advances in CF algorithms capitalize on the use of deep neural network architectures for adding
implicit feedback [22] to the original rating matrix, thus creating a latent space with reduced sparsity.
Implicit information is either collected from textual reviews or images that accompany user ratings,
thus creating a multi-modal [23] and multi-aspect model [24] for handling item ratings, amd increasing
the complexity of the problem and -in some cases- the sparsity of the space. The concept of mapping
the original high-dimensional space to a latent low-dimensional semantic space [25] is a common
practice for reducing sparsity. A completely different approach to CF on the low-dimensional matrix
has been introduced in [26], where a smoothing technique is applied to the user—item bipartite graph
using the target user’s known preference as a query vector. The technique in [26] is based on the main
principle that common ratings (co-citations) denote item similarity and uses this principle to rank
items to be recommended instead of predicting a specific rating for each item.

The undeniable progress in the field of recommender systems has led to a great research interest
towards parallel and distributed implementations of collaborative filtering algorithms. The majority
of today’s online shops and applications demand lots of high processing units to support their
functionality. With current loads of information in these applications, traditional state-of-the-art
implementations of CF algorithms could not cope with these needs. A first direction in addressing
the efficiency problem of Collaborative Filtering (CF) comprises methods that hash users and items as
latent vectors in the form of binary codes, so that user-item affinity can be efficiently calculated in a
Hamming space [27]. In a similar direction, low-dimensional item embeddings that incorporate both
graph structure and feature information have been used in [13] to reduce the space complexity and
thus increase scalability. The approach involved the use of Graph Convolutional Networks to combine
random walks and graph convolutions on the bipartite graph. The second direction focuses on the
distribution and parallel execution of the CF algorithm in multiple machines. The tendency of using
computer clusters to combine processing power and distribute the processing load has affected the
implementation of various CF algorithms to deal with the scalability issues over the last years. Based
on this, Java Threads, Pthreads, OpenMP frameworks for parallel programming and Mahout, Apache
Spark for data processing have been utilized to implement collaborative filtering [21,28].

One of the first distributed approaches for generating recommendations was presented by [29]
that proposed a peer-to-peer SVD model for aggregating user profile information and creating
recommendations. Another distributed approach of matrix factorization (SGD) algorithm was
implemented in [30], where authors proposed a model of a system for distributed sharing of
user-generated content streams. In the same context of recommender systems in decentralized
environments like P2P, PipeCF algorithm [31,32] has also been proposed. PipeCF algorithm first
divides the original user database into buckets which are stored in different peers and each is assigned
an identifier in order to use this as a key when needed. Then, PipeCF uses the information from all
users in the same bucket with the active user to compute the predictions. The algorithm increases the
weights for the contributions of the most similar users (unanimous amplification) and decreases the
weights for users that have rated many items (significance refinement) in a process that is similar to the
Term Frequency and Inverse Document Frequency (TF/IDF) weighting of terms in a text collection.

Wang and Pouwelse [33] introduced a predictive model for user-item score prediction, using
buddy-tables, which are used to store the top-N most relevant to the user items and are shared across a
P2P network users. Recently, leveraging the benefits of distributed processing, authors in [34] proposed
a hybrid model called Distributed Partitioned Merge (DPM) model, for processing large social graphs.
Using a combination of Fork-Join programming and Pregel framework authors stated that based on
their evaluation DPM outperforms both Fork—Join and Pregel’s recommendation time.
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A television show collaborative recommendation system that uses item-to-item collaborative
filtering and delegates most of the work to the numerous network clients rather than centralizing
process to the server is presented in [35]. User reviews and comments are common sources for
extracting user preferences and creating item recommendations. In this context, researchers in [36]
used short review texts to create recommendations based on word vector representations. They used
word vector representations for users and items; then, they created a set of training data with the rating
scores that users give to items based on these representations and finally used a regression model that
was trained to predict the unknown user-item ratings. Furthermore, Ref. [37] introduces two methods
for modeling users’ review texts, one based on Bag-of-Words Paragraph Vectors [38] and another using
recurrent neural networks (RNNs) respectively, in order to produce representations of products used
in Collaborative Filtering.

Since Hadoop is one of the most widely used frameworks for distributed processing, Ref. [39]
proposed a hybrid approach for recommending movies combining user-based collaborative filtering
and content-based filtering and using Hadoop and Hive to create SQL queries. Another interesting
hybrid approach for creating recommendations was developed in [40]. Authors used Apache Spark
for parallel implementation of a hybrid collaborative filtering algorithm, whereas, in order to deal with
the collaborative filtering limitations, they used dimensionality reduction and clustering techniques.

Scalability is one of the biggest issues for modern collaborative filtering approaches [18]. Dealing
with this problem, Lee and Hong [41] proposed an Adaptive Collaborative Filtering algorithm Based
on Scalable Clustering (ACFSC), which first creates a cluster model for users/items that is based on
their feature vectors and then uses the users’ neighborhood only to get recommendations based on CE.
As already mentioned before, partitioning and clustering are very promising methods for dealing with
scalability. Consequently, researchers in [42] combine user and item similarities, multi-dimensional
clustering to cluster metadata information and cluster pruning to measure the predicted weighted
average score of the user ratings. In addition, N-cut graph clustering can be used to group similar user
in the same cluster to increase Collaborative Filtering performance [43].

The main limitation on using clustering incorporated with CF in large sparse graphs is the higher
demands on processing power for the clustering process and the increasing probability of prediction
errors due to higher sparsity. The proven usability of frameworks like Apache Spark for distributed
processing and the scalability limitations of collaborative filtering is the motivation that drives our
proposed approach. Based on our evaluation results, the idea of using graph partitioning with partition
refinement seems to be a feasible and promising approach.

3. System Architecture

The concept behind collaborative filtering algorithms is that users with very similar profiles are
more likely to be interested in the same items or inversely when a user is interested in an item then
he/she is more likely to be interested in more items with similar features. Based on this concept, the
performance of collaborative filtering algorithms depends on the information we have for users and
items. When collaborative filtering algorithms rely only to the bipartite graph of user ratings for items,
then the user-to-user similarity is defined on the number of items they rated in common or on the
agreement of their ratings for these item (e.g., using cosine similarity). When a new user enters the
social network, there is no information about his/her ratings so the similarity to all other users cannot
be defined, leading to the cold-start problem. Even for existing users, when the total number of ratings
is very low compared to the number of users and items in the social network (i.e., sparse network),
it is very likely that users may have rated completely different items, so the user similarity, which is
measured on commonly rated items, cannot be defined or is not properly measured. Using information
from other sources, such as the social connections between users [44] or user and item context is a
promising solution, but is not always applicable.

The distributed processing of a sparse ratings” graph will result in even more sparse partitions
and thus affect the performance of collaborative filtering algorithms. In our previous work [18], we
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applied graph partitioning to the large ratings’ graph in order to tackle the problem of scalability of
collaborative filtering algorithms, but restricted the number of partitions in order to avoid high sparsity.
In this work, we extend the previous approach, which also took advantage of distributed architectures
(like Apache Spark) and algorithms (like SVD or SVD++), by adding some new refinements in the
initial methodology of graph partitioning on the bipartite graph. Our extension begins with the
partitions of the bipartite graph, which could be created with any graph partitioning technique, and
replicate selected ratings in all partitions in order to increase the density in each partition and boost
the performance of the SVD++ algorithm, even for partitions with only one rating.

We develop two strategies for choosing the ratings that will be replicated across partitions. The
first strategy aims at identifying the most active users inside each partition, where active users are the
users that contribute the majority of ratings in the partition. Then, it replicates the ratings of the active
users to all partitions in order to increase the total number of ratings per partition. This strategy has
been implemented in two different scenarios. In the first scenario (Active Users All Ratings—AUAR),
all the ratings provided by an active user in partition p;, where i = 1...n, are replicated to all the
other n — 1 partitions. This scenario improves the collaborative filtering algorithm since it introduces
more users to the partitions and thus allows finding more similar users to a selected user. Its main
drawback is that it can probably introduce new items to the partition and thus may increase the
sparsity (sparsity = %) of the partition and consequently the prediction error.

The second scenario (Active Users Selected Ratings—AUSR) also replicates the ratings of active
users across partitions, but tackles the main drawback of the AUAR scenario. This is done by finding
the active users of a partition (e.g., p;), but replicating only the ratings for items that already exist
in each target partition. For example, if an active user u, in p; has rated items i,, 1,1y, 2, ..., i, from
which only iy, > exists in partition p;, then only the rating for i, > is replicated to p;. This tactic is very
promising for bipartite graphs with a high number of items compared to users since it does not affect
the item set of the target partitions, but only adds rating information, thus reducing sparsity and the
average error for the predicted scores.

A similar issue to cold-start users in Collaborative Filtering are the items that have none or
very few ratings. For these items, the algorithm can hardly find similarities since it has very little
information. Our second strategy aims to support these least rated items (LRIs) by adding ratings
from other partitions. In its first step, it identifies the least rated items across all partitions (e.g., the
items that have received only one rating in their partition). In the second step, it uses this list of (LRIs)
and repeats the steps of the first strategy for these items only. Thus, it first redefines the concept of
Active Users in a partition p; to be the most Informative Users that have rated the majority of LRIs.
Then, it replicates the ratings of these Informative Users across partitions. Only the selected ratings
scenario is evaluated Informative Users Selected Ratings—IUSR, since the all ratings scenario suffers
from increased sparsity.

As described so far, our approach (depicted in Figure 1) is based on a three-stages architecture:
(i) Graph partitioning, (ii) Partition refinement, and (iii) Distributed execution of the CF algorithm in
Spark nodes, which also includes the evaluation of results. The starting point of our model is a bipartite
graph with a set of Users U, a set of Items I and the respective edges of ratings R among these sets. The
first stage in our approach involves the random split of the initial graph into partitions, whereas the
only premise is the equality in terms of size (number of ratings) among the different sub-graphs. The
partition refinement stage that follows the two strategies (three scenarios) described above is followed,
in order to improve the overall density of the partitions and consequently reduce the prediction
error. The final stage of our approach consists of the execution of a distributed Collaborative Filtering
algorithm over the refined partitions produced in stage two and the evaluation of the results using a
10-fold cross validation approach. In order to evaluate the contribution of the various strategies, we
measure the number of ratings that are replicated across partitions, the resulting sparsity of partitions,
the time complexity and the prediction error of each method.

Algorithm 1 describes the graph partitioning with edge replication (GPwER) approach.
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Figure 1. The steps of the proposed approach for generating recommendations in large sparse bipartite
graphs: (i) Graph partitioning; (ii) partition refinement; (iii) execution of SVD++ in Apache Spark

Algorithm 1 Graph partitioning with edge replication across partitions

procedure PartitionAndEnhanceBG(In:BG{Vy, V1, R}, Out : {EBGP{Vy,, Vi, Rj}})

{BGP{Vu;, Vi, R;}} = PartitionRatings(BG{Vy, Vi, R})
for g; in BGP; do
EBGP{Vu,, Vi, Rj} = ReplicateEdges,,,,i, (gj, BGP})

procedure ReplicateEdges syar(In : g, {BGP;},Out : g')
Vi, = FindMostActiveUsers(g{Vy, Vi, R})
for U inVy, do
E = GetRatingsForVertex(U, { BGP;})
fore in Edo
IntPart = InterPartitionEdge(e, { BGP;})
{¢'{Vu, Vi, R}} = ReplicateEdge(g{Vy, Vi, R}, IntPart)
procedure ReplicateEdges aysr(In : g, {BGP;}Out : g')
Vi, = FindMostActiveUsers(g{Vy;, Vi, R})
for U inVy, do
E = GetRatingsForVertex(U, {BGP;})
fore in Edo
if (ey, in BsGy,) then
IntPart = InterPartitionEdge (e, { BGP;})

{¢'{Vu, Vi, R}} = ReplicateEdge(g{Vy, Vi, R}, IntPart)

procedure ReplicateEdgesyysg(In : g, {BGP;}Out : g')
Vi, = FindLeastRatedItems(g{Vy;, V1, R})
fori inVj, do
E = GetRatingsForVertex(I, { BGP;})
fore in Edo
IntPart = InterPartitionEdge(e, { BGP;})
{¢'{Vu, Vi,R}} = ReplicateEdge(g{Vy, Vi, R}, IntPart)

> Start of Scenario: AUAR

> End of Scenario: AUAR

> Start of Scenario: AUSR

> End of Scenario: AUSR
> Start of Scenario: IUSR

> End of Scenario: IUSR
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The procedure begins with the partitioning of the bipartite graph (BG{Vy;, V}, R}), which
comprises user (V;) and item (V7) vertices and rating edges (R), into a set of n not overlapping
partitions (BGP{Vu, Vi, R;j}) (i.e., Ujepp nRj = Rand Njcy_Rj = @). It then continues with any
of the three scenarios proposed in this work: AUAR, AUSR (FindMostActiveUsers(g{Vi;, V1, R}))
and IUSR (FindLeastRatedItems(g{Vy;, V;,R})) that add edges to each bipartite graph partition and
result in a set of enhanced partitions (EBGP;) that are given as input to the CF algorithm.

4. Experimental Evaluation

In our previous work [18], we proposed a method for partitioning the bipartite graph (or matrix)
of user-item ratings using information from the social graph formed among the users of a social
network. This partitioning method allowed us to partition the collaborative filtering problem to
smaller problems and scale up to large bipartite (rating) graphs. However, previous results showed
that the sparsity of the resulting bipartite graphs in some partitions led to poor CF performance. In
addition, an increase to the number of partitions further increased the sparsity problem. In this work,
we introduce a methodology for controlling the sparsity of graph partitions by adding more edges
(ratings). The aim of the experimental evaluation process is to check which of the proposed alternatives
for selecting edges to replicate across partitions performs and better, and how the proposed methods
compare against a baseline random partitioning without overlaps and against a state-of-the-art CF
algorithm (SVD++) applied on the complete, unpartitioned, bipartite graph (rating matrix). Since
sparsity is the main issue that affects CF algorithm performance, we report on the number of replicated
across partitions (Section 4.2.1), on the average graph sparsity after replication (Section 4.2.2), on
the total execution time (Section 4.2.3) and the achieved prediction performance (Section 4.2.4 of
each method.

4.1. Dataset

For the experimental evaluation of the proposed approach, a part of the Epinions dataset, has been
employed. Epinions is one of the largest product reviews sites, and a dataset comprising 13,668,320
ratings is provided from the University of Koblenz-Landau (http:/ /konect.uni-koblenz.de /networks/).
The details of the dataset (Epinions product ratings dataset—October 2013) are given in Table 1.

Table 1. Characteristics of the Epinions dataset bipartite graph.

Graph Characteristics
Num. of Distinct Users (raters) 120,492

Num. of Distinct Items 755,760
Num. of Ratings 13,668,320
Avg. outDegree/User 113.44
Avg. inDegree/Item 18.09
Sparsity 1.50 x10%

In our experiments, we use a subset of the Epinions dataset comprising 50,000 ratings, as shown
in Table 2. The purpose of using only a subset of the original dataset was to examine the feasibility
of our proposed methodology and study its performance using limited processing resources (i.e., a
laptop with an Intel Core i7 quadcore CPU @1.8 GHz with 8 GB RAM and a solid state drive, running
MS Windows 10. The same partitioning methodology can then be generalized and applied on larger
graphs with different characteristics.
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Table 2. Characteristics of the Epinions subset used in the study

Graph Characteristics
Num. of Distinct Users (raters) 9435

Num. of Distinct Items 16,288
Num. of Ratings 50,000
Avg. outDegree/User 3.89
Avg. inDegree /Item 2.48
Sparsity 3.25 x10*

4.2. Results

Regarding the methodology followed in the experiments, as explained in the previous section, the
main bipartite graph is randomly partitioned into k partitions that contain an equal number of ratings.
Ratings are split to partitions at random, which may result in the case that a user appears in more than
one partitions providing ratings for different items in each partition. Similarly, an item may appear in
more than one partition and is rated by different users in each partition. After creating the k-partitions,
each partition is processed and the most active m-users are selected, based on the strategies described
in Section 3. All the ratings (or selected ratings depending on the strategy followed) of these k x m
users are replicated across partitions. The resulting partitions are shuffled and the SVD++ algorithm
is applied in a 10-fold cross-validation experiment. The average Root Mean Square Error (RMSE) of
the 10-folds is reported. RMSE is a commonly used metric for the evaluation of rating prediction
algorithms and compares the predicted rating ¥; against the actual rating y; for all the ratings of each
fold as shown in Equation (1). RMSE is one of the most commonly used metrics for evaluating models
and estimating their average prediction performance. It is preferred when the error distribution is
expected to be Gaussian and when large errors are particularly undesirable. Furthermore, it penalizes
large errors giving a higher weight to them:

RMSE =

S|
&m:

(yi — i) 1

i=1

In our experiments, we choose k = 2 and a varying number of users m (from 50 to 5000) and we
evaluate the performance of the three proposed methods: (i) AUAR that replicates all the ratings of
selected users to all partitions, which results in (indirectly) adding new items to the partitions, (ii)
AUBSR that replicates only selected ratings from the selected users, so that more ratings are added to
the items of a partition but no extra items are introduced, and (iii) IUSR that replicates selected ratings
from selected users, who are selected in order to introduce ratings to the less rated items. In addition,
we report on the performance of the baseline partitioning method (method “Random” in the plots) that
randomly splits the bipartite graph (i.e., the set of rating edges) in a predefined number of partitions.
This baseline method is the starting point of our edge replication methods. In the text or in the plots,
we also refer to the performance achieved without partitioning the bipartite graph. In the two latter
cases, the performance is a single value, but in some plots it is depicted with a horizontal dashed line
in order to allow comparison with an increasing number of added users.

4.2.1. Number of Replicated Ratings

The three methods proposed in this work selectively replicate a number of ratings to each partition,
following a different strategy for selecting the users that will contribute to this replication and this
results in a different number of ratings added in each partition. This clearly affects the complexity of
the algorithm and the amount of information added to each sub-problem. In this point, we assume that
predicting ratings in each partition is a sub-problem of the original rating prediction problem in the
original bipartite graph. In Figure 2, we depict the number of ratings added in average per partition.
Given that k = 2, the baseline random partitioning results in an average of 25,000 ratings per partition,
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so adding 11,500 ratings in average to each partition, as is the case for AUAR using the 500 most active
users, means that we increase the size of each bipartite partition by 46%. From the figure, it is obvious
that the IUSR approach adds much fewer ratings to each partition than the other two methods (four
times less), which affects the complexity of the SVD++ algorithm as shown in the following.

251000 T T T T T T T T T T
20,000
o]
[}
o
=
« 15,000
&0
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s
5
g
é 10,000 |-
= —_ AUAR
Z — AUSR
— IUSR
5,000 |-
0 Il Il Il Il Il Il Il Il Il

|
0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000

Number of Users
Figure 2. Average number of ratings added for different number of replicated users in each scenario.

4.2.2. Graph Density

The replication of ratings (edges) across partitions aims at increasing the amount of information
available for items and users. It is also expected to reduce the sparsity (or increase the density) of the
resulting bipartite graph, but this is not always the case, as depicted in Figure 3. Graph density is
defined as the ratio of edges of the actual graph divided by the number of edges the graph would have
if it was fully connected. In the case of a bipartite graph with 1, users, n; items and 7, edges (ratings)
the density is given by Equation (2):

Ne
ny X nj '

GraphDensity = 2

The density of the original bipartite graph as well as the average density of its randomly created
partitions is a very small number between 0 and 1. This means that the graphs are very sparse and the
CF algorithm has to deal with this sparsity. According to Figure 3, the density of the original bipartite
graph is 3.25 x 10~* and after the random partitioning the average density of the partitions raises to
3.85 x 10~%. The average density of the graph increases for the three proposed methods, when less
than 1000 users are added. From that point forward, the density of the graph decreases because the
denominator of Equation (2) increases more than the nominator. Comparing between the two methods
that add ratings from the active users, AUAR that introduces new items to each partition (i.e., increases
both n; and n,,) results in a quicker drop than AUSR, which only adds new users in each partition (i.e.,
increases the 1, only). Finally, the IUSR method has a smaller increase to the graph density since the
added users are those that rated items with few ratings, so they do not necessarily add many new
ratings to the partition (i.e., do not increase 1, as much as AUSR), but also keeps n; constant so is
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comparable to AUAR for few users and compares to AUSR when more users are selectively added so
that they contribute to the items with few ratings.

8 T T T T
--='- Unpartitioned graph
--- Random

7| —— AUAR i
— AUSR
— JUSR

Avg. density (x 10~%)

|
0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000

Number of Users

Figure 3. Average density per partition for different numbers of replicated users for the three scenarios.
4.2.3. Execution Time

The execution time of the SVD++ algorithm strongly depends on the number of users and items
in the partition, so it is important for methods that add information to the partition to do it wisely. This
is evident in Figure 4, where the baseline random partitioning has an execution time of 19.7 minutes
(wall-time) and all the three methods have always higher execution times. More specifically, AUAR
has the highest time complexity, since it introduces many items per partition and almost doubles the
execution time when the 5000 most active user ratings are replicated across partitions. AUSR follows a
more conservative approach, which results in better time performance, even for high numbers of users.
Finally, IUSR demonstrates the best time performance among the three methods, since it adds much
fewer ratings than all other methods and keeps the complexity of SVD++ low and close to the baseline.
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Figure 4. Execution time for different numbers of user replications for the three scenarios.
4.2.4. Prediction Performance

When the bipartite graph is very sparse, it is quite possible that the collaborative filtering algorithm
will not be able to predict the rating of a user for a specific item. When an item appears only in the test
subset and there is no evidence about it in the training subset, the collaborative filtering algorithm fails
and recommender systems usually rely on baseline (fallback) solutions for predicting the rating of the
user for the item (e.g., they predict using the average of all ratings, or the average of all ratings of the
same user or the same item, depending on the CF approach used in the first step). In the k-fold cross
validation scenario, this happens more frequently, so the percentage of cases that fall back in a baseline
solution is even higher. The Bipartite Clustering Coefficient (BCC) [45] is a measure that represents
this local notion of density in the bipartite graph and is high when we have more ratings from the
same user (for various items) and for the same item (from various users). In our previous work [18],
we have shown that BCC is critical for the performance of the CF algorithm. The results in Figure 5
show that in the original graph the ratio of fallback cases is high -around 33%- and drops to 23% in
average after partitioning. The three methods manage to further decrease this ratio below 20%, with
AUSR having the best performance when the number of added users increases. Once again, this is
explained by the number of information that is being added to each partition, but this improvement
comes at cost in the total execution time as explained in the previous paragraph.

The goal of each collaborative filtering algorithm is to predict the user rating for an item and
as a result the outmost criterion for evaluating the performance of any method is the correctness of
predictions. As explained in the methodology, the methods’ performance is compared using RMSE,
which must be as low as possible. The results in Figure 6 show that, compared to the baseline of
random partitioning, the proposed methods manage to improve CF performance. Among the three
methods, IUSR achieves the lowest RMSE values (using the selected ratings of 300 and 500 selected
users). However, its performance is comparable to AUSR when more users have to be added. Adding
more users always comes at a time performance cost, which has to be considered in a full scale scenario.
Finally, the AUAR method has the worst performance of the three, which in some cases (wWhen few
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active users and all their ratings are replicated) is worse than that of the random partition baseline. This
means that indiscriminately replicating ratings across partitions can negatively affect the performance
of the recommendation algorithm.

35
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15 [ \ 1
10 | | | | | | | | |
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Number of Users

Figure 5. Average percentage of fallback predictions for different number of replicated users in each scenario.
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Figure 6. The average Root Mean Square Error (RMSE) for the three scenarios compared to the baseline
approach, for different number of replicated users.
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4.3. Discussion

The results of the experimental evaluation demonstrate the benefits of the edge replication
approaches over the baseline random partitioning of the bipartite graph. The proposed methodology
that selectively replicates the ratings provided by some users for some items can be beneficial to the
collaborative filtering algorithms, when they are applied to partitions of the original graph.

The main advantage of this ratings’ replication methodology is that it increases the information
available for the CF algorithm and balances the information loss that occurs by the graph partitioning.
Its main drawback is that it increases the execution time of CF algorithms since it adds more users and
items (especially the AUAR method). Choosing which users to consider (IUSR) and which ratings to
replicate (AUSR and IUSR) results in an smaller prediction error and thus in better recommendations,
without adding much processing overhead. Adding 5% more users ( 500 users) and their ratings for
the items in each partition in our experiments (approximately 2000 ratings for IUSR corresponds to
an increase of 8% to the number of ratings) achieved the best prediction performance. This addition
increased the total execution time only by 14% (for IUSR).

Considering the time performance of the algorithm when a large number of users are selected
for replication, it is obvious that there is no need to replicate more than 30% of the users already
in a partition, since this slows down the execution, losing all the benefits of the parallel processing.
The prediction accuracy of the SVD++ algorithm seems to improve only in the case of IUSR for a high
number of users. However, the same performance can be achieved with lower complexity, when only
5% more users (and their selected ratings) are added in each partition.

5. Conclusions

This work introduced our approach in optimizing the performance of Collaborative Filtering
algorithms that run in a parallel setup, with distribution of the bipartite information. In this paper, we
evaluated several strategies that attempt to replicate ratings across more than one partition in order to
increase the amount of information available for the CF algorithm and to confront the sparsity problem
in the resulting graph partitions. Results showed that it is possible to improve the performance of the
CF algorithms that run in parallel on different partitions of the graph if selected users and their ratings
are replicated across partitions, so that items that have received few ratings in the original split are
enhanced with more ratings from other partitions.

In this paper, we tested the idea of replicating edge information (ratings) across more than one
partition and results show that this improves CF performance. Following this idea, it is our next step
to evaluate various nodes and edge selection strategies, which can further improve the performance
of the CF algorithm, whilst providing a good balance in the execution performance. It is also in
our next steps to compare against deep learning state-of-the-art methods, which can be applied on
partitions of the bipartite graph (or rating matrix) such as graph CNN techniques that compress rating
matrix information using random walks or probabilistic matrix factorization techniques that apply on
matrix partitions.
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Abbreviations

The following abbreviations are used in this manuscript:

CF

Collaborative Filtering

RMSE  Root Mean Square Error
AUAR  Active Users All Ratings
AUSR  Active Users Selected Ratings

LRI

Least Rated Items

IUSR Informative Users Selected Ratings
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