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Abstract: Finger-vein biometrics have been extensively investigated for person verification. One of the
open issues in finger-vein verification is the lack of robustness against variations of vein patterns due to
the changes in physiological and imaging conditions during the acquisition process, which results in
large intra-class variations among the finger-vein images captured from the same finger and may degrade
the system performance. Despite recent advances in biometric template generation and improvement,
current solutions mainly focus on the extrinsic biometrics (e.g., fingerprints, face, signature) instead of
intrinsic biometrics (e.g., vein). This paper proposes a weighted least square regression based model to
generate and improve enrollment template for finger-vein verification. Driven by the primary target of
biometric template generation and improvement, i.e., verification error minimization, we assume that a
good template has the smallest intra-class distance with respect to the images from the same class in a
verification system. Based on this assumption, the finger-vein template generation is converted into an
optimization problem. To improve the performance, the weights associated with similarity are computed
for template generation. Then, the enrollment template is generated by solving the optimization problem.
Subsequently, a template improvement model is proposed to gradually update vein features in the
template. To the best of our knowledge, this is the first proposed work of template generation and
improvement for finger-vein biometrics. The experimental results on two public finger-vein databases
show that the proposed schemes minimize the intra-class variations among samples and significantly
improve finger-vein recognition accuracy.

Keywords: hand biometrics; finger-vein recognition; template generation; template improvement;
weighted least square regression

1. Introduction

To meet the growing demand for secured systems, automatic human authentication using physical
and behavioral modalities has received increasing attention. Currently, face, fingerprint and signature
have been widely employed to identify criminals in law contexts, for granting access to electronic
devices, and for securing access to sensitive facilities. A number of biometric modalities have been
applied for personal verification and can be split into two categories: (1) extrinsic modalities such as
iris [1], fingerprint [2], and face [3], and (2) intrinsic modalities such as hand-vein [4], finger-vein [5],
and palm-vein [6]. However, extrinsic biometric modalities are prone to being copied and faked.
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For example, a fake version from a stolen extrinsic biometric template (i.e., face images, fingerprints,
and iris) can successfully attack the verification system. Therefore, the usage of extrinsic biometrics
raises some concerns on privacy and security in practical applications. Different from extrinsic
modalities, intrinsic ones (i.e., hand-vein, finger-vein, and palm-vein) are under the skin and are
not easily observed in visible light, so they are difficult to steal. In addition, intrinsic biometrics
are much harder to forge. Intrinsic biometric modalities, are, therefore, much more secure for user.
Among intrinsic modalities, finger-vein biometrics is the most convenient in practical applications.
As a result, it is being increasingly investigated in recent years.

However, finger-vein verification faces serious challenges. In practical application, finger-vein
image acquisition process is inherently affected by several factors: environmental illumination [7–9],
light scattering [10,11], ambient temperature [5,9,12], physiological changes [5,12], and user
behavior [13–15] so the finger-vein patterns acquired from an individual is prone to changes. In other
words, the finger-vein measurements tend to have a large intra-class variability. Therefore, the impressions
acquired from the same finger at different times may be quite different from each other, which
comprises the performance of authentication system. In recent years, various methods have been
employed for fingerprints to reduce intra-class variations by fusing multiple enrollment impressions.
Some works [16–21] are proposed to combine multiple enrolled impressions for improvement of the
system’s performance. For example, in works [16–19], several mathematical models are employed to
select prototype fingerprint templates for a finger from a given set of fingerprint impressions and then
merge the matching scores between a test image and several templates for verification. To improve
verification accuracy, the works [20,21] are proposed to match a given impression with respect to each
of the enrollment impressions, and then robust fusion strategies such as feature level and decision level
have been used to combine the individual matching results for verification. However, the main drawback
of these approaches is that it increases both storage and time requirements, so it is unfeasible for online
fingerprint verification.

To overcome this problem, a “super-template” is generated by combining multiple capturing
impressions together in works [22–25]. The “super-template” is considered as a single template which
contains highly likely true minutia based on multiple fingerprint images. By matching the query against
the super-template, a number of enrollment impressions are obtained by accepting the matching score
which are larger than a predefined threshold, and then merged into a “super-template” to increase
the accuracy of the verification system. On one hand, the super-template can be improved online
during actual application of the verification system, so it reduces the intra-class variations. On the
other hand, the “super-template” generation and improving process require a small memory space
and short computation, so it receives more and more attention. By incorporating these approaches,
the intra-class variations between the query image and enrollment template are reduced, so as to
reduce the verification error of the fingerprint verification system.

For the same purpose, template generation and improvement approaches are proposed for
face [26,27], gait [28], and signature [29]. However, to the best of our knowledge, there are no existing
techniques designed specifically to generate and improve template for finger-vein verification. In most
finger-vein verification systems [7–15], vein texture patterns are segmented from the grayscale finger-vein
images using the preprocessing approaches and stored in a binary image. Then, vein texture features
in binary images instead of minutia are employed to match for verification or identification. Therefore,
we propose an approach to generate and improve the finger-vein template with binary vein features
for verification.

Some research works [30,31] imply that the exposure of biometric templates of enrolled users
to adversaries can affect the security of biometric systems by enabling presentation of spoofed
samples and replay attacks. For example, the fake version of biometric traits such as face [32]
and fingerprint [30,31] can be successfully employed to fool the biometric recognition system.
The finger-vein as an inner trait is not easy to copy, but the enrollment template may be stolen.
Recent studies [33] have shown that the fake vein patterns are successfully employed for registration
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in verification systems. However, unlike traditional authentication systems (i.e., passwords), biometric
traits such as vein, face and iris are irreplaceable or cancelable in nature. Therefore, the entire biometric
recognition system is likely to be completely exposed to the hacker attacks if a biometric trait is lost
once. To solve this problem, the works [34,35] are proposed to generate secure finger-vein template for
verification. Usage of security template [30,31,36–39] mainly has the following advantages: (1) high
security. Usually, the security biometric recognition system stores the transformed templates instead of
original templates. Therefore, even if the adversary compromises the generated templates, the original
templates are still secure since it will not be possible (or computationally very hard) to recover it using
such a transformed version. (2) Revocability or Renewability. If a biometric template is compromised,
it can be simply canceled and re-enrolled using a template generation approach. (3) High privacy.
Based on the generated template, it is difficult to ascertain whether two or more instances of protected
biometric reference were derived from the same biometric trait of a user. The non-linkability property
prevents cross-matching across different applications, thereby preserving the privacy of the individual.
Different from security template generation, the enrollment template generation and improvement in
works [22–28] is to improve recognition accuracy and its advantages are concluded as: (1) In registration
phase, multiple enrollment images corresponding to each user may be stored. Matching performed
among multiple templates achieves the high memory and computation consumption. To overcome
this problem, one of the solutions is proposed to generate a best representative super-template based
on the multiply enrollment samples and update it online. (2) During the test phase, if the template
is not updated, it is possible for the stored template data to be significantly different from those
obtained during verification, resulting in an inferior performance (higher false rejects) of the biometric
system. Thus, it is necessary to update the enrollment template day-to-day to minimize the intra-class
variations and reduce the false rejected errors. Therefore, two template generation schemes show
different motivations for finger-vein recognition.

In our work, we assume that a good template can result in minimization of the intra-class
variations, and then the template generation and improvement are converted into two optimization
problems, which are solved to generate template and improve template. The main paper contributions
are summarized as follows: first, finger-vein verification, we assume that a good vein enrollment
template is capable of achieving smallest intra-class distance with respect to all enrollment images
from same class. Based on this assumption, we convert the enrollment template generation and
improvement into two optimization problems. Unlike existing works [22–25], our approaches directly
target minimization of intra-class variations or reduction of verification errors instead of subjective
human perception of enrollment template quality. Second, an automatic template generation approach
is proposed for finger-vein verification. For each enrollment, we compute its average similarity with
respect to remaining enrollments and assign a large weight for the samples which have large average
intra-class similarity and small intra-class similarity. The template for each class is produced based on
the weighted summation of all enrollments. As the weights are related to the intra-class similarity and
inter-class similarity, the generated templates achieve good performance to reduce verification error.
Third, we proposed a finger-vein template improvement approach. The templates are improved online
during the verification process, so the proposed approach can minimize the intra-class variations.
To the best of our knowledge, there has not been any study to generate and improve the finger-vein
enrollment template. Finally, rigorous experiments are carried out on the two public finger-vein
databases to estimate the performance of our approach. The experimental results imply that the
proposed approaches effectively improve the verification accuracy.

2. Weighted Least Square Regression for Template Generation

In this section, a template generation approach is proposed for finger-vein verification. To reduce
intra-class variations, similar to existing approaches [22–25], we merge multiply templates from same
class to generate a “super-template” and then improve it by using the vein features in finger-vein
images captured at different time. The template generation aims at reducing the intra-class variations,
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so a “super-template” is directly generated by minimizing the intra-class distance. First, we define
the optimal template for finger-vein verification. Based on the definition, we convert the template
generation into an optimization problem. Second, the weights are computed by matching the
samples from same class or different class. Thirdly, a robust template is obtained by solving an
optimization problem.

2.1. Template Quality Definition for Verification

Current template generation methods [16–21] aim at improving performance, mainly verification
error rates. Therefore, the biometric template generation should target its minimization instead of
being based on subjective human perception of enrollment template quality. In a practical verification
system, a user’s biometric data is once again acquired and processed, and the extracted features are
matched against the template(s) stored in the database for verification. The verification accuracy
relies on the stability (permanence) of the biometric data associated with an individual over time [17].
On other words, the verification error rates are mainly triggered by the intra-class variations, so we
assume that a good quality finger-vein template has smaller intra-class distance with respect to all
enrollment samples.

2.2. Weight Computation

The template is constructed based the multiply enrollment samples. Practically, the enrollment
samples have different discrimination, so we assign different weights for different samples. Intuitively,
the sample with large intra-class similarity and small inter-class similarity has large weight for template
generation. Therefore, for each sample, we compute its similarity with respect to other enrollment
samples to determine weight.

2.2.1. Similarity Computation

For finger-vein verification, the vein textures are segmented and stored in binary images, which
are employed for matching for verification. As the weight is related to the similarity, a similarity
between two enrollments is firstly defined in Equation (2) to obtain robust weight. Then, a weight is
automatically assigned for each sample based on the intra-class similarity and inter-class similarity.
Assuming E and F are binarized feature maps extracted from two enrollment samples with size of
x× y, respectively. The width and height of E are extended to 2l + x and 2h + y, and then its expanded
image Ē is obtained and expressed as:

Ē(i, j) =


E(i− l, j− h) if 1 + l ≤ i ≤ x + l,

1 + h ≤ j ≤ y + h

−1 otherwise

(1)

Figure 1b has illustrated the extended image Ē of a template E and the extended region with
values of –1 is marked in color. The similarity between E and F is obtained by

d(E, F) =

max
0≤p≤2l,0≤q≤2h

∑x
i=1 ∑

y
j=1 Θ(Ē(i + p, j + q), F(i, j))

∑x
i=1 ∑

y
j=1	(Ē(i + p, j + q),−1)

,
(2)

where

Θ(U, V) =

{
1, if U −V = 0,

0, otherwise,
(3)
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and

	 (U, V) =

{
1, if U 6= V,

0, otherwise.
(4)

d(E, F) basically computes the maximal amount of overlap between E and F at different spatial shifts
excluding the pixels located in the expanded region (e.g., the pink region in Figure 1b). The red
rectangle box is a map when the translation distances are p and q over horizontal and vertical
directions. The parameters w and h which control the horizontal and vertical translation distance are
experimentally determined to 20 and 60 in our work.

p
y

x

2h y

2l x

q

E

(a) (b) (c)

F

E

Figure 1. Matching sample. (a) a finger-vein template; (b) the extended image from (a); (c) a testing
image. The values in pink region are −1 in (b). The red rectangle box translates in the extended images
from top left corner to lower right corner.

2.2.2. Intra-Class Similarity Computation

For each finger-vein image, we compute its average similarity with respect to the remaining
images from the same finger by Equation (2) (as shown in Figure 2) and take it as weight. Assume
there are N classes and each class provided M enrollment samples. Let xm,n be the mth sample of the
nth class and its weight wm,n is computed by

wm,n =

M
∑

i=1,i 6=m
d(xi,n, xm,n)

M− 1
, (5)

where d(xi,n, xm,n) represents the similarity between sample xi,n and sample xm,n. wm,n is factually is
average intra-class similarity of xm,n with respect to the remaining M− 1 enrollment samples.

Inter-class  

similarity

Intra-class  

similarity

1,1 1,2( , )d x x

1,1
2,2

( , )
d x x

1,1
3,2

(
,

)

d
x
x

1,1
3
,1

(
,

)

d
x
x

1,
1

2
,1

(
,

)

d
x
x

2,1
x

3,1
x

1,1
x

1,2
x

2,2
x

3,2
x

Enrollment samples 

 from class 2

Enrollment samples

 from class 1

Figure 2. The intra-class similarity and inter-class similarity of sample x1,1. There are two classes and
each class provides three enrollment samples. The red arrow implies that the similarity is computed
based on two images from same class and the blue arrow implies that the similarity is computed based
on two images from different classes.
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2.2.3. Inter-Class Similarity Computation

Similarly, we compute inter-class similarity of each enrollment sample to obtain its weight
(as shown in Figure 2). The weight w

′
m,nfor mth enrollment sample in the nth class is computed by

w
′
m,n =

N
∑

i=1,i 6=n

M
∑

m=1
d(xi,n, xm,n)

(N − 1)M
, (6)

where d(xi,n, xm,n) denotes the similarity between sample xi,n and sample xk,n. Equation (6) computes
average similarity of sample xm,n with respect to the enrollment samples from the remaining N − 1
classes. Figure 2 shows a sample to compute the intra-class similarity and inter-class similarity of
sample x1,1. In Figure 2, there are two classes and each class has three samples. The red arrows denote
the intra-class similarities of x1,1 with respect to x2,1 and x3,1. The blue line arrows denote the inter-class
similarities of x1,1 with respect to x1,2, x2,2 and x3,2. Using Equations (5) and (6), the average similarities
w1,1 and w

′
1,1 are computed based on resulting intra-class similarities and inter-class similarities.

2.2.4. Similarity Fusion

The inter-class similarity and intra-class similarity are related to discrimination of enrollment
sample xm,n. If the enrollment sample xm,n achieves a large intra-class similarity and small inter-class
similarity, it contains more discriminative features. Such an enrollment sample should be more
important for enrollment generation. Therefore, we formulate the following equation to compute its
weight by

Wm,n = αwm,n + (1− α)(1− w
′
m,n), (7)

where α determines the contribution of inter-class similarity and intra-class similarity for template
generation. From Equation (7), if a sample has a large intra-class similarity and a small inter-class
similarity, it will be assigned a large weight. On the contrary, a small weight is assigned to a sample
with a small intra-class similarity and a large inter-class similarity.

2.3. Template Generation

For nth class, we aim at generating a template Tn that has small intra-class variations to its enrollment
samples, so the template generation is converted to solve the following optimization problem:

Tn∗ = arg min
Tn

M

∑
m
(Wm,n‖Tn − xm,n‖2), (8)

where wm,n is the weight of the mth sample in nth class. Note that the Tn and xm,n have the same
dimension. There are many approaches to solve Equation (8). Least-squares estimation is the most
common estimator. When the experimental errors belong to a normal distribution, the least-squares
estimator is also a maximum likelihood estimator. These properties underpin the use of the method of
least squares for all types of data fitting, even when the assumptions are not strictly valid. Currently,
least squares have been widely applied for computer vision tasks such as face recognition [40–42].
Therefore, the closed-form solution of Equation (8) can be easily obtained by using a least square
regression method [36,37] and the optimal solution Tn∗ of nth class is computed as

Tn∗ =

M
∑

m=1
Wm,nxm,n

M
∑

m=1
Wm,n

. (9)
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From Equations (3) and (9), we see that the samples with large intra-class similarity and small inter-class
similarity have large contributions for the enrollment template generation.

3. Finger-Vein Template Improvement

During the verification process, the vein patterns in capturing image will change due to the
changes in imaging conditions, which results in large intra-class variations and poor performance of
the system (as shown in Figure 3).It is not feasible to capture a number of finger-vein images from
the same finger at long intervals in the registration due to limited memory and computation time.
To solve this problem, in our approach, the enrollment template is improved day-to-day by using a set
of unlabeled images acquired during online operation.

3.1. Weight Computation

During the test stage, each input image is subject to feature extraction and the similarity between
the resulting feature map and its template is computed for verification. To update the template,
an input image (unlabeled image) will be stored during the verification procedure if its similarity is
larger than a predefined threshold. Assume that there are N templates for N classes and each class has
stored K input images. As the template is improved based on the N templates and K input images,
we therefore compute their weights, respectively.

Let xk,n denote the kth input image in the nth class, k = 1, 2, ..., K. The original template for the
nth class is represented by T0,n, n = 1, 2, ..., N. The weight of original template T0,n is denoted as W0,n
and is obtained by

W0,n = αw0,n + (1− α)(1− w0,n
′), (10)

where w0,n is its intra-class average similarity with respect to the K input samples and computed as

w0,n =

K
∑

k=1
d(xk,n, T0,n)

K
(11)

and wm,n
′ is obtained by

w
′
0,n =

N
∑

i=1,i 6=n
d(T0,i, T0,n)

N − 1
. (12)

Equation (12) actually computes average inter-class similarity of template T0,1 with respect to
the remaining N − 1 templates. Figure 3 has shown a sample to compute the intra-class similarity
and inter-class similarity of original template T0,1. In Figure 3, there are three templates. T0,1 is
the original template of the first class and the corresponding three unlabeled samples are stored
during testing process. The intra-class similarities between T0,1 and three unlabeled samples are
d(x1,n, T0,n), d(x2,1, T0,1) and d(x3,1, T0,1) which are input into Equation (11) to obtain the average
intra-class similarity w0,1. The inter-class similarities between template T0,1 and remaining templates
(T0,2 and T0,2) are d(T0,2, T0,1) and d(T0,3, T0,1), based on which the averaged inter-class similarity w

′
0,1

of T0,1 is computed by Equation (12). In this way, we can compute the intra-class similarity and
inter-class similarity of remaining templates T0,2 and T0,3 if their unlabeled samples are stored during
the testing process.
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Figure 3. The intra-class similarity and inter-class similarity computation for enrollment template T0,1.
There are three enrollment templates and three unlabeled samples for the first class. The red arrow
implies that the similarity is computed by matching enrollment template T0,1 and its three unlabeled
images. The blue arrow implies that the similarity is computed by matching enrollment template T0,1

and the remaining enrollment templates.

Similarly, the weight for kth input sample xk,n is presented as

Wk,n = αwk,n + (1− α)(1− w
′
k,n) (13)

in Equation (13), wk,n is average intra-class similarity of xk,n with respect to the K− 1 input samples
and template T0,n.

wk,n =

K
∑

i=1,i 6=k
d(xk,n, xi,n) + d(xk,n, T0,n)

K
(14)

and w
′
k,n are the average inter-class similarity of xk,n with respect to the N − 1 templates, which is

computed by

w
′
k,n =

N
∑

j=1,j 6=n
d(xk,n, T0,j)

(N − 1)
. (15)

Figure 4 has shown the intra-class similarity and inter-class similarity of unlabeled images x1,1.
The intra-class similarities between x1,1 and remaining two unlabeled images are d(x1,1, x2,1) and
d(x1,1, x3,1). The intra-class similarity of x1,1 with respect to the template T0,1 is d(x1,1, T0,1) . Then,
the average inter-class similarity w1,1 is obtained using Equation (14). The inter-class similarities
of x1,1 with respect to the templates from different classes are d(x1,1, T0,2) and d(x1,1, T0,3), based on
which the average w

′
1,1 is computed by Equation (15). Similarly, the average inter-class similarities of

the remaining unlabeled images x2,1 and x3,1 are computed in this way.
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Figure 4. The intra-class similarity and inter-class similarity for unlabeled sample x1,1.

3.2. Template Improvement

Similar to Equation (8), the improved template Tn(K) for nth class are computed by solving the
following object function:

Tv
n∗ = arg min

Tn
(W0,n‖Tn(K)− T0,n‖2 +

K

∑
k=1

(Wk,n‖Tn(K)− xk,n‖2)). (16)

Finally, the improved template is generated by

Tv
n∗ =

W0,nT0,n +
K
∑

k=1
Wk,nxk,n

K
∑

k=0
Wk,n

. (17)

Figure 5 shows a sample for enrollment template improvement. In Figure 5, there are three
unlabeled images and one enrollment template for first class. The weights of the unlabeled images and
original enrollment template are calculated by Equations (10) and (13). Then, an improved template
Tv

1 ∗ is generated based on Equation (17). Note that Tn∗ in Equation (9) and Tv
n∗ in Equation (17) are

two probability maps. To achieve verification, they are subject to binarization and the resulting binary
images are stored as an enrollment template for verification.
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Figure 5. A sample for template improvement. Three unlabeled images are employed to improve the
enrollment template and an improved template Tv

1 ∗ is generated for recognition.

4. Experiments and Results

To estimate the performance of our approach, rigorous experiments are carried out on two realistic
databases, which are described below.

4.1. Database

4.1.1. Hkpu Database

The Hong Kong Polytechnic University (HKPU) finger-vein image database [5] includes 3132
images with a resolution of 513 × 256 pixels. All images are collected from 156 subjects using an open
and contactless imaging device. The first 105 subjects provided 2520 finger images (105 subjects × 2
fingers × 6 images × 2 sessions) in two separate sessions with a minimum interval of one month and a
maximum of over six months, with an average of 66.8 days. In each session, each subject provided two
fingers (index finger and middle finger) and each finger provided six image samples. Figure 6 shows
the finger-vein images collected in two sessions. The remaining 51 subjects only provided image data
in one session. To verify our approach, the 2520 finger images captured in two sessions are employed
in our experiment because it is more close to a practical captured environment. A pre-processing
method [5] is employed to extract the region of interest (ROI) image and carry out the translation and
orientation alignment. In addition, the image background is cropped because it contributes matching
errors and computation cost. As a result, all images are normalized to 39 × 146. The preprocessing
images are illustrated in Figure 7.
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(a)

(b)

Figure 6. Finger-vein image samples collected in (a) first session and (b) second session.

(a) (b) (c)

Figure 7. The preprocessing results. (a) original finger-vein images samples from HKPU. database;
(b) ROI extracted from (a); (c) vein feature segmented from (b).

4.1.2. Fv-Usm Database

The Finger Vein USM (FV-USM) database [43] consists of 5904 images with 640 × 480 resolution
and 256 grey levels. The images (as shown in Figure 8) were collected from 123 volunteers (83 males
and 40 females) in two separate sessions with an average interval of above two weeks. In each session,
each of the subjects provided 24 image samples (2 hands × 2 fingers × 6 images) from the index
finger and middle finger of two hands resulting in a total of 2952 images obtained. Therefore, for two
sessions, there are a total of 5904 images (123 subjects × 2 hands × 2 fingers × 6 images × 2 sessions).
In Ref. [43], the ROI images are extracted by preprocessed steps and are normalized to 300 × 100.
Thus, a preprocessing dataset is obtained for finger-vein verification. As our work focuses on template
improvement, the preprocessed images are further resized to 50× 150. Figure 9a,b have shown the
original image and preprocessed image.

(a)

(b)

Figure 8. Finger-vein image samples collected in (a) first session and (b) second session.
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(a) (b) (c)

Figure 9. The preprocessing results. (a) original finger-vein image from FV-USM. database; (b) ROI
image from (a); (c) vein feature from (b).

4.1.3. Finger-Vein Feature Extraction and Matching

To evaluate the performance of the proposed approach, we employ a state-of-the-art system [44]
to extract and match finger-vein feature. The extracted vein features are shown in Figures 7c and 9c.
Like the experiment setting in [44], two public databases are split into three sub-datasets for training,
validation and testing, respectively. For the HKPU Database, there are 210 classes when the different
fingers of the same hand are treated as different classes. Then, the dataset is divided into training
dataset A1, validation dataset A2 and test dataset A3. There are 660 (55 fingers × 12 images) images
in training dataset, 600 (50 fingers × 12 images) images in validation dataset and 1260 (105 fingers
× 12 images) images in the test dataset. For FV-USM Database, there are 492 fingers from 123
subjects. Similarly, it is split into three subsets: training dataset B1 with 1476 images (123 fingers 549 ×
12 images), validation dataset B3 with 1476 images (123 fingers × 12 images), and test dataset B3 with
2952 images (246 fingers × 12 images). To train the method [44], patches centered on vein pixels and
patches centered on background pixels are then selected as positive samples and negative samples,
respectively. As a result, 60,000 training patch examples (30,000 positive examples and 30,000 negative
ones) are generated from each training dataset. The validation sets are employed to determine the
parameters of method [44] and the testing sets are used to evaluate the performance of the proposed
method. After training, the patch of each pixel from a test image is input into the convolutional
neural network in [44] and its output is the probability of the pixel to belong to a vein pattern. Then,
all vein patterns are segmented based on a probability threshold of 0.5 and stored in a binary image.
This results in a set with 1260 (105 fingers ×12 images) binary images for test set A3 and a set with
2952 images (246 fingers × 12 images) binary images for test set B3, which are denoted as A3′ and B3′

to simplify description, respectively. As the parameter α determines the contribution of intra-class
similarity and inter-class similarity for template generation and improvement, it is experimentally
fixed to 0.99 based on validation A2.

4.1.4. Experiment Settings for Template Generation and Improvement

In the previous section, the vein networks of finger-vein images in testing sets are segmented by
model [44] and two binary images sets A3′ and B3′ are obtained for testing. In this section, we will
employ two sets to estimate the performance of the proposed approaches. For both sets A3′ and B3′,
one finger provides six images in each session, resulting in 12 images in two sessions. In order to
estimate the performance of the proposed template generation method, we select six images in the
first session to generate a template and the remaining six images in the second session for testing.
Therefore, for set A3′, there are 6× 105 = 630 images in total to generate templates for each finger and
6× 105 = 630 images for testing. Similarly, for set B3′, there are 6× 246 = 1496 images for template
generation and 6× 246 = 1496 images for testing.

The second experiment aims at estimating the performance of the template improvement approach.
In this experiment, for set A3′ and B3′, the six images of each finger in the first session are used for
enrollment template generation. Three images of each finger in the second session are used to improve
the template generated from images in the first session, and the remaining three images in second
session are employed for testing. Therefore, for set A3′, there are totally 105 template images for
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each finger, 3× 105 = 415 images for template improvement and 3× 105 = 415 images for testing.
Similarly, for set B3′, there are 246 template images, 3× 246 = 738 images for template improvement
and 3× 246 = 738 images for testing. To effectively evaluate the performance of our method, we report
the experimental results on sets A3′ and B3′ in the following sections.

4.2. Visual Assessment

In this section, we visually analyze the generation and improvement templates using various
methods. For each finger, firstly, we compute average and weight average of all enrollment
images, respectively. Secondly, the resulting average image and weight average image are subject
to binarization for generating enrollment templates. Figure 10 illustrates the finger-vein template
generated by combining six enrollment images using average approach and weight average approach.
From the experimental results, we observe that, compared to the average approach, the proposed
weight average method effectively generates more common features which result in the largest
intra-class similarity. In addition, the template images generated by the proposed method contain
more connective vein features.

Figures 11 and 12 show the improving template using average approach and weight average
approach, respectively. Compared to the template before and after improving, we see that the proposed
approach removes spurious vein feature and recovers the dropped vein features such that the improving
template may achieve large intra-class similarity. In addition, the weight average approach generated
more connective and smoothness features than the average approach.

  

(a) (b) (c)

Figure 10. The results for template generation. (a) enrollment samples; (b) templates generated by the
average approach; (c) template generated by the weight average approach. (Samples in the first row
are from the HKPU Database and samples in the second row are from the FV-USM Database).

(a) (b) (c)

Figure 11. The results for template improvement based on average approach. (a) templates generated
by average approach; (b) samples for template improvement; (c) improving template using the average
approach. (The samples in the first row are from the HKPU Database and the samples in the second
row are from the FV-USM Database).
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(a) (b) (c)

Figure 12. The results for template improvement based on weight average approach. (a) templates
generated by the weight average approach; (b) samples for template improvement; (c) improving
template using weight average approach. (The samples in the first row are from the HKPU Database
and the samples in the second row are from the FV-USM Database).

4.3. Experiments Results with Template Generation

4.3.1. Experiments Results with Template Generation for Verification

This experiment focuses on evaluating the performance of the proposed template generation
approach in terms of reduction of verification errors on the finger-vein image datasets. Equation (7) is
employed to generate the template for verification. To facilitate description, the templates generated
by average and weight average are denoted as “ Average template” and “ Weight average template”.
In addition, the approach in work [18] is employed to generate enrollment template in the comparable
experiment. As described in Section 4.1.4, six images of each finger acquired in the first session are
employed to generate the template and the remaining six images are selected as testing data for the
performance evaluation. Therefore, there are 105 templates for HKPU Database and 246 templates
for FV-USM Database. We match the images in the testing set with the corresponding template to
generate genuine scores while the impostor scores are produced by matching templates from different
fingers. As a result, there are 630 (105 × 6) genuine scores and 5460 (105 × 104/2) impostor scores for
the HKPU Database, and 1476 (246 × 6) genuine scores and 30,135 (246 × 245/2) impostor scores for
FV-USM Database. The False Rejection Rate (FAR) is the error rate where the un-enrolled finger images
are accepted as enrolled images and computed by genuine matching scores while the False Rejection
Rate (FRR) is the error rate when the enrolled finger images are rejected as un-enrolled images and
computed by impostor scores. The Equal Error Rate (EER) is defined as the error rate when FAR
and FRR are equal. The receiver operating characteristics (ROC) curves are crated by plotting the
Genuine acceptance rate (GAR = 1-FAR) against the FAR, as illustrated in Figure 13. The EERs which
are computed by adopting average template and weight average template are listed in Table 1.

From the experimental results in Table 1, we can see that, based on the weight average template,
the lowest EERs are 3.02% and 2.30% for HKPU Database and FV-USM Database, respectively.
Compared to the average approach, the existing approach [18] achieves lower EERs e.g., 4.64% and
2.88% for both databases. Figure 13 also shows that the weight average approach achieves higher GAR
than the average approach and the existing approach [18] at same FAR. Therefore, the experimental
results imply that the proposed weight average template can effectively improve the verification error
and outperforms the existing approach.
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Figure 13. Performance of various methods on the (a) HKPU Database and the (b) FV-USM Database.

Table 1. Equal error rate of various approaches on both datasets.

Methods HKPU Database FV-USM Database

Approach [18] 4.64 2.88
Average template 5.18 2.91

Weight average template 3.02 2.30

4.3.2. Experiments Results with Template Generation for Identification

In this section, we report the experimental results for the identification performance using an
individual finger-vein template. As described in Section 4.1.4, as six images in the first session have
been employed to template generation, there is one enrollment template and six testing images for
each finger on the HKPU Database and the FV-USM Database. Equation (9) is employed to compute
matching scores between testing images and enrollment templates for identification. The identification
accuracies from various approaches are listed in Table 2.

We observe from Figure 13, Tables 1 and 2 that the proposed weight average based approach
achieves, on both datasets, the best performance for verification and identification. Such a good
performance may explain that the proposed average approach does not consider different contributions
for template generation as they equally treat all enrollment images from one finger. By contrast, for each
finger image, the proposed weight average approach computes its average similarity with respect to
the remaining images from the same class and assigns larger weight to the enrollment image with
larger average similarity so that it is capable of generating a robust enrollment template to achieve
high verification accuracy.

Table 2. Identification accuracy of various approaches on both datasets.

Methods HKPU Database FV-USM Database

Approach [18] 94.44 97.56
Average template 94.29 97.49

Weight average template 95.71 97.70

4.4. Experiment Results with Template Improvement

4.4.1. Experiment Results with Template Improvement for Verification

In this section, the experimental results of various methods are reported to assess the performance
of the proposed template improvement approach. In our experiments, Equation (17) is employed
to improve “average template” and “weight average template” and we denote them as “Average
template + improve” and “ Weigh Average template + improve” to facility description, respectively.
For comparison, the existing approach [23] is employed to improve templates (e.g., “average template”
and “weight average template”). We present them as “Average template + Method [23]” and “ Weigh
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Average template + Method [23]”. As described in Section 4.1.4, we select three images of each finger
captured in the second session to improve a template generated from six images in the first session and
the remaining three images for testing the performance. This results in 105 improvement templates for
HKPU Database and 246 improvement templates for the FV-USM Database. For the HKPU Database,
315 (105 × 3) genuine scores and 5460 (105 × 104/2) impostor scores are produced by matching the
samples with corresponding improvement templates and matching the improvement templates from
different fingers. For FV-USM Database, there are 738 (246× 3) genuine scores and 30135 (246× 245/2)
impostor scores, respectively. To effectively estimate the performance of the proposed methods, we also
compute the genuine matching scores between three testing images and corresponding templates
without improvement and impostor scores between theses templates without improvement from
different fingers. As a result, 315 (105 × 3) genuine scores and 5460 (105 × 104/2) impostor scores
are generated for the HKPU Database, and 738 (246 × 3) genuine scores and 30,135 (246 × 245/2)
impostor scores are produced for the FV-USM Database.

Figure 14a,b depict the ROC curve on the HKPU Database and FV-USM Database after adopting
our enrollment template improvement scheme and existing approach [23], and Table 3 shows the
corresponding EERs. To facilitate comparison, the experimental results of corresponding methods
before improvement are also reported in Figure 14 and Table 3.
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Figure 14. Performance of various methods on (a) HKPU Database and (b) FV-USM Database.

Table 3. Equal error rate of various approaches on both datasets.

Methods HKPU Database FV-USM Database

Average template 5.13 2.98
Average template + improve 2.22 2.30
Weight average template 3.49 1.90
Weight average template + improve 0.63 0.95
Average template + Method [23] 3.26 2.54
Weight average template + Method [23] 1.28 1.43

From the experimental results (Figure 14 and Table 3) on the two databases, the verification
error is significantly reduced after updating the enrollment template using the proposed approach.
For HKPU Database, the EERs (Table 3) are reduced to 2.22% and 0.63% for the average template +
improve and the weight average template + improve, after using the enrollment images in second
session to improve the enrollment template. From the corresponding ROC curves in Figure 14a, we also
observe that a higher GAR is achieved at lower FAR using the improving scheme. For the FV-USM
Database, the EER is reduced to 2.30% using average template + improve and a lower EER, namely
0.95% is achieved by the weight average template + improve. In addition, the ROC curve (as shown
in Figure 14b) shows that using the improving scheme results in significant GAR improvement at
different FAR regions. In addition, the experimental results show that the weight average approach
outperforms the average scheme in terms of reducing EER, which implies that the intra-class distance
is reduced based on the weight associated with similarity. From Figure 14 and Table 3, it can see that
the proposed approach outperforms the existing approach [23] in terms of EER improvement.
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4.4.2. Experiment Results with Template Improvement for Identification

As described in the last section, after improving the enrollment template, there are 105 improvement
templates and 315 (105 × 3) testing images for HKPU Database, and 246 improvement templates and
738 (246 × 3) testing images for the FV-USM Database. To facilitate comparison, we match testing
images with templates without improvement and report the recognition rate. The performance on the
HKPU Database and FV-USM Database before and after improving enrollment template is listed in
Table 4. Using Average template and Weight average template allows for achieving 94.92% and 95.56%
recognition rate on the HKPU Database, which are significantly improved by adopting the proposed
template improvement scheme. For the FV-USM Database, the identification accuracies increase to
99.45% and 99.59% after improving the enrollment template using our method.

Table 4. Identification accuracy of various approaches on both datasets.

Methods HKPU Database FV-USM Database

Average template 94.92 97.29
Weight average template 95.56 97.56
Average template + improve 98.73 99.45
Weight average template + improve 99.37 99.59
Average template + Method [23] 95.23 97.83
Weight average template + Method [23] 96.19 97.97

The experimental results (Figure 14, Tables 3 and 4) consistently show that the finger-vein
verification/identification error rate on the two datasets is decreased by improving the enrollment
template, which implies fusing vein features from matching image captured at different times into
template is able to minimize the intra-class variations. This may be explained by the fact that the
templates automatically change with time in line with changes of physiological and imaging condition
by using our template improvement approach. For example, the proposed template improvement
approach may remove spurious vein features and recovering missed the vein features during online
verification/identification. In addition, the experimental results show that the proposed template
improved approach achieves a higher recognition rate than the existing method [23]. The reason is
that our template definition targets minimization of verification error instead of human perception
and the weight in our scheme is related to intra-class similarity and inter-class similarity.

5. Conclusions and Perspectives

In this paper, we proposed a weight average method for finger-vein template generation and
improvement. First, a weight average based approach is developed to generate the enrollment template
for reduction of the intra-class variations. As the weight is related to intra-class similarity and inter-class
similarity, so it objectively represents the importance of each enrollment sample in terms of reducing
verification error. Second, to improve the performance online, we proposed a template improvement
method. Experimental results show that the proposed approach reduces the intra-class distance and
significantly improves the verification/identification error rate.

Currently, the images in the existing finger-vein databases are collected at no more than two
sessions. In practical application, the finger-vein pattern may slightly change at different times.
Therefore, in the future, we will collect images in more sessions (e.g., four sessions with an interval of
three months) to test the finger-vein template improvement model.
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