
 information

Article

Double Deep Autoencoder for Heterogeneous
Distributed Clustering

Chin-Yi Chen 1 and Jih-Jeng Huang 2,*
1 Department of Business Administration, Chung Yuan Christian University, Taoyuan 32023, Taiwan;

iris@cycu.edu.tw
2 Department of Computer Science and Information Management, Soochow University, Taipei 10048, Taiwan
* Correspondence: jjhuang@scu.edu.tw; Tel.: +886-2-2311-1531 (ext. 3813)

Received: 4 March 2019; Accepted: 15 April 2019; Published: 17 April 2019
����������
�������

Abstract: Given the issues relating to big data and privacy-preserving challenges, distributed data
mining (DDM) has received much attention recently. Here, we focus on the clustering problem of
distributed environments. Several distributed clustering algorithms have been proposed to solve
this problem, however, previous studies have mainly considered homogeneous data. In this paper,
we develop a double deep autoencoder structure for clustering in distributed and heterogeneous
datasets. Three datasets are used to demonstrate the proposed algorithms, and show their usefulness
according to the consistent accuracy index.

Keywords: distributed data mining (DDM); clustering; big data; heterogeneous databases;
deep autoencoder

1. Introduction

Knowledge discovery in database (KDD) processing involves transforming raw data into
interesting information and knowledge, and has been a popular issue in the fields of machine
learning and data mining (DM). Traditional DM focuses on mining information from a central dataset;
in contrast, the issues of big data and preserving privacy highlight the need for distributed data
mining (DDM). DDM concentrates on retrieving knowledge from distributed datasets that may be
homogeneous or heterogeneous [1,2], instead of joining or merging these datasets into a central dataset.

This characteristic distinguishes DDM from DM, and results in the traditional DM methods being
unable to deal with big or privacy-preserving data, because these data are stored by being distributed.
Here, we propose a new algorithm for the clustering task in distributed environments.

One of the main tasks in KDD is clustering, which involves grouping similar data together and is
the first step of exploring unknown data. Generally, typical clustering algorithms can be divided into
hierarchical, centroid-based, and density-based methods. By calculating the similarity between data
points, a data point can be assigned to a cluster, and the data points within a cluster are similar with
respect to their attributes. However, when a big dataset is considered, some clustering methods, such
as hierarchical and spectral clustering methods, may suffer from the problem of feasibility because
of their huge complexity. This can be illustrated by O(N2), where N is the number of data points [3].
Hence, Steinbach et al. [4] and Beil et al. [5] proposed modified algorithms to deal with large and
high-dimensional data. However, these methods are mainly limited to a central database, rather than a
distributed dataset.

To consider handling distributed datasets for the clustering problem, we should propose distributed
clustering methods and they should be divided into horizontal and vertical methods, or homogeneous
and heterogeneous distributed clustering algorithms, with respect to the type of dataset. Most
distributed clustering algorithms are homogeneous algorithms, including those of [6,7] and are an

Information 2019, 10, 144; doi:10.3390/info10040144 www.mdpi.com/journal/information

http://www.mdpi.com/journal/information
http://www.mdpi.com
http://dx.doi.org/10.3390/info10040144
http://www.mdpi.com/journal/information
https://www.mdpi.com/2078-2489/10/4/144?type=check_update&version=2

Information 2019, 10, 144 2 of 14

extension of parallel computing. On the other hand, [8] first proposed the collective hierarchical
clustering (CHC) algorithm to consider the distributed clustering problem in heterogeneous databases.
Later on, several papers on heterogeneous distributed clustering algorithms, such as those by [9–11],
were proposed to consider more complex situations [12].

Usually, heterogeneous databases can use principle component analysis (PCA) and correlation
analysis to reduce the number of dimensions and consider the interactive relations between features in
past research [13]. However, as PCA and correlation analysis do not consider nonlinear representative
or nonlinear interactive relations between features, they might lose some important information for
clustering. Hence, in this paper, instead of using PCA, we consider the double deep autoencoder model
for the above issues, as follows: the stage of the replica neural network learns the nonlinear codes from
each local dataset. Then, we concatenate all local codes to be the input of the server neural network,
to learn the nonlinear global codes across the replicas; that is, the interactive relationships between the
features. We use the double deep autoencoder and distinguish the proposed method from others.

In this paper, we define our problem as follows. Assume k parties, P1, . . . , Pk, own large private
datasets, D1, . . . , Dk. They want to apply a clustering algorithm to the whole dataset without simply
joining all datasets, due to a big data issue or privacy-preserving reason. Hence, the information
that a party can use is the model output of other parties. Note that no trusted party is considered
here. In addition, we consider a heterogeneous view of the datasets, which is that all parties hold
exclusive information about the features of all the records. To overcome this problem, we developed a
double deep autoencoder to extract the nonlinear important features by considering the information
from the self and other parties. Compared with past papers, the original contribution of this paper
is the integration of the deep autoencoders, and clustering with the concept of deep learning. Three
heterogeneous distributed datasets are used to demonstrate the proposed algorithms and the ability to
overcome our problem. Therefore, the contribution of this paper is the proposal of a new deep learning
model, specifically the double deep autoencoder, to deal with distributed and homogeneous datasets.

The rest of this paper is organized as follows: the distributed clustering algorithm is introduced in
Section 2. The proposed double deep autoencoder used in the distributed environment is presented in
Section 3. Experiments are given in Section 4, and the last section presents the discussion and conclusion.

2. Distributed Clustering Algorithms

The distributed clustering processes can be depicted as shown in Figure 1. Each local dataset,
i.e., a partition of a whole dataset, is used to perform local clustering, e.g., k-means. Then, the global
representation is gathered from each local clustering and perform global clustering. Finally, the result
of the global clustering is used to apply the local datasets to evaluate the result of the distributed
clustering algorithm. Distributed clustering algorithms enable the clustering problem to be solved
under a distributed environment.

The property of local datasets is divided into horizontally distributed (homogeneous) and
vertically distributed (heterogeneous) datasets. In the former, all databases across distributed data
sites share the same set of attributes. In the latter, the attributes differ among the distributed datasets
in a heterogeneous situation. For example, a heterogeneous dataset is divided by a central dataset,
as shown in Figure 2.

Most DDM algorithms use the concept of parallel computing and algorithms to consider
the homogeneous dataset situation [14,15]. On the other hand, some algorithms, such as those
of [16,17], generate local data and transmit them to a central coordinator, which then performs the
clustering algorithm. In addition, some researchers have focused on fuzzy datasets, e.g., the PFCM-c*
algorithm [18], IFDFC algorithm [19], and parallel fuzzy c-means algorithm [20]. Although these
methods have been proposed to deal with various problems in distributed environments, these
algorithms only work in homogeneous databases that all share the same attributes.

Information 2019, 10, 144 3 of 14
Information 2019, 10, 144 3 of 15

Figure 1. Distributed clustering in homogeneous databases.

The property of local datasets is divided into horizontally distributed (homogeneous) and
vertically distributed (heterogeneous) datasets. In the former, all databases across distributed data
sites share the same set of attributes. In the latter, the attributes differ among the distributed datasets
in a heterogeneous situation. For example, a heterogeneous dataset is divided by a central dataset, as
shown in Figure 2.

Figure 2. An example of a heterogeneous dataset.

1 2 n

Local
Clustering

Local
Clustering

Local
Clustering

Local
Result

Local
Result

Local
Result

Global Representation

Global Clustering

Apply

Local
Dataset

Local
Dataset

Local
Dataset

Figure 1. Distributed clustering in homogeneous databases.

Information 2019, 10, 144 3 of 15

Figure 1. Distributed clustering in homogeneous databases.

The property of local datasets is divided into horizontally distributed (homogeneous) and
vertically distributed (heterogeneous) datasets. In the former, all databases across distributed data
sites share the same set of attributes. In the latter, the attributes differ among the distributed datasets
in a heterogeneous situation. For example, a heterogeneous dataset is divided by a central dataset, as
shown in Figure 2.

Figure 2. An example of a heterogeneous dataset.

1 2 n

Local
Clustering

Local
Clustering

Local
Clustering

Local
Result

Local
Result

Local
Result

Global Representation

Global Clustering

Apply

Local
Dataset

Local
Dataset

Local
Dataset

Figure 2. An example of a heterogeneous dataset.

In order to deal with the problem of the heterogeneous datasets in the distributed environment,
Kargupta and his colleagues extended the concept of CHC to propose a distributed hierarchal
clustering [8,9]. However, it may suffer from problems of computational time and memory in a
big or high-dimensional dataset, similar to conventional hierarchical clustering algorithms. Hence,
Kargupta et al. [9] proposed a dimensionality reduction of CHC to solve the problem of the computation

Information 2019, 10, 144 4 of 14

complexity. However, this method disregards the possible interaction effects among attributes in
different datasets, and forgoes some levels of information in the data. Moreover, it cannot deal with
categorical data with the conventional principal component analysis. Although other distributed
clustering algorithms for heterogeneous datasets are proposed, e.g., OPTICS algorithm [21] and the
SDBDC algorithm [17], these methods assume clusters of similar density, and may have problems
separating nearby clusters [22] and the appropriate choice of parameters, such as the radius parameter,
which is still an open issue [23]. In sum, none of the existing algorithms adequately address the
problems we have outlined here.

3. Double Deep Autoencoder

Deep learning has recently received much attention because of its successful applications in practice
and academia, and many types of deep neural networks have been proposed, such as convolutional
neural networks [24,25], recurrent neural networks [26], and deep autoencoders [27]. The purpose of
deep learning is to construct many hidden layers (usually more than two hidden layers) to capture
and extract complicated information from data in supervised and unsupervised models. In this paper,
we will use one kind of deep learning model—the deep autoencoder—to develop distributed clustering
algorithms which avoid the previously presented problems of [9]’s OPTICS and SDBDC algorithms.

3.1. Deep Autoencoder

The structure of the deep autoencoder was originally proposed by [28], to reduce the dimensionality
of data within a neural network. They proposed a multiple-layer encoder and decoder network
structure, as shown in Figure 3, which was shown to outperform the traditional PCA and latent
semantic analysis (LSA) in deriving the code layer.Information 2019, 10, 144 5 of 15

Figure 3. Structure of the deep autoencoder.

Later, several modified autoencoders, such as the stacked sparse autoencoder (SSAE) [29] and
stacked similarity-aware Autoencoder [30], were proposed.

If one hidden layer is considered, the optimization process of finding weights in the autoencoder
can be viewed as minimizing the following loss objective:

2 2ˆ ˆ(,) || || || ((())) ||J x x x x x W Wx b bσ σ′ ′ ′= − = − + + (1)

where x is the input, x̂ is the output, ()Wx bσ + denotes the code or latent variables, and W
and b are the weight matrix and bias vector, respectively, for the encoder and satisfy the condition

1W W′ = , where W ′ and b′ , respectively, are the weight and bias parameters for the decoder,
indicating the relationship between the encoder and decoder. We can add more hidden layers to
naturally extend the original autoencoder under the deep structure model, and to consider a more
complicated and nonlinear representation of variables.

Deep autoencoders have been widely used in pre-trained deep neural networks, such as in
coevolution neural networks (CNNs) and recurrent neural networks (RNNs), and reported as a
useful way to represent the original variables. In addition, deep autoencoders have been successfully
used in the fields of speech recognition [31], 3D shape retrieval [32], face recognition [33–35], and
more. Next, we introduce the proposed algorithm.

3.2. Replica Neural Network

In the local database, we design a deep autoencoder that contains multiple encoder and decode
layers, as shown in Figure 4.

Figure 3. Structure of the deep autoencoder.

Later, several modified autoencoders, such as the stacked sparse autoencoder (SSAE) [29] and
stacked similarity-aware Autoencoder [30], were proposed.

Information 2019, 10, 144 5 of 14

If one hidden layer is considered, the optimization process of finding weights in the autoencoder
can be viewed as minimizing the following loss objective:

J(x, x̂) =
∣∣∣∣∣∣x− x̂

∣∣∣∣∣∣2 =
∣∣∣∣∣∣x− σ′(W′(σ(Wx + b)) + b′)

∣∣∣∣∣∣2 (1)

where x is the input, x̂ is the output, σ(Wx + b) denotes the code or latent variables, and W and b are
the weight matrix and bias vector, respectively, for the encoder and satisfy the condition W′W = 1,
where W′ and b′, respectively, are the weight and bias parameters for the decoder, indicating the
relationship between the encoder and decoder. We can add more hidden layers to naturally extend
the original autoencoder under the deep structure model, and to consider a more complicated and
nonlinear representation of variables.

Deep autoencoders have been widely used in pre-trained deep neural networks, such as in
coevolution neural networks (CNNs) and recurrent neural networks (RNNs), and reported as a useful
way to represent the original variables. In addition, deep autoencoders have been successfully used in
the fields of speech recognition [31], 3D shape retrieval [32], face recognition [33–35], and more. Next,
we introduce the proposed algorithm.

3.2. Replica Neural Network

In the local database, we design a deep autoencoder that contains multiple encoder and decode
layers, as shown in Figure 4.
Information 2019, 10, 144 6 of 15

Figure 4. Deep autoencoder of the local database.

The layer of compression is initially used in the bottle-neck scheme in the autoencoder, and is a
compressed feature vector designed to represent and capture the information of input features and
significantly reduce the dimensions of the features. The usefulness of the code layer has been
identified as the increase of the accuracy of models, and is widely used in deep learning algorithms
[36]. In addition, in the practical usage of the deep autoencoder, the number of hidden neurons may
exceed the number of input variables. The purpose is to map the input variables for the
hyperdimensional feature spaces to the segment data more effectively. Here, we input our
heterogeneous and distributed datasets into different replicas. Note that the heterogeneous and
distributed datasets mean each replica holds the partial and exclusive features of the whole dataset.
Then, the codes of all replicas will be concatenated together to be the input layer of the server neural
network.

3.3. Server Neural Network

Next, we should consider multiple local datasets to derive the global clustering result under the
structure of the deep autoencoder in a distributed environment. The arrangement is described as
follows. First, assume there are n distributed local datasets and each local dataset processes the deep
autoencoder simultaneously to capture the compressed information of the features by the layer of
compression (code). Then, we concatenate all local codes as the input features of the global deep
autoencoder. Furthermore, the global code is trained to represent the information of the local codes.
Finally, the global code of the global deep autoencoder is used to obtain the global results of the
clustering algorithms. Note that we use k-means, self-organizing maps (SOM), and spectral clustering
algorithms here to compare the results of our experiments. The proposed structure of the global deep
autoencoder is presented in Figure 5.

Figure 4. Deep autoencoder of the local database.

The layer of compression is initially used in the bottle-neck scheme in the autoencoder, and
is a compressed feature vector designed to represent and capture the information of input features
and significantly reduce the dimensions of the features. The usefulness of the code layer has been
identified as the increase of the accuracy of models, and is widely used in deep learning algorithms [36].
In addition, in the practical usage of the deep autoencoder, the number of hidden neurons may exceed
the number of input variables. The purpose is to map the input variables for the hyperdimensional
feature spaces to the segment data more effectively. Here, we input our heterogeneous and distributed
datasets into different replicas. Note that the heterogeneous and distributed datasets mean each replica
holds the partial and exclusive features of the whole dataset. Then, the codes of all replicas will be
concatenated together to be the input layer of the server neural network.

Information 2019, 10, 144 6 of 14

3.3. Server Neural Network

Next, we should consider multiple local datasets to derive the global clustering result under
the structure of the deep autoencoder in a distributed environment. The arrangement is described
as follows. First, assume there are n distributed local datasets and each local dataset processes the
deep autoencoder simultaneously to capture the compressed information of the features by the layer
of compression (code). Then, we concatenate all local codes as the input features of the global deep
autoencoder. Furthermore, the global code is trained to represent the information of the local codes.
Finally, the global code of the global deep autoencoder is used to obtain the global results of the
clustering algorithms. Note that we use k-means, self-organizing maps (SOM), and spectral clustering
algorithms here to compare the results of our experiments. The proposed structure of the global deep
autoencoder is presented in Figure 5.
Information 2019, 10, 144 7 of 15

Figure 5. Structure of the double deep autoencoder.

We should highlight that the purpose of H1 in the server is to combine the information of all
replicas so that the global code can extract the information and learn the interaction effect among the
distributed features. In addition, since all Hik are dimensionally reduced, we can avoid the problem
of high dimensions in combining all local codes. Then, we can use the global code layer to obtain the
global result of the clustering by processing another deep autoencoder.

Finally, we can formulate the local and global objectives of the proposed model, respectively, as:
2(,) || || , 1,...,i i i iJ i n= − ∀ =′ ′X X X X (2)

and
2((),) || () || , 1,...,jk jk jk jkJ concat concat j n′ − ∀ =′=H H H H (3)

where iX denotes the input matrix of the ith replica, i′X denotes the reconstructed output of the

ith replica, jkH denotes the local code of the jth replica, ()concat ⋅ denotes the concatenate

function, ()jkconcat H is the global input matrix, and jk′H denotes the global reconstructed

output.

3.4. Optimization Algorithms

Figure 5. Structure of the double deep autoencoder.

We should highlight that the purpose of H1 in the server is to combine the information of all
replicas so that the global code can extract the information and learn the interaction effect among the
distributed features. In addition, since all Hik are dimensionally reduced, we can avoid the problem of
high dimensions in combining all local codes. Then, we can use the global code layer to obtain the
global result of the clustering by processing another deep autoencoder.

Information 2019, 10, 144 7 of 14

Finally, we can formulate the local and global objectives of the proposed model, respectively, as:

J(Xi, X
′

i) =
∣∣∣∣∣∣Xi −X

′

i
∣∣∣∣∣∣2,∀i = 1, . . . , n (2)

and
J(concat(H jk), H

′

jk) =
∣∣∣∣∣∣concat(H jk) −H

′

jk
∣∣∣∣∣∣2,∀ j = 1, . . . , n (3)

where Xi denotes the input matrix of the ith replica, X
′

i denotes the reconstructed output of the
ith replica, H jk denotes the local code of the jth replica, concat(·) denotes the concatenate function,
concat(H jk) is the global input matrix, and H

′

jk denotes the global reconstructed output.

3.4. Optimization Algorithms

Several optimization algorithms have been proposed to train the above deep autoencoder,
including gradient descent and its variants [37]. However, traditional optimization algorithms result in
a computational efficiency problem when dealing with a complicated or deep neural network. Hence,
the concept of the mini-batch process is considered in which stochastic gradient descent (SGD) is used
to take advantage of both the batch and stochastic gradient descents. For simplicity, we use SGD to
represent the mini-batch SGD here.

SGD is an iterative method for optimizing a differentiable objective function, and has become one
of the most popular first-order optimization methods in the field of machine learning. The training
process of updating parameter θ by SGD can be described as:

θ = θ− η · ∇θ J(θ; x(i:i+k); y(i:i+k)) (4)

where ∇θ denotes the gradient, η is the learning rate, and k usually is set to 30–200, where 1 < k <

n. From Equation (2), it can be seen that the training samples are randomly selected to process the
optimization process, instead of as a whole dataset (as in standard gradient descent), to avoid the
problem of computation cost when considering big data. The major advantage of SGD is that it is
possible to obtain an unbiased estimate of the gradient by taking the average gradient of a mini-batch
of k samples drawn from the data-generating distribution [38]. In addition, we can add the momentum
term to accelerate learning [39], and reduce the possible problem of the oscillation by combining the
past update along with the current update.

The momentum optimizer can be defined as:

v(t+1)
i ← αv(t)i − η∇θ J(θ) (5)

θ
(t+1)
i ← θ

(t)
i + v(t+1)

i (6)

where α ∈ [0, 1) denotes the momentum parameter, vi is the velocity of the ith parameter, and η is the
learning rate. In addition, the momentum optimizer also solves the poor conditioning of the Hessian
matrix and variance in the stochastic gradient. Note that the Hessian matrix is the second order
partial derivative of an objective function, and is the major information source of the second-order
optimization method.

However, one critical issue of SGD is to determine the appropriate learning rate. Many papers
have suggested that the learning rate should be adjusted and regulated by itself, rather than be a
constant given by a decision-maker. Hence, many algorithms have been proposed, such as Nesterov,
RMSprop, and Adam, to consider adaptive learning rate optimization [40–42]. In this paper, we adopt
the Nesterov method to determine the learning rate, as given by the following equations:

θi
(t′)
← θi

(t) + αvi
(t) (7)

vi
(t+1)

← αvi
(t)
− η∇θ J(θi

(t′)) (8)

Information 2019, 10, 144 8 of 14

θi
(t+1)

← θi
(t) + vi

(t+1) (9)

where α ∈ [0, 1) denotes the momentum parameter, vi is the velocity of the ith parameter, and η is the
learning rate.

3.5. Summary of the Proposed Algorithm

The proposed Algorithm 1 can be summarized as the following pseudocode:

Algorithm 1: double deep autoencoder

Input: Replica data samples
Method:
Replica Neural Networks:

(1) Load the input xi, i = 1, . . . , n from the ith replica and map the input to the latent representation.
(2) Apply a reverse mapping to reconstruct the input.
(3) Map each xi onto its code hik and its reconstruction xi

′.

Server Neural Network:

(1) Concatenate all hik as the input (H1) onto its code Hk and its reconstruction H1
′ by the Nesterov method.

(2) Process the clustering analysis based on Hk.

Output: Global clustering result.

The proposed algorithm above can be summarized as follow: in replica neural networks,
all distributed datasets process the local autoencoders to obtain the local feature space by minimizing
the reconstruction error through the optimization algorithm, i.e., the Nesterov method. Then, all local
feature spaces are concatenated to form the input of the server neural network to process the global
autoencoder to extract the global feature space. Finally, the global feature space is used to run the
clustering algorithm, e.g., the k-mean method here, to obtain the final result of the clustering analysis.

3.6. Performance Measurement

The purpose of this paper is to develop a distributed clustering algorithm that can deal with
heterogeneous datasets. Hence, the performance of the algorithm should reflect the degree of similarity
between the clustering results of the proposed and centralized algorithms. Note that the centralized
algorithm means processing data in a central dataset, rather than in distributed datasets. Hence,
we proposed the following consistent accuracy index (CAI) to measure the performance of the
proposed algorithm:

CAI =

∑k
i=1

∑n j

j=1 I
{
mC

(
ci j

)
−mD

(
ci j

)}
∑k

i=1 ni
(10)

where ni denotes the number of local data; I ∈ {1, 0} is the indicator variable, which is equal to one if
mC(ci) = mD(ci) and zero otherwise; and mC(ci) and mD(ci) are the assigned class calculated by the
centralized and distributed clustering algorithms, respectively. Note that CAI = 1 if the clustering
results of the centralized and distributed clustering algorithms are the same, and CAI = 0 if the results
are totally different.

4. Experiments

Three datasets are used here to demonstrate the proposed algorithm and compute the CAI between
centralized and distributed datasets, to demonstrate the efficacy of our method in solving the problem
presented here. The first dataset is named Mnist, and contains 70,000 handwritten digits from 0 to 9
with 785 features. The second dataset is called the Covertype dataset, and contains 581,012 instances
with 54 features used to predict forest cover type from cartographic variables only. The last dataset,
named the Sensorless Drive Diagnosis Dataset (SDDD), contains 58,509 instances with 49 features and

Information 2019, 10, 144 9 of 14

is extracted from electric current drive signals. All datasets are provided by the UCI Machine Learning
Repository, and the last feature of the datasets is the class variable, which is used as the number of the
cluster and is dropped from the training sets.

The description and distributed settings of the datasets are presented in Table 1. For our purposes,
we divide the original central dataset into several distributed local datasets according to the number
of records. For example, the dataset Mnist is divided into four replicas (subsets), and each replica
contains 196 attributes. Hence, we can test the proposed method in different distributed environments.
In addition, we randomly select exclusive features to form the local features of each dataset in the first
and third datasets. The second datasets split the features based on the data type. The first 10 features are
continuous, and the others are dummy variables. Hence, all local datasets contain distinctive features.

Table 1. Description of datasets.

Datasets Mnist Covertype SDDD

Records 70,000 581,012 58,509
Class 10 7 11

Replica 4 2 3
Replica Attributes 196/196/196/196 10/44 16/16/16

The parameters for datasets are arranged as shown in Table 2. In the dataset Mnist, for example,
the network structure contains one input and one output with 196 features and seven hidden layers,
where 10 is the neuron number of the code for each replica. The hyperbolic tangent function is used as
the activation function, the dropout rate is 0.2, and the mini-batch size is 100. In addition, regulation
and adaptive learning are used here.

Table 2. Parameters for datasets.

Datasets Mnist Covertype SDDD

Replica network 196-500-300-100-10-100-
300-500-196

10(44)-50-40-30-10-30-40-
50-10(44)

16-50-30-20-10-20-30-
50-16

Server network 10-400-200-20-200-400-10 10-50-25-10-25-50-10 10-40-20-10-20-40-10
Activation function Hyperbolic tangent Hyperbolic tangent Hyperbolic tangent

Dropout rate 0.2 0.2 0.2
Mini-batch size 100 100 100

Overfitting Sparsity regularization Sparsity regularization Sparsity regularization
Adaptive learning Nesterov Nesterov Nesterov

Loss function MSE MSE MSE
Stopping criterion 600 epochs 600 epochs 600 epochs

Next, all replicas run the deep autoencoder algorithm for each distributed dataset to obtain the
local codes, and then combine them to perform another deep autoencoder algorithm from the server to
derive the global code. Finally, the code is used to cluster data points by the k-means, SOM, and spectral
algorithms. Note that we use parallel spectral clustering [43] here to deal with the dataset Covertype,
since it contains more than 500,000 data points and conventional spectral clustering will result in
memory and computational problems when calculating the similarity matrix. The CAI is used to test
the performance of the proposed method, and we also use the information of the code to classify data
to identify the usefulness of the code. The results of the CAI are presented in Table 3.

Information 2019, 10, 144 10 of 14

Table 3. Consistent accuracy index (CAI) comparisons between different algorithms.

Clustering Mnist Covertype SDDD

DDA+K-means 0.8060 0.6744 0.6837
DDA+SOM 0.6641 0.5427 0.6832

DDA+Spectral 0.8090 0.7576 0.7691

Note: DDA is the deep double autoencoder method.

From Table 3, it can be seen that the spectral algorithm outperforms the others in terms of the
CAI, and the CAI values ranging between 0.75 and 0.81 also indicate the high consistency between
the centralized and the proposed clustering results. However, the performance of the DDA+SOM
is the worst in this experiment, and shows that the compression features cannot provide essential
information for SOM in-clustering.

On the other hand, we can also use the unsupervised clustering accuracy (ACC) [44], as shown in
Table 4, to evaluate the average performance of the clustering algorithms with respect to the matching
results between predicted labels and ground truth labels.

Table 4. Performance of the DDA clustering algorithm.

ACC Centralized
DA DDA+K-Means Centralized

DA DDA+SOM Centralized
DA DDA+Spectral

Mnist 0.7621 0.7354 0.7315 0.7030 0.7924 0.7416
Covertype 0.5604 0.5524 0.4430 0.4347 0.6488 0.6076

SDDD 0.6630 0.6584 0.6656 0.6586 0.7506 0.7245

From the results shown in Table 4, we can see that the spectral algorithm also outperforms
the others, with ACC values ranging between 0.60 to 0.74. These values are also competitive with
respect to the centralized methods, without losing too much information under the distributed and
heterogeneous environments. The results of the ACC values also indicate that SOM has the worst
performance, no matter the centralized or distributed situation.

In addition, we also compare the classification accuracy between the centralized and the proposed
algorithms. The centralized algorithms use raw data to run the deep autoencoder, and add a softmax
layer to predict the classes of the data points. In contrast, we use the global code derived by the DDA
algorithm to predict the correct class of the data by adding the softmax layer—also known as the
hyperbolic tangent function—here. The centralized and distributed network setting of classification is
shown in Table 5.

Table 5. Classification accuracy of the centralized and proposed methods (Parameters Setting: 70%
training set, 30% validation set, 5-fold cross validation).

Mnist Covertype SDDD

Centralized DA+softmax 0.9973 0.6742 0.7251
Network structure 784-500-300-100-10 54-50-40-30-10 48-50-30-20-10

DDA+softmax 0.9408 0.6123 0. 6754

Information loss 5.66% 9.18% 6.85%

The results of the classification accuracy between centralized and distributed algorithms, as shown
in Table 5, also indicate the usefulness of the code to extract and retain the important information
between distributed features. In addition, the information loss is only about 5.66% to 9.18%. The best
performances of the proposed methods are shown in Figure 6.

Note that the information loss is influenced by the result of the classification based on the
experiment results. Hence, more consistent data will perform better with our methods. In sum,

Information 2019, 10, 144 11 of 14

these indices show that the accuracy of the proposed method is competitive, even under a
distributed environment.Information 2019, 10, 144 12 of 15

Figure 6. The performance evaluation of the proposed methods.

Note that the information loss is influenced by the result of the classification based on the
experiment results. Hence, more consistent data will perform better with our methods. In sum, these
indices show that the accuracy of the proposed method is competitive, even under a distributed
environment.

5. Discussion and Conclusion

Although traditional data mining mainly considers handling data in centralized datasets, with
the increasing amount of data, centralized storage devices are inadequate for storage of this data. In
light of the above issue, distributed databases have been proposed. However, distributed databases
complicate the procedures of data mining. In addition, the issue of preserving privacy has also
facilitated the emergence of DDM algorithms.

In this paper, we consider a deep learning structure with a double autoencoder setting in local
sites and the server, simultaneously. The first deep autoencoder is used to derive the codes for local
sites, and the second deep autoencoder is used to derive the global encoder by combining these local
encoders. The global encoder should be a good representative for all local features, and achieves this
by learning the nonlinear relationships between features. Finally, we can use various kinds of
clustering algorithms to obtain global clusters.

The experiment results indicate that DDA and spectral clustering have the highest CAI, between
0.7 and 0.8, compared with k-means and SOM—that is, over 70% of the data points of the central and
distributed datasets are assigned to the same clusters. Therefore, we can conclude that DDA can learn
the important patterns from the local codes of the intra-datasets. In addition, from the comparisons
between accuracy and CAI, it can be inferred that the performance of the CAI is affected by the
consistency of the data structure. Therefore, if the data consistency is higher, the value of the CAI
becomes higher. Note that the data consistency is reflected in the accuracy of the classification. The
higher the accuracy, the higher the data consistency. Furthermore, the results of the ACC and
information loss also indicate that the proposed algorithms can account for the clustering analysis
under the distributed and heterogeneous environments.

In addition, the empirical results show that the DDA+Spectral algorithm outperforms others in
all datasets. Since the input data of the proposed three algorithms are the same, the performance of
the algorithms are determined by the ability of the clustering algorithm. In the past research, the
performance of the spectral clustering was found to be better than k-means and is consistent with the
conclusion here.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Mnist Covertype SDDD

Performance Evaluations

CAI(DDA+Spectral) ACC (DDA+Spectral) Information loss

Figure 6. The performance evaluation of the proposed methods.

5. Discussion and Conclusions

Although traditional data mining mainly considers handling data in centralized datasets, with the
increasing amount of data, centralized storage devices are inadequate for storage of this data. In light of
the above issue, distributed databases have been proposed. However, distributed databases complicate
the procedures of data mining. In addition, the issue of preserving privacy has also facilitated the
emergence of DDM algorithms.

In this paper, we consider a deep learning structure with a double autoencoder setting in local
sites and the server, simultaneously. The first deep autoencoder is used to derive the codes for local
sites, and the second deep autoencoder is used to derive the global encoder by combining these local
encoders. The global encoder should be a good representative for all local features, and achieves
this by learning the nonlinear relationships between features. Finally, we can use various kinds of
clustering algorithms to obtain global clusters.

The experiment results indicate that DDA and spectral clustering have the highest CAI, between
0.7 and 0.8, compared with k-means and SOM—that is, over 70% of the data points of the central
and distributed datasets are assigned to the same clusters. Therefore, we can conclude that DDA
can learn the important patterns from the local codes of the intra-datasets. In addition, from the
comparisons between accuracy and CAI, it can be inferred that the performance of the CAI is affected
by the consistency of the data structure. Therefore, if the data consistency is higher, the value of the
CAI becomes higher. Note that the data consistency is reflected in the accuracy of the classification.
The higher the accuracy, the higher the data consistency. Furthermore, the results of the ACC and
information loss also indicate that the proposed algorithms can account for the clustering analysis
under the distributed and heterogeneous environments.

In addition, the empirical results show that the DDA+Spectral algorithm outperforms others in
all datasets. Since the input data of the proposed three algorithms are the same, the performance
of the algorithms are determined by the ability of the clustering algorithm. In the past research,
the performance of the spectral clustering was found to be better than k-means and is consistent with
the conclusion here.

The characteristics of the proposed algorithm have the following advantages. First, the local code
layers, derived by the deep autoencoder in the replica, can usefully retain the important information of

Information 2019, 10, 144 12 of 14

the data and can consider the privacy-preserving issue with fewer features. Second, the mini-batch
Nesterov algorithm enables training of the appropriate weights, even with big data. Third, the global
code contains all the information of the local codes, and represents them with fewer features. Finally,
all centralized algorithms can be embedded in our algorithm to obtain the global clustering results
without further modification.

Author Contributions: Writing—original draft, J.-J.H.; Writing—review & editing, C.-Y.C.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Tsoumakas, G.; Vlahavas, I. Distributed data mining. In Database Technologies: Concepts, Methodologies, Tools,
and Applications; IGI Global: Hershey, PA, USA, 2009; pp. 157–164.

2. Zeng, L.; Li, L.; Duan, L.; Lu, K.; Shi, Z.; Wang, M.; Wu, W.; Luo, P. Distributed data mining: A survey.
Inf. Technol. Manag. 2012, 13, 403–409. [CrossRef]

3. Jain, A.K.; Murty, M.N.; Flynn, P.J. Data clustering: A review. ACM Comput. Surv. 1999, 31, 264–323.
[CrossRef]

4. Steinbach, M.; Karypis, G.; Kumar, V. A comparison of document clustering techniques. KDD Workshop
Text Min. 2000, 400, 525–526.

5. Beil, F.; Ester, M.; Xu, X. Frequent term-based text clustering. In Proceedings of the Eighth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, Edmonton, AB, Canada, 23–26 July
2002; p. 436.

6. Ghanem, S.; Kechadi, M.T.; Tari, A.K. New approach for distributed clustering. In Proceedings of the 2011
IEEE International Conference on Spatial Data Mining and Geographical Knowledge Services (ICSDM 2011),
Fuzhou, China, 29 June–1 July 2011; pp. 60–65.

7. Ahmad, F.; Chakradhar, S.T.; Raghunathan, A.; Vijaykumar, T.N. Tarazu: Optimizing MapReduce on
heterogeneous clusters. In ACM SIGARCH Computer Architecture News; ACM: New York, NY, USA,
2012; p. 61.

8. Johnson, E.L.; Kargupta, H. Collective, Hierarchical Clustering from Distributed, Heterogeneous Data. In
Advances in Nonlinear Speech Processing; Springer Nature: Basingstoke, UK, 2000; Volume 1759, pp. 221–244.

9. Kargupta, H.; Huang, W.; Sivakumar, K.; Johnson, E. Distributed Clustering Using Collective Principal
Component Analysis. Knowl. Inf. Syst. 2001, 3, 422–448. [CrossRef]

10. Zhai, K.; Boyd-Graber, J.; Asadi, N.; Alkhouja, M.L. Mr. LDA: A flexible large scale topic modeling package
using variational inference in mapreduce. In Proceedings of the 21st International Conference on World
Wide Web, Lyon, France, 16–20 April 2012; pp. 879–888.

11. Vishalakshi, C.; Singh, B. Effect of developmental temperature stress on fluctuating asymmetry in certain
morphological traits in Drosophila ananassae. J. Biol. 2008, 33, 201–208. [CrossRef]

12. Huang, J.-J. Heterogeneous distributed clustering by the fuzzy membership and hierarchical structure. J. Ind.
Prod. Eng. 2018, 35, 189–198. [CrossRef]

13. Zhang, J.; Huang, G. Research on distributed heterogeneous data PCA algorithm based on cloud platform.
In AIP Conference Proceedings; AIP Publishing: Melville, NY, USA, 2018; Volume 1967, p. 020016.

14. HajHmida, M.B.; Congiusta, A. Parallel, distributed, and grid-based data mining: Algorithms, systems,
and applications. In Handbook of Research on Computational Grid Technologies for Life Sciences, Biomedicine, and
Healthcare; IGI Global: Hershey, PA, USA, 2012.

15. Roosta, S.H. Parallel Processing and Parallel Algorithms: Theory and Computation; Springer Science & Business
Media: Berlin, Germany, 2012.

16. Januzaj, E.; Kriegel, H.P.; Pfeifle, M. Towards effective and efficient distributed clustering. In Proceedings of
the Workshop on Clustering Large Data Sets (ICDM2003), Melbourne, FL, USA, 19 November 2003.

17. Januzaj, E.; Kriegel, H.-P.; Pfeifle, M. DBDC: Density Based Distributed Clustering. In Advances in Nonlinear
Speech Processing; Springer Nature: Basingstoke, UK, 2004; Volume 2992, pp. 88–105.

18. Coletta, L.F.S.; Vendramin, L.; Hruschka, E.R.; Campello, R.J.G.B.; Pedrycz, W. Collaborative Fuzzy Clustering
Algorithms: Some Refinements and Design Guidelines. IEEE Trans. Fuzzy Syst. 2012, 20, 444–462. [CrossRef]

http://dx.doi.org/10.1007/s10799-012-0124-y
http://dx.doi.org/10.1145/331499.331504
http://dx.doi.org/10.1007/PL00011677
http://dx.doi.org/10.1016/j.jtherbio.2007.09.004
http://dx.doi.org/10.1080/21681015.2018.1451401
http://dx.doi.org/10.1109/TFUZZ.2011.2175400

Information 2019, 10, 144 13 of 14

19. Visalakshi, N.K.; Thangavel, K.; Parvathi, R. An Intuitionistic Fuzzy Approach to Distributed Fuzzy
Clustering. Int. J. Comput. Theory Eng. 2010, 2, 295–302. [CrossRef]

20. Rahimi, A.; Recht, B. Clustering with normalized cuts is clustering with a hyperplane. Stat. Learn. Comput. Vis.
2004, 56–69. Available online: http://groups.csail.mit.edu/vision/vip/papers/rahimi-ncut.pdf (accessed on 17
April 2019).

21. Ghesmoune, M.; Lebbah, M.; Azzag, H. Micro-Batching Growing Neural Gas for Clustering Data Streams
Using Spark Streaming. Procedia Comput. Sci. 2015, 53, 158–166. [CrossRef]

22. Chowdary, N.S.; Prasanna, D.S.; Sudhakar, P. Evaluating and analyzing clusters in data mining using different
algorithms. Int. J. Comput. Sci. Mob. Comput. 2014, 3, 86–99.

23. Achtert, E.; Böhm, C.; Kröger, P. DeLi-Clu: Boosting robustness, completeness, usability, and efficiency of
hierarchical clustering by a closest pair ranking. In Pacific-Asia Conference on Knowledge Discovery and Data
Mining; Springer: Berlin/Heidelberg, Germany, 2006; pp. 119–128.

24. Abdel-Hamid, O.; Mohamed, A.-R.; Jiang, H.; Deng, L.; Penn, G.; Yu, D. Convolutional Neural Networks for
Speech Recognition. IEEE/ACM Trans. Audio Speech Process. 2014, 22, 1533–1545. [CrossRef]

25. Ji, S.; Xu, W.; Yang, M.; Yu, K. 3D Convolutional Neural Networks for Human Action Recognition. IEEE Trans.
Anal. Mach. Intell. 2013, 35, 221–231. [CrossRef]

26. Graves, A.; Mohamed, A.-R.; Hinton, G. Speech recognition with deep recurrent neural networks. In
Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver,
BC, Canada, 26–31 May 2013; pp. 6645–6649.

27. Feng, X.; Zhang, Y.; Glass, J. Speech feature denoising and dereverberation via deep autoencoders for noisy
reverberant speech recognition. In Proceedings of the 2014 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), Adelaide, Australia, 4–9 May 2014; pp. 1759–1763.

28. Hinton, G.E.; Salakhutdinov, R.R. Reducing the Dimensionality of Data with Neural Networks. Science 2006,
313, 504–507. [CrossRef]

29. Xu, J.; Xiang, L.; Liu, Q.; Gilmore, H.; Wu, J.; Tang, J.; Madabhushi, A. Stacked sparse autoencoder (SSAE)
for nuclei detection on breast cancer histopathology images. IEEE Trans. Med Imaging 2016, 35, 119–130.
[CrossRef]

30. Chu, W.; Cai, D. Stacked Similarity-Aware Autoencoders. In Proceedings of the Twenty-Sixth International
Joint Conference on Artificial Intelligence (IJCAI-17), Beijing, China, 18–21 June 2017; pp. 1561–1567.

31. Noda, K.; Yamaguchi, Y.; Nakadai, K.; Okuno, H.G.; Ogata, T. Audio-visual speech recognition using deep
learning. Appl. Intell. 2015, 42, 722–737. [CrossRef]

32. Zhu, Z.; Wang, X.; Bai, S.; Yao, C.; Bai, X. Deep Learning Representation using Autoencoder for 3D Shape
Retrieval. Neurocomputing 2016, 204, 41–50. [CrossRef]

33. Tan, C.C.; Eswaran, C. Reconstruction and recognition of face and digit images using autoencoders. Neural
Comput. Appl. 2010, 19, 1069–1079. [CrossRef]

34. Zhang, J.; Hou, Z.; Wu, Z.; Chen, Y.; Li, W. Research of 3D face recognition algorithm based on deep learning
stacked denoising autoencoder theory. In Proceedings of the 2016 8th IEEE International Conference on
Communication Software and Networks (ICCSN), Beijing, China, 4–6 June 2016; pp. 663–667.

35. Görgel, P.; Simsek, A. Face recognition via Deep Stacked Denoising Sparse Autoencoders (DSDSA).
Appl. Math. Comput. 2019, 355, 325–342. [CrossRef]

36. Vincent, P.; Larochelle, H.; Lajoie, I.; Bengio, Y.; Manzagol, P.A. Stacked denoising autoencoders: Learning
useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 2010, 11,
3371–3408.

37. Bengio, Y.; Lamblin, P.; Popovici, D.; Larochelle, H. Greedy layer-wise training of deep networks. In Advances
in Neural Information Processing Systems; Université de Montréal: Montreal, QC, Canada, 2007; pp. 153–160.

38. Ngiam, J.; Coates, A.; Lahiri, A.; Prochnow, B.; Le, Q.V.; Ng, A.Y. On optimization methods for deep learning.
In Proceedings of the 28th International Conference on Machine Learning (ICML-11), Washington, DC, USA,
28 June–2 July 2011; pp. 265–272.

39. Schmidhuber, J. Deep learning in neural networks: An overview. Neural Netw. 2015, 61, 85–117. [CrossRef]
40. Dean, J.; Corrado, G.; Monga, R.; Chen, K.; Devin, M.; Mao, M.; Ng, A.Y. Large scale distributed deep

networks. In Advances in Neural Information Processing Systems; Neural Information Processing Systems
Foundation, Inc.: San Diego, CA, USA, 2012; pp. 1223–1231.

http://dx.doi.org/10.7763/IJCTE.2010.V2.155
http://groups.csail.mit.edu/vision/vip/papers/rahimi-ncut.pdf
http://dx.doi.org/10.1016/j.procs.2015.07.290
http://dx.doi.org/10.1109/TASLP.2014.2339736
http://dx.doi.org/10.1109/TPAMI.2012.59
http://dx.doi.org/10.1126/science.1127647
http://dx.doi.org/10.1109/TMI.2015.2458702
http://dx.doi.org/10.1007/s10489-014-0629-7
http://dx.doi.org/10.1016/j.neucom.2015.08.127
http://dx.doi.org/10.1007/s00521-010-0378-4
http://dx.doi.org/10.1016/j.amc.2019.02.071
http://dx.doi.org/10.1016/j.neunet.2014.09.003

Information 2019, 10, 144 14 of 14

41. Duchi, J.; Jordan, M.I.; McMahan, B. Estimation, optimization, and parallelism when data is sparse. In
Advances in Neural Information Processing Systems; Neural Information Processing Systems Foundation, Inc.:
San Diego, CA, USA, 2013; pp. 2832–2840.

42. Nesterov, Y. Gradient methods for minimizing composite objective function. Math. Program. 2013, 140,
125–161. [CrossRef]

43. Chen, W.-Y.; Song, Y.; Bai, H.; Lin, C.-J.; Chang, E.Y. Parallel Spectral Clustering in Distributed Systems.
IEEE Trans. Pattern Anal. Mach. Intell. 2011, 33, 568–586. [CrossRef]

44. Xu, W.; Liu, X.; Gong, Y. Document clustering based on non-negative matrix factorization. In Proceedings
of the 26th Annual International ACM SIGIR Conference on Research and Development in Information
Retrieval, Toronto, ON, Canada, 26 October 2010; pp. 267–273.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s10107-012-0629-5
http://dx.doi.org/10.1109/TPAMI.2010.88
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Distributed Clustering Algorithms
	Double Deep Autoencoder
	Deep Autoencoder
	Replica Neural Network
	Server Neural Network
	Optimization Algorithms
	Summary of the Proposed Algorithm
	Performance Measurement

	Experiments
	Discussion and Conclusions
	References

