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Abstract: Automated driving systems (ADS) and a combination of these with advanced driver
assistance systems (ADAS) will soon be available to a large consumer population. Apart from testing
automated driving features and human–machine interfaces (HMI), the development and evaluation
of training for interacting with driving automation has been largely neglected. The present work
outlines the conceptual development of two possible approaches of user education which are the
owner’s manual and an interactive tutorial. These approaches are investigated by comparing them to
a baseline consisting of generic information about the system function. Using a between-subjects
design, N = 24 participants complete one training prior to interacting with the ADS HMI in a driving
simulator. Results show that both the owner’s manual and an interactive tutorial led to an increased
understanding of driving automation systems as well as an increased interaction performance.
This work contributes to method development for the evaluation of ADS by proposing two alternative
approaches of user education and their implications for both application in realistic settings and
HMI testing.

Keywords: automated driving; human–machine interface; user education; mental model formation;
driving simulator study

1. Introduction

Automated driving development is flourishing at the present time. With rapidly increasing system
functionalities, there is an urgent need to consider appropriate Human-machine interfaces (HMIs) to
communicate system states via auditory, visual, and haptic elements and also to let the user interact
with these systems through the same modalities. This proliferation of functionality and interaction
possibilities raises the necessity for developing robust methods to evaluate such interfaces. Level 3 (L3)
automated driving systems (ADS) take over longitudinal and lateral vehicle control and it is not the
driver’s responsibility anymore to monitor correct system functioning [1] as compared to level 2 (L2)
driving automation. Through this transfer of driving task responsibility, the opportunity to engage in
non-driving related tasks (NDRT) arises. Therefore, the driver’s role shifts from monitoring correct
system functioning in L2 to performing fallback performance in L3 in case the system function exceeds
its operational design domain (ODD). The ODD is defined in the Society of Automotive Engineers (SAE)
norm J3016R as “The specific conditions under which a given driving automation system or feature thereof is
designed to function, including, but not limited to, driving modes“(p 12). Human factors research strives to
accomplish the task of safer and more efficient human-automation interaction, where the first and most
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important aspect that must be regarded is appropriate HMI design with a user-centered perspective.
Following guidelines for proper interface design in automated driving (see e.g., [2]), developers can
design HMIs that are simple, intuitive, and user-friendly. As well, one additional challenge for a
successful market introduction is the development and deployment of user education with driving
automation. Educating users is needed to support safe and efficient interaction when using driving
automation [3]. It noted that through good interface design the demand for user education might be
reduced to a certain degree, but most likely it cannot be eradicated. In the area of manual driving,
there has been considerable interest in research for educating novice drivers in order to enhance road
safety [4,5]. The body of knowledge in the automated driving domain, however, is rather scarce even
though the National Highway Transportation Safety Administration’s (NHTSA) automated vehicles
policy [3] explicitly points towards the development of user education approaches. The importance
of automation user education and the retrieval of manual operation skills in control transfer events,
however, had been raised by Bainbridge [6] more than two decades ago. More recently, Endsley [7]
described an impression of user education when first encountering a Tesla Model S equipped with
autopilot. According to the author, there were brief verbal descriptions and after repeated questioning
a rather unstructured familiarization drive was offered. Similarly, a report by Pradhan et al. [8] of
a round table discussion on driver training showed that there is a pressing need to develop and
evaluate user education for driving automation. The present work contributes to the challenge of
conceptual development of user education procedures and ADS evaluation methodology development
by outlining possible approaches for user education (i.e., owner’s manual, interactive tutorial). The aim
of the present study is to investigate the effects of different user education approaches on system
understanding and interaction performance.

1.1. Background

Most research on automated driving has been directed at the assessment of transfer of control
events (so called “take-over situations”) from the automated vehicle to the human operator. It has
revealed a variety of human factor issues such as fatigue [9], trust [10,11], mode awareness [12],
and controllability [13]. The usability of L3 ADS HMIs, especially when coupled with driver assistance
systems, is also an emerging topic [14,15]. Research on the usability of automated driving HMIs has
shown that strong learning effects are at play when novice users interact with the driving automation
systems for the first time [15]. At the same time, appropriate understanding of driving automation
requires repeated interactions [16,17]. When it comes to using L3 ADS, users face complex system
architectures that are communicated via graphical and auditory HMI elements. The difference between
L3 ADS and lower levels of driving automation (i.e., L2 and lower) is that there are restrictions for
system activation. Therefore, operators face different demands from driving automation depending on
the level of automation. It depends on the level of automation [1], which and how many conditions
have to be met when users initiate control transitions by themselves [18]. Since the supervision of
correct functioning during L2 automation is the operator’s responsibility, there is only a small number
of necessary conditions from manual to L2 automated driving. With the shift of responsibility for the
driving task from the driver to the ADS, the number of conditions to be met rises in L3 automation.
These conditions for transitions between the levels of driving automation and the increasing complexity
of input elements due to a rising number of available system functions pose a challenge to human
operators when interacting with this technology.

One considerable aspect that arises between different transitions of control is the interference
between driving and ADS operation. Users that are driving manually have to perform the entire
dynamic driving task (DDT), for example, longitudinal and lateral vehicle guidance. At the same time,
they have to successfully operate the automated vehicle’s HMI to complete control transitions which
require sensory processing, perception, response selection, and response execution [19]. These two
tasks (i.e., DDT, operating HMI) are likely to interfere with each other. Thus, performance is impeded in
both driving and human-automation interaction performance. Both activation performance (e.g., errors,
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time on task) and driving performance (e.g., standard deviation of lateral position [20]) should be worse
for untrained users as compared with more skilled users due to distraction effects (see e.g., [21,22]).

Until now, familiarization and user education in studies on automated driving evaluation
have been rather unstructured and there is no commonly accepted standardization or best practice
recommendation. On the one hand, there are some studies that only included a brief description of
the automated driving function [23], while on the other hand, other studies included comprehensive
familiarization drives with additional descriptions by the experimenters [24,25]. Comparing the
automotive domain with research on automation in the aviation domain (see e.g., [26]) clearly shows
that user education will be one of the inevitable challenges to face for successful introduction of this
technology. Thus, there is a pressing need to develop user education approaches in order to enable
novice users of driving automation to appropriately use this emerging technology. The following
paragraphs outline considerations of two conceptual user education approaches and existing empirical
evidence on an owner’s manual (textual information) and an interactive tutorial. One important
aspect that both approaches share is that they focus on building declarative knowledge rather than
procedural knowledge [27]. Prior research on learning to interact with driving automation has
shown that it takes considerably longer to build up declarative knowledge in the form of accurate
mental models [17] as compared with procedural knowledge in the form of adequate interaction
performance [15]. The two approaches explicitly target user education approaches supporting the
formation of declarative knowledge.

1.2. Owner’s Manual Based User Education

One traditional approach to educate users is the owner’s manual [28], which, in principle,
is available to all later users of driving automation systems. The owner’s manual based approach can
be characterized as passive and unguided learning based on a study by Wickens et al. [29]. Users of
this technique only consume information without relating it to an applied context. In addition,
the degree of guidance is low since learners decide for themselves how much they would read and even
decide on the order of information they would process. Owner’s manuals, if designed appropriately,
do not convey erroneous operating paths but rather focus on correct ways of operating a certain
technology. Therefore, it does not provide users with conflicting information and instead focuses on
appropriate interaction. Owner’s manuals are often designed such that they do not support users
by providing procedural information on how to solve a task or problem when using a technology,
but rather support users by providing knowledge and skills that they have to transfer to the task later
on [30]. It follows that in an owner’s manual, HMI elements are presented separately without relating
different operating components to graphical elements or auditory elements. Therefore, learners need
to transfer knowledge gained from abstract descriptions of HMI elements to the applied context in the
vehicle interior. Additionally, due to the dominance of textual information, users might get lost in the
complexity of the information [29]. A potential drawback of owner’s manuals is that the information
on automated driving composes only a small portion of an enormous amount of text that can be
comprised of up to 500 pages. Therefore, it might be challenging for users of driving automation to
ensure that the information is not lost within other components of an owner’s manual such as technical
data, maintenance, and repair information.

Before encountering driving automation, the research on owner’s manuals or textual information
showed that they largely affect the behavior and attitude of users. When users of driving automation are
provided with varying descriptions of degrees of completeness, correctness, or reliability, these largely
influence the evolution of mental models, trust, and acceptance [31–34]. While most prior approaches
of providing information have focused on trust and acceptance-related issues, the aim of the present
study is to investigate building declarative knowledge as assessed through mental models and its
association with the impact on interaction behavior (e.g., accuracy, speed) with driving automation.
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1.3. Tutorial Based User Education

There are many different possible designs of interactive tutorials for user education. One design,
the click dummy or minimum viable product version, is intentionally not considered here for two
reasons. Using this version users freely try interacting with the system before actually proceeding to
the respective application in the simulator or on the real road. The first reason for not considering this
is that such an approach would rather build procedural knowledge through trial and error without
the users being provided with appropriate descriptions of system functionality. Secondly, results
from Forster et al. [15] have already shown how interactions with driving automation without prior
declarative knowledge evolve over time. Another imaginable approach is the education during
interaction approach. Such procedures would lead the user step by step through the operating process
by giving explanations and providing feedback. While such a procedure bears the advantage, for
example, in rental car scenarios where users want to start driving and use the function right away,
there are also problems with this approach. The reason the user uses automated driving is to be
relieved of the driving task and engage in different nondriving related tasks (NDRT). Comprehensive
explanations by a system avatar [35] might take a long time and users want the function to execute the
task right away. Therefore, we focus on an approach to educate users prior to first interaction. It might
also be possible in car rental scenarios that by booking a tablet or computer, a brief tutorial could
be completed. This procedure of educating users prior to first system encounters is also supported
by inferences from aviation where only trained individuals operate automated systems and they are
not trained during use. Therefore, the present work considers an interactive tutorial approach that is
characterized by active and guided learning [29] in the form of a user quiz consisting of questions on
how to operate the driving automation system in several use cases [18]. This tutorial is completed
prior to the first interaction with driving automation. With the possibility of giving wrong answers,
the tutorial supports learning from erroneous trials. If users take erroneous choices in a tutorial-based
approach, these errors should not occur in subsequent interactions in the vehicle. Tutorials are
characterized by a high degree of experimental control since users can only proceed to using the ADS
in the vehicle after they have successfully completed the assigned questions. Thus, after an interactive
tutorial, all users should have the same degree of system understanding before their first encounter
with the driving automation system [5]. Another characteristic of an interactive tutorial is that it is
somewhat focused on specific tasks that users can subsequently face as compared with abstract system
descriptions in an owner’s manuals [30]. Therefore, tutorials provide a meaningful context in which a
driving automation system will be used and it is not necessary to transfer knowledge from abstract
descriptions to specific use cases [6]. Interactive tutorial approaches offer the possibility to provide
the user a close-to-reality impression of the HMI, providing a higher degree of immersion [36] as
compared with owner’s manual-based approaches. Designers can implement the HMI components
(i.e., operating elements, buttons, graphical interface) in a way that it resembles later interior integration.
As an active learning approach, the design makes the availability of erroneous answers indispensable.
This can be considered a downside of this approach since learners might get confused from the sheer
amount of wrong answers in relation to correct answers (e.g., 1:3 ratio). This becomes even more
crucial considering that in order to foster active learning the distractors should be designed in a way
that they are not too obviously wrong. As users do not have any knowledge of the system beforehand,
it is likely that they frequently select wrong answers and become frustrated from the trial and error
approach. Therefore, designers of such tutorials should give careful attention to the communication of
the outcome of erroneous answers so that they do not lead to reactance from the learner [37].

Research on interactive user education approaches has led to positive results in educating novice
drivers [38,39]. Considering that these systems are not yet available commercially and users are
unfamiliar with driving automation in general, research on efforts towards educating users with
ADS need to be undertaken. In the automated driving domain, research on trust and controllability
regarding take-over situations provided the first evidence that the familiarization of users with the HMI
by means of descriptions, HMI presentations or actual experience, can have beneficial effects [11,40].
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However, conceptual approaches for teaching users how to interact with driving automation technology
are still scarce. Table 1 compares the owner’s manual and tutorial approaches with respect to education
design characteristics.

Table 1. Summary of characteristics of manual and tutorial based user education approaches.

Characteristic Source Owner’s Manual Interactive Tutorial

Type of learning [29] Passive learning Active learning

[5,29] Unguided/uncontrolled
learning

Guided learning/experimental
control

Focus of education [30] System focused Use case focused

Type of information N/A Correct information only Presence of distracting
information

Degree of realism [36] Abstract representation
of HM

Immersive representation of
HMI

1.4. Aims and Objectives

The present work has two objectives. The first objective is to determine if an experimental
manipulation, with respect to user education approaches consisting of an owner’s manual or
an interactive tutorial as compared with generic information about the system function, would
result in more accurate mental models and superior operator performance in automated driving.
Secondly, it focuses on a proof-of-concept for educating users in a risk-free environment on a desktop
screen before they might be exposed to the task in a real vehicle on the road or in a driving simulator.

This study does not claim to explicitly investigate systematic differences between the two proposed
user education approaches. Therefore, the analysis primarily focuses on evaluating each approach as
compared with a baseline. Subsequently, it is the task of future basic research to discover more about
the specific mechanisms of learning that underlie each of the two approaches.

On the basis of the considerations outlined above, we hypothesize that both the owner’s manual
and the tutorial would lead to more accurate mental models regarding the HMI for L2 and L3 automation
as compared with mere generic information about the system’s functionality. No hypothesis can
be stated for a difference between the two treatments since the conceptual difference is based on a
combination of education characteristics (see Table 1). Thus, potential differences cannot be traced
back to a single cause. Nevertheless, an explorative approach has been undertaken by comparing
mental model results for the two user education approaches.

Since we expect that the two treatments will support the evolution of accurate mental models of
the HMI and the system, interaction performance in both treatment conditions should be enhanced
compared to mere generic information. Similar to the experimental variations above, we follow
an explorative approach when comparing the two user education procedures. In addition, due to
the task-dependent characteristics of learning [41], we investigate whether the two user education
approaches work as expected in all use cases considered in the study, or whether specific use case
strengths and weaknesses are present.

2. Materials and Methods

2.1. Driving Simulation and Automated Driving System

The study was conducted in a fix-base driving simulator (see Figure 1). The vehicle mockup was
identical to a BMW 5 series with automatic transmission and contained all necessary instrumentation.
The front channels provided a field of view of 220◦ and were displayed through five front projectors.
The rear view was displayed through three LED screens that were placed behind the vehicle.
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The L2 and L3 driving automation carried out longitudinal and lateral vehicle guidance as soon as
the driver activated the respective function. The L2 automation let the driver take his/her hands off the
steering wheel for 15 seconds before displaying a hands-on request (HOR). The L3 ADS could execute
independent lane change maneuvers such as decelerating due to slower vehicles ahead or pulling back
to the right lane. There was no restriction in the adjustment of current velocity for L2 automation.
At activation, the current velocity was the set speed of the system. For L3 automation, the speed
could only be set to speeds slower than 130 km/h. If set to a higher speed, the system would suggest
a transition to L2 driving automation. In all cases the set speed of the L3 automation was 130 km/h.
The vehicle also included adaptive cruise control (ACC) which executed the longitudinal vehicle
guidance as well as the speed limiter. In reference to SAE J3016R, the L3 automation is considered an
ADS while the L2 automation is considered a driver support system.
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2.2. Study Design and Procedure

The study employed a single-factorial between-subjects design. The between-subjects factor,
“education”, had three levels which were baseline information (BL), owner’s manual (ML), and interactive
tutorial (TL). Participants were randomly assigned to the between-subjects factor. This work reported
the findings of the mental model formation after the different treatments had been provided and of the
interaction performance in a subsequent block of different transitions of control.

Upon arrival, the experimenter welcomed participants and informed consent was obtained.
First, the experimenter provided a brief explanation of the purpose of the study. Then, the experimenter
outlined which education approach participants would receive and gave a standardized instruction
for each condition. The maximum time to complete the educational procedure was 10 minutes
in each condition. Having finished the educational procedure, participants completed a mental
model questionnaire (see section on the dependent variables) and were led to the vehicle mockup.
Before proceeding to the experimental drive and operating the driving automation, participants
completed a short manual familiarization drive to accustom themselves with handling the simulator.
Since instructions for the use cases were given through recorded samples, participants were introduced
to a sample telling them to change lanes in the familiarization trial. During the experimental drive,
participants had to complete two blocks of six interactions each (see section on use cases). The use
cases specific self-report data were collected after each interaction during the drive. Participants could
not anticipate the instruction of use cases since the experimenter deliberately waited at least 30 seconds
from the end of the use case specific inquiry before triggering the instruction to follow. Additionally,
upcoming transitions could not have been indicated by external cues such as highway intersections or
slow cars ahead. Having finished one block, the participants filled out the block inquiry at standstill
on the right shoulder. Traffic density on the three-lane highway was low to medium. The drive lasted
approximately 20 minutes. Table 2 schematically depicts the experimental procedure.
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Table 2. Schematic outline of experimental procedure.

User Education Preparation Experimental Drive

Education
application

Mental Model
questionnaire

Familiarization
drive (manual) Instructions Control

transitions Inquiry

2.3. Human-Machine Interface

The visual HMI showed the vehicle and its surroundings in L3 automation and this was displayed
on the instrument cluster. While the L2 automation was engaged, icons on the left side of the
instrument cluster depicted lateral and longitudinal vehicle guidance. There was no display of
the vehicle and its surroundings during active L2 automation. Active L2 and L3 automation were
colored differently. Similar solutions for visual automated vehicle HMIs have been proposed by
Forster et al. [42] and outlined in Manca et al. [43]. Thus, the present conceptual approach constituted
a representative solution for an automated vehicle HMI. Generally, the HMI is comprised of steering
assistance and adaptive cruise control interface features [44]. Referring to design considerations by
Naujoks et al. [45], the present HMI also contained information about the main state such as lateral
and longitudinal guidance, current velocity, and set speed information. It also followed the design
principle of redundancy by showing vehicle and surroundings plus icons indicating an active L3
ADS. A countdown provided information about the duration of the automated driving availability
during active functioning. The system states were also different if the system was not activated and
not available versus not activated and available. This was indicated by the L3 ADS availability icon in
the instrument cluster. There were buttons on the left side of the steering wheel for both the ADS and
the driver support functions for the participants to initiate the respective control transition and also to
deactivate the function to return to manual driving. The buttons were not illuminated in any automated
mode. Participants could switch between different driver support functions (i.e., L2 automation,
adaptive cruise control, speed limiter) with one button. The input device included three more buttons
(e.g., set speed). For adjusting cruising speed in both L2 and L3, there was a rocker switch among the
buttons. The buttons were easily reachable for participants using their left thumb. No restrictions were
present for the activation of the L2 automation. In contrast, participants had to meet certain conditions
for completing a transition to L3 automation [1]. These conditions were: (1) availability of the ADS,
(2) velocity below 130 km/h, and (3) lane keeping within a certain lateral margin. Besides pressing
the L3 automation button with both hands on the steering wheel, participants could deactivate the
ADS and drive manually by accelerating, braking, or applying a small force to the steering wheel.
Participants could only deactivate the L2 automation by pressing the “driver support” button or
braking. Accelerating temporarily led to a L1 automation state (i.e., lateral support only). Likewise,
applying a force on the steering wheel only led to a temporary L1 automation state of longitudinal
support. These temporary states were active until the drivers let go of the respective input.

2.4. Use Cases

The present experiment included driver initiated transitions between manual, L2, and L3
automated driving [18]. A total of six use cases per experimental block were possible from all
combinations of upward and downward transitions. Transitions to manual were not regarded in this
context since there is evidence that these UCs do not require any learning [15]. Table 3 outlines use
cases with transition type, initiation automation level, target automation level, and number of the
respective use case. There were six possible sequences of use cases for each block, to which participants
were randomly assigned. Therefore, sequential effects could be ruled out. The upward transitions
of automated driving were motivated by the driver wanting to be relieved of the driving task itself
(UC1, UC2) or the supervising task (UC 3). The downward transition from L3 to L2 automation could
be motivated by the user’s wish to deactivate certain functionalities or drive at a higher speed [18].
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Table 3. Overview of use cases for one experimental block.

Transition Type Scenario Automation Level
at UC Initiation

Automation
Target Level

Use Case
Number

Upward transition
Activation L3 L0 L3 1

Activation L3 L2 L3 3

Activation L2 L0 L2 2

Downward transition Deactivation L3 L3 L2 4

The experimenter triggered standardized samples for the onset of each use case that were recorded
prior to the experiment. There was a 10-second delay from the onset of the standardized sample
instruction for UC1 and UC3 (transitions to L3) and the availability of the ADS. Therefore, it was not
possible for participants to activate the L3 ADS within these 10 seconds. The instruction for transitions
to L3 thus included an additional indication to activate the ADS (i.e., “( . . . ) as soon as it is available”).

2.5. User Education Approaches

2.5.1. Baseline Information

Baseline information conveyed merely generic information about the equipped driving automation
as reflected in SAE J3016R [1]. Participants received a description that the simulated vehicle incorporated
a L2 and L3 driving automation. Depending on the situation, both functions would break or accelerate
the vehicle and keep distance to the vehicle ahead. In addition, both functions would execute lateral
vehicle guidance. The L3 ADS would execute lane changes if necessary. With the L3 ADS, certain defined
nondriving related tasks could be engaged in and the driver did not need to continuously monitor
the traffic conditions. However, the driver needed to resume vehicle guidance upon system notice.
In contrast, with the L2 automation, the driver had to continuously monitor the traffic conditions.
The baseline information preceded both the owner’s manual and the interactive tutorial.

2.5.2. Owner’s Manual

The owner’s manual was designed in accordance to existing BMW manuals which are characterized
by short sentences, and listings if possible. They also incorporated graphical elements of buttons when
these were referenced. The document was clearly structured by inserting headings and subheadings.
If an information was especially important, it was shown in a separate textbox. The owner’s manual
was a four-page DIN-A4 text document that users had to read prior to system use. It contained all
relevant icons in the instrument cluster and buttons on the operating element. The owner’s manual was
structured covering the L2 and L3 relevant HMI elements in successive steps. It provided information
about activations, deactivations, and the ODD of the respective functions. Figure 2 shows an excerpt of
the owner’s manual (originally presented in German language). Note that icons had been disguised
due to confidentiality and are represented as grey squares. Specific function names have been replaced
by “L3 ADS” and “L2 automation” for the same reason.
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2.5.3. Interactive Tutorial

The interactive tutorial was designed using Microsoft PowerPoint. The tutorial showed the
operating element (i.e., buttons on the left of the steering wheel), the instrument cluster with the
present system state, and a driver’s view of the vehicle interior. Next, there was a description of the
task including the current system state, target system state, and target system name. The four answers
included the respective buttons and/or icons that could appear in the instrument cluster. Participants
could select an answer by clicking on the respective box. If a wrong answer was given, a box appeared
in the foreground explaining what would happen and that the answer was not correct and redirected
the participant to the task. If the answer was correct, the same box would appear telling the test taker
what HMI elements would appear and that the answer was correct. The tutorial was finished when all
tasks were completed successfully. In the tutorial, each task had only one correct answer. Incorrect
answers were derived from an inquiry of a prior experiment [15]. Table 4 provides an overview of
the seven questions in regard to UCs, transition type, and restriction as reported in SAE J3016R [1].
Figure 3 shows a screenshot of tutorial question 1. Note that buttons on the steering wheel and icons in
the answer options were disguised due to confidentiality. The function name of the L2 automation has
been replaced by “L2 automation” for the same reason.

Table 4. Overview of tutorial questions with corresponding UC, transition, and type of restriction for
the transition.

Tutorial Question Relevant UC Relevant Transition Restriction as of SAE J3016R [1]

1 2 L0→ L2 None

2 1 L0→ L3 Availability restriction
3 1 L0→ L3 Speed restriction
4 1 L0→ L3 Lateral guidance restriction

5 3 L2→ L3 Availability restriction
6 3 L2→ L3 Speed restriction

7 4 L3→ L2 None
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2.6. Dependent Variables

The mental model questionnaire developed by Beggiato et al. [16] was adapted for L2 and L3
driving after automation. In a prior experiment, Forster et al. [17] used this adaptation to evaluate the
development of mental models in interaction with driving automation. Participants completed the
questionnaire after they had received the treatment and then after the six interactions. However, the
present work only reports results from the mental model questionnaire before the drive. The mental
model questionnaire included 11 items on a seven-point Likert scale from 1 (“strongly disagree”)
to 7 (“strongly agree”) for both the L2 and L3 automation. Two items covered the participant’s
understanding of HMI in general, four items covered the understanding of the HMI with a focus on
transition restrictions [1], and five items served as distractors. In the present study, the four items
covering HMI and transition restrictions were analyzed (see Table 5). Items were derived to specifically
detect differences between the L2 and L3. Thus, for each item of interest, the opposite end of the scale
was correct for the two levels of automation. If “strongly disagree” was the correct answer for L2,
“strongly agree” was correct for L3 and vice versa. In the present experiment, the correct answer for all
four items of relevance was 1 (“strongly disagree”) for L2 and 7 (“strongly agree”) for L3 automation.

Table 5. Mental Model questionnaire with item number and item wording.

Number Wording

1 There is a speed limitation that must not be exceeded to activate the system
2 Lane keeping is relevant for the system activation
3 The system displays availability to the driver
4 There are road sections where the system is not available

Interaction performance was assessed by means of a five-point rating scale, which is shown in
Table 6. The interaction performance was rated during the experiment right after the participant
had completed the respective use case. To counteract potential bias in experimenter ratings, specific
behavioral observations were assigned to each category per use case to ensure objectivity of the rater.
Each erroneous input that did not result in the required control transition was counted as an error.
There was also the possibility to push a correct button (e.g., L3 ADS) without the transition being
executed by the system since conditions were not met. Such interactions were also counted as errors.
Moreover, additional strong lane deviations due to extensive correction of erroneous inputs and
glance allocation away from the road towards the in-vehicle HMI led to assignments of category four
(i.e., massive errors). For simplification purposes, Table 6 only provides the generic descriptions.
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2.7. Sample Characteristics

The sample consisted of N = 24 participants (6 female, 18 male) with n = 8 participants assigned
randomly to each experimental condition. No dropouts were recorded. Mean age of the sample was
33.96 years (SD = 12.99, max = 62, min = 20). All participants were BMW Group employees, held a
German driver’s license, and had normal or corrected to normal vision.

Table 6. Experimenter rating with label and description.

Category Value Description

No Problem 1 Quick processing

Hesitation 2 Independent solution without errors
But: hesitation, very conscious operating and full concentration

Minor errors 3

Independent solution without or with minor errors which were
corrected confidently

But: longer pauses for reflection
Evaluation of potential operating steps

Massive errors 4

One or multiple errors
Clearly impaired operation flow

Excessive correction of errors
No help of experimenter necessary

Help of
experimenter 5

Multiple errors
Massive errors require to restart task,

Help of experimenter necessary

3. Results

No missing data were recorded for self-report or observational measures. The present study
included a small number of participants per between-subjects factor, and therefore the use of estimation
methods that require assumptions on sample distributions are problematic [46]. Therefore, we applied
bootstrapping for analyzing the data since this procedure has been found to be robust in cases of
heterogeneity and non-normality [47]. We calculated 95% confidence intervals (CI) for comparisons
between the experimental conditions as a state-of-the art inferential statistics technique [48,49].
We report means, upper, and lower bounds of 95% CIs in Table 7 (mental model L2 automation),
Table 8 (mental model L3 automation) and Table 9 (interaction performance). Inferential p-values are
reported after the rule described in Cumming and Finch [50]. Bootstrap analysis was performed using
Matlab R2015b. The code of the bootstrapping procedure to generate n = 10,000 data set replicates is
supported in Appendix A.

3.1. Mental Model Questionnaire

Results for the mental model are provided separately for the L2 (see Table 7 and Figure 4) and L3
automation (see Table 8 and Figure 5). Mental models for the L2 automation showed that knowledge
about the system in item 1 (speed limitation) and item 3 (availability display) was enhanced in both
treatment conditions in a comparable manner. The results revealed bimodal distributions in many
cases (e.g., BL item 1 and item 4, Figure 4. However, the means of these distributions fell right in
between the two distribution modes. Consequently, a mean value on the center of the scale as reported
in the tables must regard the respective distribution in the according figure. While participants in the
baseline condition strongly assumed a speed limitation and availability display for the L2 automation,
participants in the treatment conditions were surer that there was no speed limitation (p < 0.05) and did
not as strongly assume an availability display (p < 0.01). A large overlap between the conditions was
present for item 2 (lane keeping) as indicated by the CIs (see Table 7). On a descriptive level, participants
in the baseline condition showed a trend towards the most correct answers. Thus, no statistically
differences in regard to lane keeping relevance for L2 automation were present. Item 4 (road section
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availability) showed that participants in the baseline condition strongly assumed a restricted ODD,
while the distribution for the tutorial condition was spread almost over the entire seven-point Likert
scale, and participants in the owner’s manual condition showed the best answers (i.e., no restriction
of ODD). The difference between baseline and tutorial was not statistically significant. The owner’s
manual condition differed significantly from both the baseline (p < 0.01) and the tutorial (p < 0.05).

Results for the mental model L3 automation showed that the participants in the baseline condition
had to guess whether there was a speed limitation or not (item 1). In comparison, mental models for
the owner’s manual (p < 0.05) and tutorial (p < 0.05) differed significantly from the baseline condition
with most participants indicating a strong approval for the statement. Participant understanding
of lane keeping relevance, (item 2) in the tutorial condition, was more accurate as compared to the
baseline (p < 0.01). On a descriptive level, the owner’s manual condition was superior to the baseline,
but inferior to the tutorial condition, however, due to a large margin of error, no statistical significance
can be inferred. In regard to the availability display (item 3), participants in all three experimental
conditions indicated strong approval for the existence of an availability display for the L3 automation.
Thus, CIs overlapped to a large degree and no significant differences are present. Answers for item 4
(road section availability) revealed that participants in the baseline were indifferent whether a restricted
ODD is present on the highway or not, which is reflected in a mean of 3.87 (see Table 7). Compared to
the baseline, participants in the owner’s manual condition indicated existence of a restricted ODD
(p < 0.01). Participants in the tutorial condition were more accurate on a descriptive level as compared
with the baseline, without reaching statistical significance.

Table 7. Means and 95% CI upper and lower bounds of bootstrapped mental model distributions for
the four relevant items on L2 automation by the three experimental conditions.

Speed Limitation Lateral Guidance Availability Display Road Section

Distr.
Mean

95% CI
Bounds

Distr.
Mean

95% CI
Bounds

Distr.
Mean

95% CI
Bounds

Distr.
Mean

95% CI
Bounds

Baseline 5.00 [4.00–5.8] 3.75 [2.88–4.2] 6.75 [6.50–7.0] 5.63 [4.63–6.0]
Manual 2.61 [1.13–4.13] 3.88 [2.38–5.50] 4.40 [2.88–5.88] 2.37 [1.38–3.63]
Tutorial 2.62 [1.63–3.75] 5.01 [3.88–6.00] 4.76 [3.25–6.13] 4.37 [3.50–5.25]
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Table 8. Means and 95% CI upper and lower bounds of bootstrapped mental model distributions for
the four relevant items on L3 automation by the three experimental conditions.

Speed Limitation Lateral Guidance Availability Display Road Section

Distr.
Mean

95% CI
Bounds

Distr.
Mean

95% CI
Bounds

Distr.
Mean

95% CI
Bounds

Distr.
Mean

95% CI
Bounds

Baseline 4.00 [2.50–5.38] 3.50 [2.63–4.50] 6.01 [5.00–6.75] 3.87 [2.63–5.13]
Manual 6.27 [4.75–7.00] 5.01 [3.50–6.38] 5.99 [4.75–7.00] 6.38 [5.13–7.00]
Tutorial 6.12 [4.75–7.00] 6.00 [5.50–6.50] 6.50 [6.21–6.87] 5.37 [4.38–6.38]
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Figure 5. Frequency [n] of L2 automation mental model ratings [1–7] for the four relevant items
(columns) by experimental condition (rows 1–3: baseline grey, owner’s manual blue, tutorial green).

3.2. Interaction Performance Ratings

Results for observational measures (see Table 9 and Figure 6) in UC1 revealed that both the owner’s
manual and the tutorial led to superior performance in activation of the L3 ADS as compared with the
baseline. In addition, the participants that had read the owner’s manual showed better performance
than the participants that had received the tutorial. Activation of L2 (UC2) showed that both the
owner’s manual and the tutorial significantly increased performance with no difference between the
two conditions. Transitions from L2 to L3 (UC3) showed that best performance was achieved in the
tutorial condition where participants performed significantly better than in the baseline and in the
owner’s manual condition. Baseline and manual conditions did not differ significantly. Eventually,
no differences among all three conditions were observed for the transition from L3 to L2 automated
driving (UC4).
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Table 9. Means and 95% CI upper and lower bounds of bootstrapped experimenter rating distributions
by the three experimental conditions for the four UCs.

UC1 UC2 UC3 UC4

Distr.
Mean

95% CI
Bounds

Distr.
Mean

95% CI
Bounds

Distr.
Mean

95% CI
Bounds

Distr.
Mean

95% CI
Bounds

Baseline 3.50 [3.00–3.88] 3.38 [2.63–4.00] 2.87 [2.13–3.50] 2.75 [2.13–3.50]
Manual 1.88 [1.25–2.63] 1.87 [1.25–2.63] 2.63 [1.87–3.38] 3.00 [2.50–3.50]
Tutorial 3.00 [2.50–3.50] 1.87 [1.38–2.38] 1.38 [1.00–2.13] 2.87 [2.13–3.63]

4. Discussion

The present driving simulator study investigated the effects of two different user education
approaches which were (a) the owner’s manual, and (b) an interactive tutorial on mental model
formation and human-automation interaction, in comparison to (c) a generic functionality description [1].
We hypothesized that participants in the owner’s manual and interactive tutorial conditions would
have a better understanding and show superior operator behavior as compared with the group
that had only received a generic description. In a between-subjects design, N = 24 participants
were randomly assigned to one of three treatment groups (i.e., baseline, owner’s manual, tutorial).
Having finished the respective education, the mental model was assessed and subsequently, drivers
completed several transitions between manual, L2, and L3 automated driving. Our results showed
that both owner’s manual and tutorial led to more accurate mental models and improved interaction
performance as compared with the baseline. In addition, a use case specific trend was observed since
only trained participants showed better performance than untrained participants in first-order use cases
(i.e., transitions from manual to L2/L3) as compared with second-order use cases (i.e., transitions between
two levels of automation). The results suggest that user education approaches, as conceptualized in
the present study, significantly add to a better understanding of automated vehicle HMIs and this
knowledge is also transferable to user’s interactions with the driving automation system. The following
paragraphs discuss findings and limitations of the present results and derive practical implications.

4.1. Mental Model

Interpretation of the results of mental model formation must consider that the items focused on
system restrictions that existed for L3 and not for L2. Both user education approaches communicated this
difference by introducing the restrictions for the L3 function while not mentioning these for the L2 function.
As a consequence, the only way to identify the non-existence of the restrictions for L2 automation was by
inferring this from the knowledge that it was not mentioned in the respective treatment.

Results for L2 mental models (Figure 4 and Table 7) showed a trend towards more correct answers
in the treatment conditions, especially for the speed (item 1) and availability restriction (item 3 and
item 4). Both approaches were successful in conveying that the ODD restrictions do not exist for L2
automation. No difference was apparent for the lateral guidance item (item 2). This result might
be due to the fact that understanding and terminology of lane keeping is difficult for users, and it
also corroborates prior evidence on mental model formation for the aspect of lane keeping [17].
A slightly different picture emerged for the formation of mental models of L3 automation where ODD
restrictions for activating driving automation are present. While both user education approaches
could deliver first evidence for conveying speed (item 1) and availability of road sections (item 4),
there was no difference apparent for an availability display (Figure 5 and Table 8). However, this result
is due to user expectations in the baseline. This group showed a strong trend towards assuming
that an availability display existed. Consequently, there is no room for additional improvement here.
Therefore, the diagnostic benefit of this item for L3 mental model assessment is rather small. What has
not been assessed, however, is the degree of users’ certainty when answering mental model items.
It is speculated that although the present results did not show a difference between the conditions,
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participants in the two treatment groups should be more certain about their indication, while baseline
participants might rather have indicated their expectation of the HMI [17]. Concerning lateral position
ODD restriction, the present study found a descriptive trend that users in the owner’s manual condition
gave more correct answers as compared with the baseline. A strong shift towards the correct answer
was observed for the tutorial. This finding is explained through the use case focus of the tutorial, since
one of seven questions specifically addressed this restriction. In comparison, the owner’s manual only
mentioned the importance of lane keeping within a larger set of paragraphs. This result supports
considerations based on Wickens et al. [29], who found that use case specific user education is more
beneficial than system specific where users can get lost in the complexity of the information.

Mental model findings for L2 and L3 automation highlight the importance of user education for
forming an accurate understanding of the automated vehicle HMIs. There was no clear superiority
of either of the education approaches. It seems like when it comes to abstract questions (e.g., item 4,
“there are road sections where the system is not available”), owner’s manual approaches are more
beneficial than tutorial approaches. On the other hand, if items are not abstract but rather align closely
with a scenario that had been taught in the tutorial (e.g., item 2 and tutorial question 4), the results
turned out to favor the latter.

The results of the mental model questionnaire might also hold important implications for
mode awareness issues. Feldhuetter et al. [12] among others have shown that users frequently
cannot discriminate between L2 and L3 automation based on HMI and functionality alone.
Therefore, we assume that users also have a better understanding of current system states when being
supported with knowledge on how to complete control transitions. From their own actions they should
be able to infer the correct system state and not confuse L2 and L3 as frequently as without information
on control transitions. However, to verify this assumption future research is necessary.

4.2. Interaction Performance

The present findings support the a priori stated hypothesis that user education improves interaction
performance with driving automation. However, this finding does not apply to all use cases, but is
limited to a specific pattern (see Figure 6 and Table 9). The owner’s manual provided the most support
when executing the transition from manual to L3 automation. In contrast, the interactive tutorial
delivered the best interaction results when participants were driving with L2 automation before
performing the transition to L3. Both education approaches showed the same superiority over the
baseline information for the transition from manual to L2 automated mode. However, this superiority
was not present for either condition when participants were driving in L3 automated mode before
performing the transition to L2. Therefore, perhaps the target system state is not only important for
interaction performance, but also the preceding system state. In the present study, the owner’s manual
approach did not provide any better results as compared with the baseline for transitions between
automation levels. UC3 and UC4 require preceding transitions to the respective level (i.e., L2 for
UC3 and L3 for UC4). Therefore, learning mechanisms from the preceding interactions come into
play. These might interfere with the information that users have gained from either the manual or the
tutorial. Similarly, Forster et al. [15] describe learning effects between different transitions of automation
levels when evaluating HMIs for driving automation. Referring to results from the mental model,
interaction measures support the reasoning that user education is especially beneficial in first-order
use cases. However, the procedural knowledge about the automated driving HMI that is gained
through interaction significantly influences subsequent trials. Once there was a successful interaction
with the driving automation (which was always the case in the present study), this experience more
strongly influenced subsequent behavior than declarative knowledge from the prior treatment. On the
other hand, this reasoning is contradicted by the results of extremely good performance in UC3 in
the tutorial group in comparison with the owner’s manual and the baseline groups. This data show
barely any variation of the experimenter rating. It might be that this observation is an artifact of the
ordinal nature of the experimenter rating itself. The step from the category at the top end of the scale
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(i.e., category “no problem”) to the middle of the scale (i.e., category “minor problems”) is considerably
small. As a consequence, there is a need for future research that applies interval scale observational
measures such as error rates and time on task [19] in order to more closely determine the differences
between first and second-order interactions.

Even though experience with the system seemed to largely influence interaction behavior,
the present results emphasize the important role of user education for successful interaction with
driving automation. It seems that an interplay of prior education and learning from these first-order
interactions is present. Therefore, vehicle manufacturers and employers of driving automation might
consider supporting users with information material prior to first use, as these are influential for
subsequent interactions. At the same time, automated driving development needs to consider that
interface design itself results in learning that adds to the content from tutorials and owner’s manuals.
Thus, even when users activate L3, they learn how to activate parts of the L2 automation, or at least
can rule out other possible operating paths.

On the basis of prior considerations of the role of task interference between operating in-vehicle
HMIs and performing the DDT, this study provides evidence that user education has beneficial effects
for a safer and more efficient transition from manual to automated driving mode. User education
in the area of driving automation is of utmost importance because first contacts with combined
automation and ADAS are challenging for users [15,17]. The mitigation of ineffective and inefficient
human operator performance with driving automation plays an important role not only for proximal
goals of safety and effectiveness, but also for the more distal adoption of this technology with ease
of use being a precursor of intention to use [51]. Valuable insights for technology adoption can
be gained by considering research on automation in aviation (see e.g., [26,52]) where the training
approaches for pilots have been successfully established. Trösterer et al. [26] outlined how pilots
practiced operating an airplane under fully functional and defective conditions in both simulation and
real-world environments. Such educational approaches, however, are most likely not applicable for
driving automation since the user population is much larger as compared with the small number of
pilots and the enormous time and financial costs of such trainings. While automated driving users
must be considered as novices when it comes to using automation [53], aircraft pilots are highly skilled
and trained individuals when operating an automated system. We must conclude that the driving
automation domain faces different conditions from that of the aviation sector. Nevertheless, there is
the same need for user training and regulation thereof.

A combined view of results in the mental model questionnaire and interaction performance
shows that at first, user education positively impacts the knowledge on how to interact with driving
automation. This knowledge is then transferred to actual application when encountering a combined
ADAS and automation function. However, one has to take into consideration that the declarative
knowledge is rather transferred to first-order use cases of transitions from manual as compared with
second-order use cases of transitions between levels of automation.

Directly comparing the owner’s manual and the tutorial showed that no clear advantage of
one approach over the other was present. There was no larger issue detected for the transfer of
information from abstract system description in the owner’s manual to the application context in
the automated vehicle. The use case focus of the tutorial did not show a clear advantage for the
outcome of the experimenter rating and this finding does not support prior considerations based on
Wickens et al. [29]. We explanation for this is the fact that the tutorial, as designed for this study,
also conveyed information in a comparably complex way for the participants through the presence
of erroneous answers. In addition, there was no clear advantage of active and guided learning
as compared with passive and unguided learning. This result might also be due to the combined
complexity of the questions and distractors. The users might also have gotten lost in the tutorial itself
rather than only in the owner’s manual [29].
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4.3. Limitations and Future Research

The two user education approaches in this study were used as stand-alone procedures.
Hence, both of them suffer from specific drawbacks (see Table 1). For example, the owner’s manual
does not support strict experimental control in terms of objectivity and is passive in its nature of
learning. Major drawbacks of the tutorial are the degree of complexity which is mainly due to the
high amount of incorrect answers and the necessary trial-and-error approach that users have to take
without being provided with any information on the HMI beforehand. Thus, a combination of both
approaches in the form of a system-focused information presentation by means of the owner’s manual
and subsequent guided-learning objectives test might be more suitable. Such approaches are frequently
used in web-based trainings by large companies to ensure that their employees have an understanding
of their roles and responsibilities within the working context [54].

The number of participants in the present study was rather small when considering the
between-subjects design leading to a sample size of n = 8 per condition. Cumming and Finch [50]
recommend a number of n = 10 when applying CI approaches for determining statistical inference.
The aim of the present research, however, was to find out about differences and trends of user
education concepts and these can well be inferred from the present data set and the applied statistical
methodology. Subsequent investigations should consider collecting larger samples to ensure robustness
of inferential statistics.

Furthermore, there was only one behavioral measure included in the present analysis. The question
of how behavioral indicators on a more operational level [55] such as speed and accuracy [19] benefit
from user education remains to be answered. One also has to consider that the experimenter rating,
as used in the present study, represents a rather conservative performance indicator compared to
time-on-task and error rates, and in a prior study did not show strong performance increases in
repeated interaction with driving automation [15]. In this study, despite the standardized approach in
applying the experimenter rating, there still remained room for interpretation for the experimenter.
As far as possible we counteracted this by assigning specific errors (e.g., pressing a wrong button,
unintendedly deactivating the function) to each category for all use cases. Nevertheless, we cannot
categorically rule out a certain bias. Hence, further research efforts are necessary, including a blind
rating process by multiple raters and subsequent comparison of these by means of inter-rater reliability
measures (see e.g., [56]).

Additionally, the open question of how long performance gains from user education are apparent
over repeated trials of interaction remains to be answered. Considering that first-order interactions
(UC1, UC2) affect performance in second-order interactions (UC3, UC4), it is likely that benefits from
user education are not only evident at the very first but also at the same time as most critical encounters
with driving automation. The same holds true for mental models. With a superiority of user education
present, it remains unclear, whether and how fast non-educated users catch up with informed users.
In that vein, it is also the role of future research to learn the implications of training on mental models
and operator performance over a longer course of time. The present study found effects of education
on single trials within a short simulation drive. However, users of driving automation might also be
trained for long-term effects, and retrained in case new functionalities are added to the automated
vehicle via over-night updates. Moreover, automated vehicle HMIs will most likely differ between
OEMs and thus the question arises as to how to train users so that when changing to another automated
vehicle their understanding and appropriate performance are ensured.

This study showed that an approach based on the owner’s manual contributes to formation of
accurate mental models and increases interaction performance. However, for an application under
real-world conditions, there is the issue that less than half of the users will read the owner’s manuals [28].
From this group, there might still be a large estimated number who preferred to skim through the
owner’s manual and not fully understood the presented information. Therefore, it is questionable
whether the positive effects of stand-alone owner’s manual-based user education procedures emerge
for the introduction of combined automation and ADAS to the consumer market. In addition, as
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outlined in the prior considerations, information about automated vehicle HMIs is not presented
separately but rather within a booklet that can be composed of up to 500 pages. Despite the positive
effects of the owner’s manual found here, it remains to be seen whether future customers find this
information and apply it accordingly after having read additional information on vehicle maintenance,
warnings, and much more.

In the present analysis, we calculated mean instead of median values as the measure of central
tendency even though the experimenter rating is ordinal in nature. This procedure is supported
by Norman [57] who describes the applicability of parametric statistical methods on ordinal data.
Prior research on controllability have also used Cooper–Harper scale items and applied parametric
approaches on them [44,58,59].

The present work followed an applied research purpose to investigate the applicability of two
user education concepts. Thus, results of increased mental models and interaction performance cannot
be traced back to a single variation between the two conditions but rather to a combination of several
factors. There is a need for future basic research to determine how each approach individually might
be improved or impeded by systematically varying conceptual characteristics.

5. Conclusions

The present study presents first evidence for the effectiveness of educating users prior to operating
an HMI for automated driving by means of an owner’s manual or an interactive tutorial. Both these
approaches might be considered in realistic settings when selling automated vehicles to customers.
Since they have the potential to facilitate understanding and first use of the functions, it is likely
that such approaches would lead to an increase in acceptance and adoption of driving automation
technology. When it comes to supporting safe and efficient human-automation interaction, however,
we need to initially pursue these two goals through user-centered design. Appropriate design must
come first and should reduce the need for user training as far as possible. Hence, rather than following
a “blame and train” [60] approach of adapting human behavior to technology, we need to ensure that
all possibilities of technology design are exhausted before proceeding to the design of user education.

In addition, there are implications for research methodology when evaluating HMIs for driving
automation. On the one hand, it is possible to quickly train users and thus assess performance of more
skilled users without the necessity of training the users by using a high- fidelity driving simulator,
which is often cost and time consuming. On the other hand, over-educating participants in user studies
might conceal observations about the intuitiveness and learnability of HMIs. Eventually, researchers
and developers of automated vehicle HMIs need to decide, based on the aim of the respective study,
whether and how to include user education in their experiments.
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Appendix A

Matlab Code for Bootstrap Statistics (exemplary for one item of mental model L3 automation)
%Set number of bootstrap replicates
nrep=10000;
%Create space for bootstrap replicates
mean_BL=zeros(1, nrep);
mean_ML=zeros(1, nrep);
mean_TL=zeros(1, nrep);
%Start for loop
for i=1:nrep

%draw a random sample with replacement from each condition

sample_Baseline=randsample(MM_L3_BL, length(MM_HAF_BL), true);

sample_Manual=randsample(MM_L3_ML, length(MM_HAF_ML), true);

sample_Tutorial=randsample(MM_L3_TL, length(MM_HAF_TL), true);

%calculate mean from each random sample and store in array

mean_BL(i)=mean(sample_Baseline);

mean_ML(i)=mean(sample_Manual);

mean_TL(i)=mean(sample_Tutorial);
end
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