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Abstract: Uyghur is a morphologically rich and typical agglutinating language, and morphological
segmentation affects the performance of Uyghur named-entity recognition (NER). Common Uyghur
NER systems use the word sequence as input and rely heavily on feature engineering. However,
semantic information cannot be fully learned and will easily suffer from data sparsity arising
from morphological processes when only the word sequence is considered. To solve this problem,
we provide a neural network architecture employing subword embedding with character embedding
based on a bidirectional long short-term memory network with a conditional random field layer.
Our experiments show that subword embedding can effectively enhance the performance of the
Uyghur NER, and the proposed method outperforms the model-based word sequence method.

Keywords: subword embedding; Uyghur; named-entity recognition; morphological processing;
word sequence; natural language processing; deep learning; word-based neural model

1. Introduction

Many scholars study named-entity recognition (NER) because of its importance to natural language
processing. NER uses sequence-labeling to automatically recognize entities in text, including persons,
locations, and organizations. Using deep learning, NER has achieved good performance with languages
having large-scale datasets, such as English [1,2] and Chinese [3,4]. Strengthening the information
construction of ethnic minority languages is a driving force in the development and social advancement
of China. However, because Uyghur is an ethnic minority language in China, NER as a fundamental
information construction task requires vast improvements. The main problem is that Uyghur is
a morphologically rich and typical agglutinating language, wherein a word may present different
variations with the connection of affixes. Thus, the complex and rich morphology presents the problem
of extremely sparse data. Moreover, the beginning characters of named entities have no capitalization
that can be used as distinct features, unlike that English. Additionally, there are only a small quantity
of annotated corpora and no public corpus for Uyghur NER.

Currently, most research on Uyghur NER has adopted statistical methods of machine learning,
including conditional random fields (CRF) [5] and hybrid approaches [6,7]. These methods
depend excessively on handcrafted features and domain-specific knowledge resources. However,
the process of collecting features and resources is inefficient and expensive. To avoid heavy feature
engineering, our objective is to provide a neural network architecture that employs subword- and
character-embedding based on a bidirectional long short-term memory (LSTM) network with a CRF
layer to improve Uyghur NER performance.
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2. Related Works

NER for English and German on the CoNLL-2003 dataset has drawn the attention of many
researchers. Traditionally, NER systems have employed machine-learning tactics, including CRF [8],
hidden Markov models [9] and support vector machines [10]. Handcrafted features and domain-specific
knowledge resources (e.g., a manually annotated dataset) are needed as inputs to train these models.

With advances in deep learning, neural network models for sequence labeling have been
spectacularly well-utilized for high-performance NER tasks. Collobert et al. [11] adopted an architecture
based on convolutional neural networks (CNNs) with CRFs to solve sequence-tagging problems,
which improved the performance and significantly reduced the dependency on task-specific engineering.
Huang et al. [12] proposed a bidirectional (bi) LSTM with a CRF Layer, achieving 90.10% F1 with
both Senna embedding and gazetteer features. A bi-LSTM-CNN architecture was used to detect
word- and character-level features, as proposed by Chiu et al. [13]. It outperformed the method
that relied on the heavy feature engineering and achieved fairly good performance on CoNLL-2003
and OntoNotes 5.0. Lample et al. [1] presented a bi-LSTM-CRF architecture that obtained effective
information from character-based word embedding. Rei et al. [14] presented an architecture that
amalgamates character-based word embedding by using an attention mechanism, surpassing the
architecture based on concatenating the word- and character-level representations. Ma et al. [2]
offered a bi-LSTM-CNN-CRF neural network architecture that automatically benefits from word- and
character-level representation. Shen et al. [15] used deep active learning for NER, but only on small-scale
labeled data. However, these approaches are not particularly applicable to the morphologically
rich and agglutinating languages, so many scholars have made certain improvements to take to a
more ideal performance, which employed morphological embedding [16], phonological character
representations [17] and morpheme-level representations [18], respectively.

Research on Uyghur NER is still in its early stages and mainly focuses on particular entities.
For example, Tashpolat et al. [6] employed a CRF- and rules-based post-processing approach to
achieve high performance on Uyghur person-name recognition via the analysis of agglutinative
characteristics. Maimaiti et al. [7] presented a CRF model with rules for Uyghur location-name
recognition by introducing different handcrafted features, especially syllables and similar words via
word embedding. Maihefureti et al. [19] researched rule-based Uyghur organization-name recognition,
which depended upon syntactical and semantical knowledge. Halike et al. [20] implemented the
recognition of times, numerals, and quantifiers using an approach that relied on the manual rule library.
Our approach is different because we simultaneously identify person, location, and organization.
Recent advances notwithstanding, a morphologically rich language such as Uyghur requires a
combination of word- and character-level embedding as input features, instead of handcrafted features
and domain-specific knowledge.

3. Methodology

In this section, we describe the proposed neural network architecture. The word-based neural
model is introduced first; it is a bi-LSTM-CRF model that promotes the performance of Uyghur NER.
Then, we propose the subword-based neural model, which takes a sequence of subwords as input.
To fully understand the architectures, we take a sentence using Uyghur Latin script as example,
“niGmEt beyjiNdiki turalGusida turwatidu”, which means “niGmEt lives in Beijing”.

3.1. Word-Based Neural Model

We first introduce the word-based neural model, following the models presented by
Lample et al. [1]. Figure 1 shows the neural network architecture.

Recurrent neural networks (RNNs) are neural network language models used for processing
sequential data. RNNs can capture long-distance dependencies by leveraging historical information.
However, they are not very effective for NER, and this causes problems of gradient vanishing and
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exploding [21]. LSTMs [22] have been proposed to overcome RNN shortcomings by incorporating a
memory-cell while exploiting long-term dependencies. An LSTM cell uses several gates to regulate the
proportion of information to be stored vs. forgotten. Greff et al. [23] explored eight LSTM variants
based on Vanilla LSTM [24] on three representative tasks and compare their performances, concluding
that Vanilla LSTM performs well in all applications, while the other eight variants had no significant
performance improvement. Therefore, we use the following equations to update the LSTM cell at time
t, which is the same as Vanilla LSTM:

it = σ(Wxixt + Whiht−1 + Wcict−1 + bi), (1)

čt = tanh(Wxcxt + Whcht−1 + bc), (2)

ct = (1− it) � ct−1 + it � čt, (3)

ot = σ(Wxoxt + Whoht−1 + Wcoct + bo), (4)

ht = ot � tanh(ct), (5)

where σ is the logistic sigmoid function; � indicates the point-wise product; xt, ot, ct are the input,
output, and cell vectors, respectively; ht is the hidden vector at time t; W indicates the weight matrices
of different gates; and b represents bias vectors. Therefore, ht is defined by the input vector, xt, and the
hidden vector, ht−1, at the previous moment.

For many sequence-labeling tasks (such as NER), both past and future information are beneficial
for predictions. It is advisable to utilize bi-LSTM to capture contextual information from two directions.
This method has been proven successful for many tasks [25].

For a sequence of vectors, X = (x1, x2, . . . , xn), the bi-LSTM computes forward representations,
→

h = (
→

h1,
→

h2, . . . ,
→

hn), and backward representations,
←

h = (
←

h1,
←

h2, . . . ,
←

hn). Using the model,
the final expression of each word is acquired by using forward and backward representations,

ht = (
→

h t,
←

h t).
To get better feature combinations, the bi-LSTM contains a hidden layer at the top, so that we can

encode a more reliable pattern for each word:

dt = tanh(Wdht), (6)

where Wd is a weight matrix for the hidden layer.
In general, there are two ways to estimate current labels. The first uses a softmax layer that acts

as an output layer to independently make tagging decisions. The softmax function is a normalized
exponential function that predicts the probability distribution over all labels with possibilities for
every word:

p(yt = j
∣∣∣dt) =

eWo, jdt∑k
l=1 eeWo,ldt

, (7)

where p(yt = j
∣∣∣dt) is the probability that the label of the tth word, yt, is j; k is the number of all possible

labels; and Wo, j is the jth row of the output weight matrix, Wo. During model training, the negative
log-probability of the correct labeling sequence is minimized:

E = −
n∑

t=1

log
(
p(yt = j

∣∣∣dt)
)
. (8)

NER tags with “beginning-inside-outside” formats have strong constraints, meaning that an
organization (ORG) on the inside cannot follow a location (LOC) at the beginning or on the outside.
Thus, the softmax layer is insufficient. CRF focuses on the sentence level instead of decoding each
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label independently. Thus, CRF tagging is ideal for NER tasks. Given a sequence of predictions,
y =

(
y1, y2, . . . , yn

)
, its score can be defined as

S(X, y) =
∑n

i=0Tyi,yi−1
+

∑n
i=1 Pi,yi

,
(9)

Pi,yi
= Wo,yi

di, (10)

where P is the matrix of the scores output from the bi-LSTM and Pi,yi
is the score in which the tag of the

jth word is yi. Tyi,yi−1
represents the score of a transition from tag yt to tag yt+1 in a sentence. Over the

course of training, the log-probabilities of the correct tag-sequence are maximized:

log
(
p(y

∣∣∣X)) = log

 exp(S(x, y))∑
y∈Yx exp(S(x, y))

 = S(X, y) − log

∑
y∈K

S(X, y)

. (11)

Yx represents the entirety of the possible tag sequences. In the test stage, we used Viterbi algorithm
for prediction of the output sequence with maximal conditional probability.
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Figure 1. Word-based neural model.

3.2. Subword-Based Neural Model

The input vector in the traditional bi-LSTM–CRF model takes a word as its basic unit. However,
Uyghur is an agglutinating language in which a word comprises a stem and affixes. If only the word
vector is considered, the semantic information cannot be fully learned, causing it to suffer from data
sparsity arising from morphological processes. Therefore, we consider morphological segmentation
to exploit smaller meaning-bearing units to improve performance. Morphological segmentation
breaks words into meaning-bearing subword units called morphemes [26]. Thus, Uyghur morphology
segmentation allows us to break words into more familiar units than have been previously observed.
Uyghur morphology segmentation falls into two segmentation categories: single-point and multi-point.
Single-point segmentation refers to segmenting a word into a stem and a suffix, whereas multi-point
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segmentation refers to a more fine-grained segmentation, further segmenting a suffix on the basis of
single-point segmentation. To fully explain the phenomenon, we provide the following example.

Latin Uyghur: niGmEt beyjiNdiki turalGusida turwatidu. (niGmEt lives in Beijing.)

Single-point segmentation: niGmEt beyjiN/diki turalGu/sida tur/watidu

Multi-point segmentation: niGmEt beyjiN/diki turalGu/si/da tur/watidu

In this study, we use three methods derived from the Xinjiang University & Iflytek Voice and
Language Joint Laboratory for Uyghur morphology segmentation. The differences among the methods
are shown in Table 1.

Table 1. Different morphology segmentation methods for Uyghur.

Method Segmentation Category F1

bi-LSTM single-point 90.61
SRILM-Ngram multi-point 43.40
MaxMatch multi-point 82

To mitigate the data sparsity problem, we propose a bi-LSTM–CRF model based on the subword
sequence. This model comprises bi-LSTM and CRF layers, but it is distinct from the traditional
model, because its input sequence is changed, and a tag for each subword is independently predicted.
Additionally, we introduce subword embedding with character embedding as the input vectors of this
model. Figure 2 shows the model structure.
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Figure 2. Bi-LSTM–CRF model based subword sequence with single-point segmentation.

3.3. Features

3.3.1. Word Embedding

Word embedding (i.e., distributed word representation) has become popular with researchers
because of its ability to simultaneously obtain semantic and syntactic information from words in a
large unlabeled corpus [27]. To obtain high-quality word embedding, instead of randomly initializing
the embedding, we use a large-scale unannotated dataset to prepare pre-trained word embedding,
as developed at the Xinjiang University and Iflytek Voice and Language Joint Laboratory. It contains
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1,891,895 sentences and a vocabulary size of 2,461,449 tokens. We adopt the skip-gram model of
word2vec, provided by Gensim (https://radimrehurek.com/gensim/index.html), while training word
embedding as “pre-trained.”

3.3.2. Subword Embedding

We used the above Uyghur morphology segmentation method to process the annotated dataset
and took subwords as basic training units using a skip-gram model of word2vec, which is similar to
training for word embedding. Thus, semantic information containing subword embedding assumes
that every subword can stand independently. After segmentation, the subword vocabulary size
corresponding to the bi-LSTM, SRILM-Ngram, and MaxMatch methods are 2,034,757; 2,109,530;
and 2,051,620, respectively.

3.3.3. Character Embedding

Additionally, abundant structure information of the entity is embodied in character-level features.
Character embedding is not only useful for researching languages rich in morphology, it also alleviates
the out-of-vocabulary problem [26]. First, we randomly initialize a character lookup table with a
character embedding for every character. Character-embedding matching for every character in a
word is provided in both directions of the bi-LSTM network. Finally, the concatenation of the forward
and backward representations from the bi-LSTM is used as the character-level feature of the word.

4. Experiments

4.1. Datasets

Our models were evaluated with a manually annotated Uyghur NER corpus, created at
Multilingual Information Technology Laboratory of Xinjiang University [28]. It contains 39,027
sentences and 102,360 named entities. Person (PER), location (LOC), and organization (ORG) account
for approximately 27.81%, 41.60%, and 30.58%, respectively. Additionally, the entity labels are
annotated using IOB notation. We used the 10-fold cross-validation method to validate performance,
where the training (train), development (dev), and test (test) sets accounted for 80%, 10%, and 10%,
respectively. The statistics of the dataset are shown in Table 2.

Table 2. Statistics of the entity type for the Uyghur named-entity recognition (NER) dataset.

Type Sentence Token NE PER LOC ORG

dataset 39,027 1,152,645 (91,599) 102,360 (48,792) 28,469 (15,174) 42,585 (14,842) 31,306 (18,805)

train 29,270 861,967 (77,665) 76,787 (38,561) 21,304 (12,061) 32,011 (11,847) 23,472 (14,652)

dev 3902 115,689 (22,574) 10,215 (6854) 2842 (2142) 4258 (2257) 3115 (2457)

test 5855 174,989 (29,639) 15,358 (9713) 4323 (3073) 6316 (3166) 4719 (3477)

Note: The number in parentheses indicates the number of non-repeating token or entities. Sentence, Token and NE
refer to the number of sentence, tokens, named-entities in each data set.

4.2. Training and Evaluation

Our models were trained using a back-propagation algorithm that updated the parameters for
every training example [1]. During the training phase, we prepared 300-dimensional pre-trained word
or subword embeddings using the skip-gram model to initialize the model. We set the maximum epoch
to 100. The dimensions of the forward and backward LSTMs were set to 100. We used stochastic gradient
descent with a learning rate of 0.01 and a gradient clipping of 5.0 for optimization. We used dropout
with a probability of 0.5 to avoid overfitting. The final dimension of our character-based embedding
of words was 50. The measurement score of the Uyghur NER performance is F1, which relates to
precision and recall on the test set.

https://radimrehurek.com/gensim/index.html
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4.3. Experimental Results and Discussion

Results for the different morphological segmentations of the subword-based neural model that
only considers subword embedding are shown in Table 3. The best performance (89.02% in F-score)
appeared when the Uyghur morphological segmentation-based bi-LSTM was used. However, the F1

score of the other segment function did not show a significant improvement. The reason may be that the
SRILM-Ngram- and MaxMatch-based morphological segmentation methods are a type of multi-point
segmentation, causing excessive segmentation that leads to ambiguity for Uyghur NER. Furthermore,
the accuracy of these two segmentation methods was relatively low. Therefore, morphological
segmentation-based bi-LSTM was utilized in the next experiment.

Table 3. Comparison of morphological segmentation on subword-based neural models (%).

Segmentation Method
Dev Test

PER LOC ORG AVE PER LOC ORG AVE

bi-LSTM 93.70 88.75 87.43 89.72 93.46 87.66 86.79 89.02
SRILM-Ngram 93.42 88.73 87.46 89.65 92.72 87.16 86.16 88.42

MaxMatch 93.14 88.49 86.93 89.29 93.11 87.26 86.85 88.78

Note: “Total”refer to the average F1 score for different method.

We conducted many experiments representing different models to understand their influences
on the Uyghur NER system. We explored the impact of using word/subword embedding and
character-level embedding. The baseline results are from Wang et al. [29], who used a semi-supervised
approach based on CRF. Table 4 compares the word-based and subword-based neural models.
Compared to the baseline, the neural network model has a slight advantage. We found that, when the
input embedding process reached word or subword embedding, the F-score of the subword-based
method was higher. When character-level embedding was added, the neural network model improved
by at least 0.5% on the basis of word vectors. The word-based neural model with character-level
embedding performed best for ORG. However, the results of average F1 scores show that the
subword-based model was more suitable than the word-based models.

Table 4. Comparison of performance on different neural models (%). Bold indicates the best result in
below models for each entity category.

Model Input Embedding DEV TEST

PER LOC ORG Total PER LOC ORG Total

CRF (Wang
et al. 2018) - - - - - 91.65 85.72 85.91 87.43

Word-based
neural model

word embedding 93.03 87.40 87.22 88.89 92.01 86.17 86.79 88.04

+char embedding 94.47 89.19 87.82 90.24 94.63 87.80 87.04 89.49

Subword-based
neural model

subword embedding 93.70 88.75 87.43 89.72 93.46 87.66 86.
79 89.02

+char embedding 95.00 89.83 87.59 90.57 94.17 88.45 86.79 89.55

4.4. OOV Error Comparison with Different Models

To further understand the behavior of the subword-based neural model, we performed
error analysis on the testing set. Specifically, we divided each dataset into in-vocabulary (IV)
entities, out-of-training-vocabulary (OOTV) entities, out-of-embedding-vocabulary (OOEV) entities,
and out-of-both-vocabulary (OOBV) entities. An entity is considered OOBV if at least one word is not
in the training set and at least one word is in embedding vocabulary. The other three subsets can be
performed the same way. Table 5 shows the statistics of the division of each corpus.
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Table 5. Statistics of the division on each corpus.

Datasets Type IV OOTV OOEV OOBV

Word-Datasets
DEV 10,581 4465 1607 1195
TEST 15,718 6748 2569 1878

Subword-Datasets
DEV 13,818 4400 1844 1313
TEST 20,497 6866 3045 2122

Table 6 illustrates the performance of the subword-based and word-based neural models on
diverse subsets of entities. When comparing the performance of the CRF statistical model and bi-the
LSTM-CRF neural network model for each entity category, the version with only word/subword
embedding had a few difficulties correctly recognizing the OOEV of named entities. This demonstrates
that the neural network model largely depended on input embedding. However, the subword-based
neural model with character embedding achieved a 2% improvement over the previous best OOBV
result. Thus, almost all improvements of the subword-based neural model via embedding was
conducive to Uyghur NER.

Table 6. Comparison of performance on different subsets of entities (%).

Model Input Embedding
DEV TEST

IV OOTV OOEV OOBV IV OOTV OOEV OOBV

Baseline - - - - - 88.64 69.48 82.01 80.32

Word-based
neural model

word embedding 97.33 79.63 79.04 77.42 96.82 77.37 74.47 75.35

+char embedding 97.46 85.77 83.65 84.87 97.37 83.52 78.88 79.83

Subword-based
neural model

subword embedding 97.54 82.26 81.33 79.87 97.32 81.13 75.90 76.79

+char embedding 97.59 85.79 84.80 83.24 97.48 85.14 81.19 82.42

5. Conclusions

In this paper, we presented a subword-based neural network model based on bi-LSTM–CRF
for Uyghur NER, which does not require handcrafted features or any knowledge sources to
capture linguistic information. In experiments conducted, we utilized different Uyghur morphology
segmentations and obtained very promising results compared to the word-based neural model.
Further, subword embedding was conducive to system performance when the accuracy of morphology
segmentation was higher, or no excessive morphology segmentation existed. Even though Uyghur
is a morphologically rich and low-resource language, subword embedding is a simple and effective
remedy to achieve state-of-the-art performance for such NER datasets. Further work should be done to
evaluate subword embedding across other natural language processing applications, such as machine
translation. Additionally, a better generic neural network model using cross-lingual embedding will
be explored to deal with low-resource and agglutinating language processing.
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