
 information

Review

A Survey of Deep Learning Methods for
Cyber Security

Daniel S. Berman, Anna L. Buczak *, Jeffrey S. Chavis and Cherita L. Corbett

Johns Hopkins University Applied Physics Laboratory (JHU/APL1), Laurel, MD 20910, USA;
daniel.berman@jhuapl.edu (D.S.B.); jeffrey.chavis@jhuapl.edu (J.S.C.); cherita.corbett@jhuapl.edu (C.L.C.)
* Correspondence: anna.buczak@jhuapl.edu

Received: 14 January 2019; Accepted: 20 February 2019; Published: 2 April 2019
����������
�������

Abstract: This survey paper describes a literature review of deep learning (DL) methods for cyber
security applications. A short tutorial-style description of each DL method is provided, including
deep autoencoders, restricted Boltzmann machines, recurrent neural networks, generative adversarial
networks, and several others. Then we discuss how each of the DL methods is used for security
applications. We cover a broad array of attack types including malware, spam, insider threats,
network intrusions, false data injection, and malicious domain names used by botnets.

Keywords: cyber analytics; deep learning; deep neural networks; deep autoencoders; deep belief
networks; restricted Boltzmann machines; convolutional neural networks

1. Introduction

Cyber security is the collection of policies, techniques, technologies, and processes that work
together to protect the confidentiality, integrity, and availability of computing resources, networks,
software programs, and data from attack. Cyber defense mechanisms exist at the application, network,
host, and data level. There is a plethora of tools—such as firewalls, antivirus software, intrusion
detection systems (IDSs), and intrusion protection systems (IPSs)—that work in silos to prevent attacks
and detect security breaches. However, many adversaries are still at an advantage because they only
need to find one vulnerability in the systems needing protection. As the number of internet-connected
systems increases, the attack surface also increases, leading to greater risk of attack. Furthermore,
attackers are becoming more sophisticated, developing zero-day exploits and malware that evade
security measures, enabling them to persist for long periods without notice. Zero-day exploits
are attacks that have not been encountered previously but are often variations on a known attack.
To exacerbate the problem, attack mechanisms are being commoditized, allowing for rapid distribution
without needing an understanding for developing exploits. In addition to defending against external
threats, defenders also must guard against insider threats from individuals or entities within an
organization that misuse their authorized access.

Throughout an attack’s lifecycle, there are indicators of compromise; there may even be significant
signs of an impending attack. The challenge is in finding these indicators, which may be distributed
across the environment. There are massive quantities of data from applications, servers, smart
devices, and other cyber-enabled resources generated by machine-to-machine and human-to-machine
interactions. Cyber defense systems are generating voluminous data, such as the Security Information
Event Management (SIEM) system, which often overwhelms the security analyst with event alerts.
The use of data science in cyber security can help to correlate events, identify patterns, and detect
anomalous behavior to improve the security posture of any defense program. We are starting to see
an emergence of cyber defense systems leveraging data analytics. For instance, network intrusion
detection systems (NIDSs) that inspect packet transmissions are evolving from signature-based systems

Information 2019, 10, 122; doi:10.3390/info10040122 www.mdpi.com/journal/information

http://www.mdpi.com/journal/information
http://www.mdpi.com
http://www.mdpi.com/2078-2489/10/4/122?type=check_update&version=1
http://dx.doi.org/10.3390/info10040122
http://www.mdpi.com/journal/information

Information 2019, 10, 122 2 of 35

that detect well-known attacks to anomaly-based systems that detect deviations from a “normal”
behavior profile.

This paper is intended for readers who wish to begin research in the field of deep learning (DL)
for cyber security. Although DL is a subset of machine learning, it is a newer and more complex way
of learning than the norm. As such, great emphasis is placed on a thorough description of the DL
methods, and references to seminal works for each DL method are provided. Also, examples are
included to illustrate how the techniques have been used in cyber security. Special emphasis was
placed on highly-cited papers because these describe popular techniques. However, it is recognized
that this emphasis might overlook significant new and emerging techniques, so some less-cited papers
were chosen as well. Overall, papers were selected so that each of the DL categories listed subsequently
had at least one, but preferably a few, representative papers.

Related surveys, such as those in [1–6] have described machine learning applications to cyber
problems but did not include DL methods. Other authors describe DL methods for cyber security,
but those methods have a narrow set of cyber security applications. The paper by Xin et al. [7] focuses
exclusively on cyber-attacks related to intrusion detection and targets shortcomings in datasets and
areas of research for future model development. In [8], the authors summarize work covering attacks
related exclusively to intrusion detection, malware analysis, and spam detection, and do not cover
malicious domain names commonly used by botnets. In [9], the authors reviewed and summarized
work focusing on defending cyber-physical systems. Additionally, [10] reviews machine learning and
DL methods for securing Internet of Things (IoT) technology. This paper is unique because it covers a
wide array of cyber-attack types, and the approaches to detect them span a spectrum of DL techniques
including convolutional neural networks (CNNs), recurrent neural networks (RNNs), and generative
adversarial networks (GANs).

The remainder of this paper is organized as follows: Section 2 focuses on the foundations
of DL compared to shallow learning. Section 3 overviews different DL methods used in cyber
security. Section 4 describes several classification metrics employed in the papers. Section 5 discusses
cybersecurity datasets for DL, and Section 6 discusses cyber applications of deep-learning methods.
Section 7 provides observations and recommendations, and Section 8 concludes the paper with a brief
summary of the paper’s key points and other closing remarks.

2. Shallow Learning vs. Deep Learning

Artificial neural networks (ANNs) are machine learning algorithms inspired by the central
nervous system. They were first conceived in 1943 when McCulloch and Pitts [11] published a study
presenting the mathematical model based on biological neuron. This was later implemented by
Hebb [12] and Rosenblatt [13] in their development of unsupervised through self-organized learning
and supervised learning through the creation of perceptrons, respectively. They are composed of a few
layers of neurons connected by adaptive weights (Figure 1), and the adjacent network layers are usually
fully connected. The universal approximation theorem for ANNs states that every continuous function
that maps intervals of real numbers to some output interval of real numbers can be approximated
arbitrarily closely by a multi-layer perceptron (type of ANN) with just one hidden layer. This means
that an ANN with one hidden layer is capable of producing any non-linear continuous function, and as
such much of the early research on ANNs concentrated on networks with just one hidden layer, trained
using back-propagation [14]. Networks with just one hidden layer belong to the category of shallow
learning. There are unsupervised and supervised shallow network architectures. Supervised learning
uses labels (ground truth) to learn a task; unsupervised learning is performing a machine learning
task without labels. In shallow learning, feature extraction is performed separately, not as a part of
the network.

Information 2019, 10, 122 3 of 35

Information 2019, 10, x FOR PEER REVIEW 3 of 35

Figure 1. Shallow neural network.

DL is a much newer endeavor, with the first computer implementation achieved in 2006 [9].
There are many definitions of DL and deep neural networks (DNNs). A simple definition states that
DL is a set of machine learning algorithms that attempt to learn in multiple levels, corresponding to
different levels of abstraction (Figure 2). The levels correspond to distinct levels of concepts, where
higher-level concepts are defined from lower-level ones, and the same lower-level concepts can help
to define many higher-level concepts [15]. Feature extraction is performed by the first few layers of
the deep network. There are unsupervised, supervised, and hybrid DL architectures. Because
shallow neural networks have only one hidden layer, they lack the ability to perform advanced
feature extraction and are unable to learn the higher-level concepts that deep neural networks are
capable of learning. This also holds true for other machine learning algorithms, as well. However,
DL methods require greater computational power, sometimes multiple graphical processing units
(GPUs), to train DL models in a reasonable time. Two advancements have made it possible for an
average person to easily develop DL models. The first is the increased availability of GPUs, which
allow for significantly faster computation. The second is the fact that the layers with a DL model can
be trained independently of each other [16]. This means that a large model with millions of
parameters can be optimized in small, manageable chunks, requiring significantly fewer resources.

Figure 2. Deep neural network.

Figure 1. Shallow neural network.

DL is a much newer endeavor, with the first computer implementation achieved in 2006 [9].
There are many definitions of DL and deep neural networks (DNNs). A simple definition states that
DL is a set of machine learning algorithms that attempt to learn in multiple levels, corresponding to
different levels of abstraction (Figure 2). The levels correspond to distinct levels of concepts, where
higher-level concepts are defined from lower-level ones, and the same lower-level concepts can help
to define many higher-level concepts [15]. Feature extraction is performed by the first few layers
of the deep network. There are unsupervised, supervised, and hybrid DL architectures. Because
shallow neural networks have only one hidden layer, they lack the ability to perform advanced feature
extraction and are unable to learn the higher-level concepts that deep neural networks are capable of
learning. This also holds true for other machine learning algorithms, as well. However, DL methods
require greater computational power, sometimes multiple graphical processing units (GPUs), to train
DL models in a reasonable time. Two advancements have made it possible for an average person to
easily develop DL models. The first is the increased availability of GPUs, which allow for significantly
faster computation. The second is the fact that the layers with a DL model can be trained independently
of each other [16]. This means that a large model with millions of parameters can be optimized in
small, manageable chunks, requiring significantly fewer resources.

Information 2019, 10, x FOR PEER REVIEW 3 of 35

Figure 1. Shallow neural network.

DL is a much newer endeavor, with the first computer implementation achieved in 2006 [9].
There are many definitions of DL and deep neural networks (DNNs). A simple definition states that
DL is a set of machine learning algorithms that attempt to learn in multiple levels, corresponding to
different levels of abstraction (Figure 2). The levels correspond to distinct levels of concepts, where
higher-level concepts are defined from lower-level ones, and the same lower-level concepts can help
to define many higher-level concepts [15]. Feature extraction is performed by the first few layers of
the deep network. There are unsupervised, supervised, and hybrid DL architectures. Because
shallow neural networks have only one hidden layer, they lack the ability to perform advanced
feature extraction and are unable to learn the higher-level concepts that deep neural networks are
capable of learning. This also holds true for other machine learning algorithms, as well. However,
DL methods require greater computational power, sometimes multiple graphical processing units
(GPUs), to train DL models in a reasonable time. Two advancements have made it possible for an
average person to easily develop DL models. The first is the increased availability of GPUs, which
allow for significantly faster computation. The second is the fact that the layers with a DL model can
be trained independently of each other [16]. This means that a large model with millions of
parameters can be optimized in small, manageable chunks, requiring significantly fewer resources.

Figure 2. Deep neural network. Figure 2. Deep neural network.

Information 2019, 10, 122 4 of 35

The main difference between shallow and deep networks lies in the number of hidden layers;
DL architectures have multiple hidden layers whereas shallow neural networks have at most one
hidden layer.

In an ANN or DNN, a nonlinear function is applied to a weighted sum of the units in the previous
layer. There are a number of different nonlinear functions that can be used; however, the most common
are the sigmoid function, the softmax function, the hyperbolic tangent function, and the rectified
linear unit (ReLU), which is simply f (z) = max(z.0). Although ReLUs were originally proposed in the
1970s [17], they gained widespread use only in 2009 [18].

3. Deep Learning Methods Used in Cyber Security

This section describes the different DL methods used in cyber security. References to important
methodology papers are provided for each technique.

3.1. Deep Belief Networks

A seminal paper by Hinton [9] introduced Deep Belief Networks (DBNs). They are a class of
DNNs composed of multiple layers of hidden units with connections between the layers but not
between units within each layer. DBNs are trained in an unsupervised manner. Typically, they are
trained by adjusting weights in each hidden layer individually to reconstruct the inputs.

3.1.1. Deep Autoencoders

Autoencoders are a class of unsupervised neural networks in which the network takes as
input a vector and tries to match the output to that same vector. By taking the input, changing
the dimensionality, and reconstructing the input, one can create a higher or lower dimensionality
representation of the data. These types of neural networks are incredibly versatile because they learn
compressed data encoding in an unsupervised manner. Additionally, they can be trained one layer at
a time, reducing the computational resources required to build an effective model. When the hidden
layers have a smaller dimensionality than the input and output layers (Figure 3), the network is used
for encoding the data (i.e., feature compression). An autoencoder can be designed to remove noise
and be more robust by training an autoencoder to reconstruct the input from a noisy version of the
input (Figure 4), called a denoising autoencoder [19]. This technique has been shown to have more
generalizability and robustness than typical autoencoders.

Information 2019, 10, x FOR PEER REVIEW 4 of 35

The main difference between shallow and deep networks lies in the number of hidden layers;
DL architectures have multiple hidden layers whereas shallow neural networks have at most one
hidden layer.

In an ANN or DNN, a nonlinear function is applied to a weighted sum of the units in the
previous layer. There are a number of different nonlinear functions that can be used; however, the
most common are the sigmoid function, the softmax function, the hyperbolic tangent function, and
the rectified linear unit (ReLU), which is simply f(z) = max(z.0). Although ReLUs were originally
proposed in the 1970s [17], they gained widespread use only in 2009 [18].

3. Deep Learning Methods Used in Cyber Security

This section describes the different DL methods used in cyber security. References to important
methodology papers are provided for each technique.

3.1. Deep Belief Networks

A seminal paper by Hinton [9] introduced Deep Belief Networks (DBNs). They are a class of
DNNs composed of multiple layers of hidden units with connections between the layers but not
between units within each layer. DBNs are trained in an unsupervised manner. Typically, they are
trained by adjusting weights in each hidden layer individually to reconstruct the inputs.

3.1.1. Deep Autoencoders

Autoencoders are a class of unsupervised neural networks in which the network takes as input
a vector and tries to match the output to that same vector. By taking the input, changing the
dimensionality, and reconstructing the input, one can create a higher or lower dimensionality
representation of the data. These types of neural networks are incredibly versatile because they learn
compressed data encoding in an unsupervised manner. Additionally, they can be trained one layer
at a time, reducing the computational resources required to build an effective model. When the
hidden layers have a smaller dimensionality than the input and output layers (Figure 3), the network
is used for encoding the data (i.e., feature compression). An autoencoder can be designed to remove
noise and be more robust by training an autoencoder to reconstruct the input from a noisy version of
the input (Figure 4), called a denoising autoencoder [19]. This technique has been shown to have
more generalizability and robustness than typical autoencoders.

Figure 3. Deep autoencoder.
Figure 3. Deep autoencoder.

Information 2019, 10, 122 5 of 35

Information 2019, 10, x FOR PEER REVIEW 5 of 35

Figure 4. Denoising autoencoder.

Using multiple layers of autoencoders, trained in series, to gradually compress the information
more and more is called stacked autoencoders [20] (Figure 5). Figure 5a is the completed stacked
autoencoder with a classification layer. It is formed by creating an autoencoder Figure 5b. Then, the
autoencoder Figure 5c is built using the outputs of Figure 5b as inputs. Once trained, these are
combined together and a classification layer is added. Similar to regular autoencoders, denoising
autoencoders can be stacked as well [19].

Figure 5. Stacked autoencoder with a classification layer. (a) Stacked autoenoder; (b) autoencoder for
layer 2; (c) autoencoder for layer 3.

A sparse autoencoder is a type of encoder wherein there are more hidden nodes than there are
in the input and output layers, however, only a portion of the hidden units are activated at a given
time [20,21]. This is accounted for by penalizing activating additional nodes.

3.1.2. Restricted Boltzmann Machines

Restricted Boltzmann machines (RBMs) are two-layer, bipartite, undirected graphical models
(data can flow in both directions, rather than just one) that form the building blocks of DBNs [14].
Similar to autoencoders, RBMs are unsupervised and can be trained one layer at a time. The first
layer is the input layer; the second layer is the hidden layer (Figure 6). There are no intra-layer

Figure 4. Denoising autoencoder.

Using multiple layers of autoencoders, trained in series, to gradually compress the information
more and more is called stacked autoencoders [20] (Figure 5). Figure 5a is the completed stacked
autoencoder with a classification layer. It is formed by creating an autoencoder Figure 5b. Then,
the autoencoder Figure 5c is built using the outputs of Figure 5b as inputs. Once trained, these are
combined together and a classification layer is added. Similar to regular autoencoders, denoising
autoencoders can be stacked as well [19].

Information 2019, 10, x FOR PEER REVIEW 5 of 35

Figure 4. Denoising autoencoder.

Using multiple layers of autoencoders, trained in series, to gradually compress the information
more and more is called stacked autoencoders [20] (Figure 5). Figure 5a is the completed stacked
autoencoder with a classification layer. It is formed by creating an autoencoder Figure 5b. Then, the
autoencoder Figure 5c is built using the outputs of Figure 5b as inputs. Once trained, these are
combined together and a classification layer is added. Similar to regular autoencoders, denoising
autoencoders can be stacked as well [19].

Figure 5. Stacked autoencoder with a classification layer. (a) Stacked autoenoder; (b) autoencoder for
layer 2; (c) autoencoder for layer 3.

A sparse autoencoder is a type of encoder wherein there are more hidden nodes than there are
in the input and output layers, however, only a portion of the hidden units are activated at a given
time [20,21]. This is accounted for by penalizing activating additional nodes.

3.1.2. Restricted Boltzmann Machines

Restricted Boltzmann machines (RBMs) are two-layer, bipartite, undirected graphical models
(data can flow in both directions, rather than just one) that form the building blocks of DBNs [14].
Similar to autoencoders, RBMs are unsupervised and can be trained one layer at a time. The first
layer is the input layer; the second layer is the hidden layer (Figure 6). There are no intra-layer

Figure 5. Stacked autoencoder with a classification layer. (a) Stacked autoenoder; (b) autoencoder for
layer 2; (c) autoencoder for layer 3.

A sparse autoencoder is a type of encoder wherein there are more hidden nodes than there are
in the input and output layers, however, only a portion of the hidden units are activated at a given
time [20,21]. This is accounted for by penalizing activating additional nodes.

3.1.2. Restricted Boltzmann Machines

Restricted Boltzmann machines (RBMs) are two-layer, bipartite, undirected graphical models
(data can flow in both directions, rather than just one) that form the building blocks of DBNs [14].
Similar to autoencoders, RBMs are unsupervised and can be trained one layer at a time. The first layer
is the input layer; the second layer is the hidden layer (Figure 6). There are no intra-layer connections

Information 2019, 10, 122 6 of 35

(i.e., between nodes in the same layer); however, every node in the input layer is connected to every
node in the hidden layer (i.e., full connectivity).

Information 2019, 10, x FOR PEER REVIEW 6 of 35

connections (i.e., between nodes in the same layer); however, every node in the input layer is
connected to every node in the hidden layer (i.e., full connectivity).

Figure 6. Restricted Boltzmann machine.

Typically, the units in the input and hidden layers are restricted to binary units. The network is
trained to minimize the “energy”, which is a function that measures the model’s compatibility,
borrowing much of the mathematics from statistical mechanics. The aim in training the model is to
find the functions, and therefore, the hidden state, that minimizes the energy of the system.
Furthermore, RBMs are probabilistic, i.e., they assign probabilities instead of concrete values.
However, the output can be used as features for another model. The model is trained by taking
binary input data and feeding it forward through the model. Then, it is fed backwards through the
model to reconstruct the input data. The energy of the system is then calculated and used to update
the weights. This process is continued until the model converges.

Similarly, to autoencoders, RBMs can be stacked to form multiple layers to create a deeper
neural network. These are referred to as stacked RBMs.

3.1.3. DBNs or RBMs or Deep Autoencoders Coupled with Classification Layers

Both RBMs and autoencoders can be combined with a classification layer (Figure 5) to perform
a classification using a fully connected layer or layers. The layers trained by applying unsupervised
learning are used as feature extractors, and they constitute inputs into the fully connected layers that
are trained using back propagation. Unlike the RBM or autoencoder layers, these layers require
labels to train [22]. These types of networks have shown success in a number of applications,
including acoustic modeling [23], speech recognition [24], and image recognition [25].

3.2. Recurrent Neural Networks

A recurrent neural network (RNN), as shown on Figure 7, extends the capabilities of a
traditional neural network, which can only take fixed-length data inputs, to handle input sequences
of variable lengths. The RNN processes inputs one element at a time, using the output of the hidden
units as additional input for the next element. Therefore, the RNNs can address speech and language
problems as well as time series problems.

Figure 7. Recurrent neural network.

Figure 6. Restricted Boltzmann machine.

Typically, the units in the input and hidden layers are restricted to binary units. The network
is trained to minimize the “energy”, which is a function that measures the model’s compatibility,
borrowing much of the mathematics from statistical mechanics. The aim in training the model is to find
the functions, and therefore, the hidden state, that minimizes the energy of the system. Furthermore,
RBMs are probabilistic, i.e., they assign probabilities instead of concrete values. However, the output
can be used as features for another model. The model is trained by taking binary input data and
feeding it forward through the model. Then, it is fed backwards through the model to reconstruct the
input data. The energy of the system is then calculated and used to update the weights. This process is
continued until the model converges.

Similarly, to autoencoders, RBMs can be stacked to form multiple layers to create a deeper neural
network. These are referred to as stacked RBMs.

3.1.3. DBNs or RBMs or Deep Autoencoders Coupled with Classification Layers

Both RBMs and autoencoders can be combined with a classification layer (Figure 5) to perform a
classification using a fully connected layer or layers. The layers trained by applying unsupervised
learning are used as feature extractors, and they constitute inputs into the fully connected layers that
are trained using back propagation. Unlike the RBM or autoencoder layers, these layers require labels
to train [22]. These types of networks have shown success in a number of applications, including
acoustic modeling [23], speech recognition [24], and image recognition [25].

3.2. Recurrent Neural Networks

A recurrent neural network (RNN), as shown on Figure 7, extends the capabilities of a traditional
neural network, which can only take fixed-length data inputs, to handle input sequences of variable
lengths. The RNN processes inputs one element at a time, using the output of the hidden units as
additional input for the next element. Therefore, the RNNs can address speech and language problems
as well as time series problems.

Information 2019, 10, x FOR PEER REVIEW 6 of 35

connections (i.e., between nodes in the same layer); however, every node in the input layer is
connected to every node in the hidden layer (i.e., full connectivity).

Figure 6. Restricted Boltzmann machine.

Typically, the units in the input and hidden layers are restricted to binary units. The network is
trained to minimize the “energy”, which is a function that measures the model’s compatibility,
borrowing much of the mathematics from statistical mechanics. The aim in training the model is to
find the functions, and therefore, the hidden state, that minimizes the energy of the system.
Furthermore, RBMs are probabilistic, i.e., they assign probabilities instead of concrete values.
However, the output can be used as features for another model. The model is trained by taking
binary input data and feeding it forward through the model. Then, it is fed backwards through the
model to reconstruct the input data. The energy of the system is then calculated and used to update
the weights. This process is continued until the model converges.

Similarly, to autoencoders, RBMs can be stacked to form multiple layers to create a deeper
neural network. These are referred to as stacked RBMs.

3.1.3. DBNs or RBMs or Deep Autoencoders Coupled with Classification Layers

Both RBMs and autoencoders can be combined with a classification layer (Figure 5) to perform
a classification using a fully connected layer or layers. The layers trained by applying unsupervised
learning are used as feature extractors, and they constitute inputs into the fully connected layers that
are trained using back propagation. Unlike the RBM or autoencoder layers, these layers require
labels to train [22]. These types of networks have shown success in a number of applications,
including acoustic modeling [23], speech recognition [24], and image recognition [25].

3.2. Recurrent Neural Networks

A recurrent neural network (RNN), as shown on Figure 7, extends the capabilities of a
traditional neural network, which can only take fixed-length data inputs, to handle input sequences
of variable lengths. The RNN processes inputs one element at a time, using the output of the hidden
units as additional input for the next element. Therefore, the RNNs can address speech and language
problems as well as time series problems.

Figure 7. Recurrent neural network. Figure 7. Recurrent neural network.

Information 2019, 10, 122 7 of 35

Typically, RNNs are more difficult to train because the gradients can easily vanish or explode [26].
However, advancements in training and architecture have produced a variety of RNNs that are easier
to train [27–30]. As a result, RNNs have shown success in next-word-in-a-sentence prediction, speech
recognition, image captioning, language translation, and other time-series prediction tasks [31–34].

The hidden units of an RNN are capable of maintaining a “state vector” that contains a memory
of the past events in the sequence. The length of this “memory” can be adjusted based on the type of
RNN node that is used. The longer the memory, the longer term the dependencies the RNN is capable
of learning.

The long short-term memory (LSTM) units [27] have been introduced to enable RNNs to manage
problems that require long-term memories. LSTM units contain a structure called a memory cell that
accumulates information, which it connects to itself in the next time step. The values of the memory
cell are augmented by new input and a forget gate that weights newer and older information higher or
lower depending on what is needed.

Another RNN unit that was designed for long memory is the gated recurrent unit (GRU) [32].
GRUs are similar to LSTM units but are designed to have fewer parameters, making them easier
to train.

3.3. Convolutional Neural Networks

A convolutional neural network (CNN) [35,36] is a neural network meant to process input stored
in arrays. An example input is a color or grayscale image, which is a two-dimensional (2D) array of
pixels. CNNs are often used for processing 2D arrays of images or spectrograms of audio. They are
also used frequently for three-dimensional (3D) arrays (videos and volumetric images). Their use to
one-dimensional (1D) arrays (signals) is less frequent but increasing. Regardless of the dimensionality,
CNNs are used where there is spatial or temporal ordering.

The architecture of a CNN (Figure 8) consists of three distinct types of layers: convolution layers,
pooling layers, and the classification layer. The convolution layers are the core of the CNN. The weights
define a convolution kernel applied to the original input, a small window at a time, called the receptive
field. The result of applying these filters across the entirety of the input is then passed through a
non-linearity, typically an ReLU, and is called a feature map. These convolution kernels, named after
the mathematical convolution operation, allow close physical or temporal relationships within the
data to be accounted for, and help reduce memory by applying the same kernel across the entirety of
the image.

Information 2019, 10, x FOR PEER REVIEW 7 of 35

Typically, RNNs are more difficult to train because the gradients can easily vanish or explode
[26]. However, advancements in training and architecture have produced a variety of RNNs that are
easier to train [27–30]. As a result, RNNs have shown success in next-word-in-a-sentence prediction,
speech recognition, image captioning, language translation, and other time-series prediction tasks
[31–34].

The hidden units of an RNN are capable of maintaining a “state vector” that contains a memory
of the past events in the sequence. The length of this “memory” can be adjusted based on the type of
RNN node that is used. The longer the memory, the longer term the dependencies the RNN is
capable of learning.

The long short-term memory (LSTM) units [27] have been introduced to enable RNNs to
manage problems that require long-term memories. LSTM units contain a structure called a memory
cell that accumulates information, which it connects to itself in the next time step. The values of the
memory cell are augmented by new input and a forget gate that weights newer and older
information higher or lower depending on what is needed.

Another RNN unit that was designed for long memory is the gated recurrent unit (GRU) [32].
GRUs are similar to LSTM units but are designed to have fewer parameters, making them easier to train.

3.3. Convolutional Neural Networks

A convolutional neural network (CNN) [35,36] is a neural network meant to process input
stored in arrays. An example input is a color or grayscale image, which is a two-dimensional (2D)
array of pixels. CNNs are often used for processing 2D arrays of images or spectrograms of audio.
They are also used frequently for three-dimensional (3D) arrays (videos and volumetric images).
Their use to one-dimensional (1D) arrays (signals) is less frequent but increasing. Regardless of the
dimensionality, CNNs are used where there is spatial or temporal ordering.

The architecture of a CNN (Figure 8) consists of three distinct types of layers: convolution
layers, pooling layers, and the classification layer. The convolution layers are the core of the CNN.
The weights define a convolution kernel applied to the original input, a small window at a time,
called the receptive field. The result of applying these filters across the entirety of the input is then
passed through a non-linearity, typically an ReLU, and is called a feature map. These convolution
kernels, named after the mathematical convolution operation, allow close physical or temporal
relationships within the data to be accounted for, and help reduce memory by applying the same
kernel across the entirety of the image.

Figure 8. Convolutional neural network Figure 8. Convolutional neural network.

Information 2019, 10, 122 8 of 35

Pooling layers are used to perform non-linear down sampling by applying a specific function,
such as the maximum, over non-overlapping subsets of the feature map. Besides reducing the size
of the feature maps, and therefore, the memory required, pooling layers also reduce the number of
parameters, and therefore, overfitting. These layers are generally inserted periodically in between
convolution layers and then fed into a fully connected, traditional DNN.

Additionally, CNNs can use regularization techniques that help reduce overfitting. One of the
most successful techniques is called “dropout” [37]. When training a model using dropout, during
each training iteration, a specified percentage of nodes in a given layer and their incoming and
outgoing connections, are randomly removed. Including dropout typically improves the accuracy and
generalizability of a model because it increases the likelihood a node will be useful.

Uses of CNNs are significantly varied. The greatest success has been achieved with computer
vision tasks such as scene and object detection and object identification [38]. Applications range from
biology [39] to facial recognition [40]. The best showcase of CNN success took place in 2012 at the
ImageNet competition, where a CNN surpassed the performance of other methods, and then human
accuracy in 2015 through the use of GPUs, ReLUs, dropout, and the generation of additional images [41].
In addition, CNNs have been used successfully in language models for phoneme detection [42], letter
recognition [36], speech recognition [43], and language model building [44,45].

3.4. Generative Adversarial Networks

Generative adversarial networks (GANs), which are shown in Figure 9, are a type of neural
network architecture used in unsupervised machine learning, in which two neural networks compete
against each other in a zero-sum game to outsmart each other. Developed by Goodfellow et al. [46],
one network acts as a generator and another network acts as a discriminator. The generator takes in
input data and generates output data with the same characteristics as real data. The discriminator
takes in real data and data from the generator and tries to distinguish whether the input is real or fake.
When training has finished, the generator is capable of generating new data that is not distinguishable
from real data.

Information 2019, 10, x FOR PEER REVIEW 8 of 35

Pooling layers are used to perform non-linear down sampling by applying a specific function,
such as the maximum, over non-overlapping subsets of the feature map. Besides reducing the size of
the feature maps, and therefore, the memory required, pooling layers also reduce the number of
parameters, and therefore, overfitting. These layers are generally inserted periodically in between
convolution layers and then fed into a fully connected, traditional DNN.

Additionally, CNNs can use regularization techniques that help reduce overfitting. One of the
most successful techniques is called “dropout” [37]. When training a model using dropout, during
each training iteration, a specified percentage of nodes in a given layer and their incoming and
outgoing connections, are randomly removed. Including dropout typically improves the accuracy
and generalizability of a model because it increases the likelihood a node will be useful.

Uses of CNNs are significantly varied. The greatest success has been achieved with computer
vision tasks such as scene and object detection and object identification [38]. Applications range from
biology [39] to facial recognition [40]. The best showcase of CNN success took place in 2012 at the
ImageNet competition, where a CNN surpassed the performance of other methods, and then human
accuracy in 2015 through the use of GPUs, ReLUs, dropout, and the generation of additional images
[41]. In addition, CNNs have been used successfully in language models for phoneme detection [42],
letter recognition [36], speech recognition [43], and language model building [44,45].

3.4. Generative Adversarial Networks

Generative adversarial networks (GANs), which are shown in Figure 9, are a type of neural
network architecture used in unsupervised machine learning, in which two neural networks
compete against each other in a zero-sum game to outsmart each other. Developed by Goodfellow et
al. [46], one network acts as a generator and another network acts as a discriminator. The generator
takes in input data and generates output data with the same characteristics as real data. The
discriminator takes in real data and data from the generator and tries to distinguish whether the
input is real or fake. When training has finished, the generator is capable of generating new data that
is not distinguishable from real data.

Figure 9. Generative adversarial network.

Since first developed, GANs have shown wide applicability, especially to images. Examples
include image enhancement [47], caption generation [48], and optical flow estimation [49]. Facebook
even has an open-source, pre-trained GAN for image generation called deep convolution generative
adversarial network (DCGAN) [50].

3.5. Recursive Neural Networks

Recursive neural networks are neural networks (Figure 10) that apply a set of weights
recursively to a series of inputs. In these networks, the output of a node is used as input for the next
step [51,52]. Initially, the first two inputs are fed into the model together. Afterward, the output from
that is used as an input along with the next step. This type of model has been used for various
natural language processing tasks [53–56] and image segmentation.

Figure 9. Generative adversarial network.

Since first developed, GANs have shown wide applicability, especially to images. Examples
include image enhancement [47], caption generation [48], and optical flow estimation [49]. Facebook
even has an open-source, pre-trained GAN for image generation called deep convolution generative
adversarial network (DCGAN) [50].

3.5. Recursive Neural Networks

Recursive neural networks are neural networks (Figure 10) that apply a set of weights recursively
to a series of inputs. In these networks, the output of a node is used as input for the next step [51,52].
Initially, the first two inputs are fed into the model together. Afterward, the output from that is used
as an input along with the next step. This type of model has been used for various natural language
processing tasks [53–56] and image segmentation.

Information 2019, 10, 122 9 of 35

Information 2019, 10, x FOR PEER REVIEW 9 of 35

Figure 10. Recursive neural network.

4. Metrics

This section describes several classification metrics used by the authors of the papers cited in
the next sections. There are a number of different metrics for a model performing a binary
classification task. These metrics include accuracy, precision, recall, false positive rate, F1 Score, and
area under the curve (AUC) and many of the metrics have more than one name. All of these
evaluation metrics are derived from the four values found in the confusion matrix (Table 1), which is
based on the calculated predicted class versus the ground truth.

Table 1. Confusion matrix.

Predicted Class

Malicious Benign

Actual Class (ground truth) Malicious True Positive (TP) False Negative (FN)
Benign False Positive (FP) True Negative (TN)

Accuracy (acc) or Proportion Correct: the ratio of correctly classified examples to all items. The
usefulness of accuracy is lower when the classes are unbalanced (i.e., there are a significantly larger
number of examples from one class than from another). However, it does provide useful insight
when the classes are balanced. 𝑎𝑐𝑐 = ்௉ା்ே்௉ା்ேାி௉ାிே. (1)

Positive Predictive Value (PPV) or Precision (p): The ratio of items correctly classified as class X
to all items that were classified as class X. 𝑝 = ்௉்௉ାி௉ p = ୘୔୘୔ା୊୔. (2)

Sensitivity or True Positive Rate (TPR) or Probability of Detection (𝑃஽) or Recall (r): The ratio
of items correctly classified as X to all items that were actually class X. 𝑇𝑃𝑅 = ்௉்௉ାிே. (3)

Negative Predictive Value (NPV): The ratio of items correctly classified as not X to all items
classified as not X. 𝑁𝑃𝑉 = ்ே்ேାிே. (4)

Figure 10. Recursive neural network.

4. Metrics

This section describes several classification metrics used by the authors of the papers cited in the
next sections. There are a number of different metrics for a model performing a binary classification
task. These metrics include accuracy, precision, recall, false positive rate, F1 Score, and area under the
curve (AUC) and many of the metrics have more than one name. All of these evaluation metrics are
derived from the four values found in the confusion matrix (Table 1), which is based on the calculated
predicted class versus the ground truth.

Table 1. Confusion matrix.

Predicted Class

Malicious Benign

Actual Class (ground truth) Malicious True Positive (TP) False Negative (FN)
Benign False Positive (FP) True Negative (TN)

Accuracy (acc) or Proportion Correct: the ratio of correctly classified examples to all items.
The usefulness of accuracy is lower when the classes are unbalanced (i.e., there are a significantly
larger number of examples from one class than from another). However, it does provide useful insight
when the classes are balanced.

acc =
TP + TN

TP + TN + FP + FN
. (1)

Positive Predictive Value (PPV) or Precision (p): The ratio of items correctly classified as class X to
all items that were classified as class X.

p =
TP

TP + FP
. (2)

Sensitivity or True Positive Rate (TPR) or Probability of Detection (PD) or Recall (r): The ratio of
items correctly classified as X to all items that were actually class X.

TPR =
TP

TP + FN
. (3)

Negative Predictive Value (NPV): The ratio of items correctly classified as not X to all items
classified as not X.

NPV =
TN

TN + FN
. (4)

Information 2019, 10, 122 10 of 35

Specificity or True Negative Rate (TNR): The ratio of items correctly classified as not X to all items
that are not class X.

TNR =
TN

TN + FP
. (5)

False Alarm Rate (FAR) or False Positive Rate (FPR) or Fall-Out: The ratio of items incorrectly
classified as class X to all the items that are not class X.

FPR =
FP

TN + FP
. (6)

F1 Score (F1): The F1 Score is the harmonic mean of the precision (p) and the true positive rate (r).

F1 =
2

1
r +

1
p
= 2

p ∗ r
p + r

. (7)

This is a specific version of the F-β function, in which precision and true positive rate are given
equal importance.

Area under the curve (AUC): The sum of the area under a receiver operating characteristic (ROC)
curve, which is a plot of the false positive rate versus the true positive rate, created by varying the
classification thresholds.

For multi-class problems, accuracy can be easily calculated; however, metrics such as precision,
recall, FPR, F1 Score, and AUC cannot be calculated in a straightforward fashion (e.g., TP, TN do not
exist for three-class problems). Precision, recall, etc. can be determined for a 3+ class problem by
collapsing the problem into a two-class problem (i.e., all versus one), where the metrics are calculated
for each class. Usually, only accuracy is used for multiclass problems.

It is important to remember that because each of the papers described later uses a different dataset
(or sometimes a different subset of a given dataset), it is not possible to compare the models developed
based on the accuracy (or any other metrics) they obtained. Such a comparison would be valid only if
the authors of both publications used exactly the same training dataset and the same testing dataset.

5. Cybersecurity Datasets for Deep Learning

One of the most widely used datasets for intrusion detection is the Knowledge Discovery and
Dissemination (KDD) 1999 dataset [57]. This dataset was created for the KDD Cup challenge in 1999
and is composed of more than 4 million network traffic records. However, the dataset does not include
raw network traffic data. Instead, the raw pcap data has been preprocessed into 41 features based on
basic type, content type, and traffic type features. The dataset contains 22 different kinds of attacks
that fall into four families: denial of service (DoS), unauthorized access from a remote machine (R2L),
unauthorized access to local super-user privileges (U2R), and probing. An analysis by [58], however,
found there were a number of problems with the dataset. One major source of this was the synthetic
nature of the network and attack data, dropped data due to overflow, and vague attack definitions.
Furthermore, there were a large number of redundant records that biased the dataset. Because of these
flaws, [58] proposed a new dataset called NSL-KDD, which is another frequently used dataset for
network intrusion detection.

There are a few datasets that contain raw packet data; however, the most commonly used is the
CTU-13 dataset [59]. This dataset contains raw pcap files for malicious, normal, and background data.
The benefit of raw pcap files, compared to the KDD 1999 and NSL-KDD datasets, is the opportunity
for individuals to perform their own preprocessing, enabling a wider range of algorithms to be used.
Additionally, the CTU-13 dataset is not a simulated dataset. The botnet attacks are real, the unknown
traffic is from a large network, and there is ground truth. It is a combination of 13 different scenarios
with different numbers of computers and seven different botnet families, making it a diverse dataset.

There are three significant sources of data for domain generation algorithm (DGA) detection.
Although there are previous ML papers that describe a variety of feature extraction techniques, the DL

Information 2019, 10, 122 11 of 35

algorithms rely almost entirely on domain names. This is reflected in that the three primary sources of
data for DGA detection are just domain names. The Alexa Top Sites [60] dataset is generally used as a
source of benign domain names, as one can get as many as 1 million domain names. The malicious
domain names are obtained from OSINT [61] and DGArchive [62]. The OSINT DGA feed from
Bambenek Consulting was commonly used because it contains DGA domains from 50 different DGAs
and includes more than 800 thousand malicious domain names. Alternatively, DGArchive provides
access to more than 30 reverse-engineered DGAs, which can be used to generate malicious domain
names on an internal network.

Malware datasets are far more common. The most common source of normal data in malware
experiments are the top apps in the Google Play Store [63]. While these apps are not guaranteed to be
malware free, they are the most likely to be malware free because of the combination of Google’s vetting
and the ubiquity of the apps. In addition, they are sometimes vetted using the VirusTotal service [64].
There are a number of datasets that contain malware, including Contagio [65], Comodo [66],
the Genome Project [67], Virus Share [68], VirusTotal [64], DREBIN [69], and Microsoft [70]. There is
some overlap in the datasets that contain malicious data and the Google Play Store data, as that is
where they obtained normal data.

Typically, malware datasets are saved as raw program files. This allows for an incredible amount
of flexibility in terms of feature extraction and processing. The Genome Project dataset consists of
2123 applications, of which 1260 are malicious spanning 49 different malware families. This is similar
to the Virus Share and VirusTotal datasets, which are a continuously updating repository of malware
files, providing an ever-evolving list of new types of malware. The Comodo dataset is another large
dataset containing 22,500 malicious and 22,500 benign raw files. The Contagio dataset is significantly
smaller than the others, containing 250 malicious files. The DREBIN dataset is a highly imbalanced
dataset containing 120,000 Android applications, 5000 of which are malicious. These raw data files can
be processed in a number of ways including as binary files, as API calls extracted using a tool such
as Cuckoo sandbox, or other methods. The only major dataset that did not provide raw files is the
Microsoft dataset. The Microsoft dataset was built for a kaggle competition and contains 10,868 labeled
malware binary files in hexadecimal and assembly representation from nine different malware families:
RAmnit, Lollipop, Kelihos_ver3, Vundo, Simda, Tracur, Kelihos_ver1, Obfuscator.ACY, and Gatak.

Many of the malware datasets used in the DL literature are based on existing malware databases
available to the public. The most common of these were Contagio, Comodo, the Genome Project, Virus
Share, or DREBIN, and the Google Play Store as a source of benignware. Others used internal sources
that were not made available to the public. From there, features were extracted, predominantly using
dynamic and/or static analysis. Other features were derived from binary versions of the software.

Additionally, there was a large synthetic dataset for insider threat detection called the Computer
Emergency Readiness Team (CERT) Insider Threat Dataset v6.2 [71,72]. This dataset contains system
logs spanning 516 days containing over 130 million events, of which approximately 400 are malicious.

Email datasets are difficult to obtain because they are exceptionally hard to access due to privacy
concerns. However some common corpora of emails include EnronSpam [73], SpamAssassin [74], and
LingSpam [75].

Other studies applying DL to cyber security were often novel and did not have standard datasets;
they were generated internally and not made available to the public. In many cases, these studies were
the only ones in those subject areas and were performed relatively recently.

6. Cyber Applications of Deep Learning Methods

6.1. Malware

The number and variety of malware attacks are continually increasing, making it more difficult to
defend against them using standard methods. DL provides an opportunity to build generalizable models

Information 2019, 10, 122 12 of 35

to detect and classify malware autonomously. This can provide defense against small-scale actors using
known malware and large-scale actors using new types of malware to attack organizations or individuals.

6.1.1. Detection

There are a number of ways to detect malware. References [76,77] developed DL-based detectors
of malicious Android applications using features from static and dynamic analyses, with the second
study improving on the first. The features were specifically drawn from three sources: static
analysis of required permissions and sensitive application program interfaces (APIs), and dynamic
behaviors. The static-based features are derived from the installation.apk file, and parsing the
AndroidManifest.xml and classes.dex files. This provides the permissions required and the APIs used.
The dynamic behavior features are derived from dynamic analysis by collecting data from DroidBox,
an Android application sandbox. These features were the input to a DBN with two hidden layers that
achieved a 96.76% accuracy, a 97.84% TPR, and a 4.32% FPR. Multiple configurations were tested and a
two-hidden–layer DBN was found to be the most successful. These results are better than the random
forests, naive Bayes, logistic regression, and support vector machine (SVMs) that they tested.

Dynamic features tend to be more reliable than static features, which can be easily obfuscated.
Therefore, it is common to use features such as API calls, derived from running the software in a
sandbox. One example of this is Pascanu et al. [78], who developed a method for detecting malware
that uses RNNs combined with multilayer perceptron (MLP) and logistic regression for classification.
The RNN is trained in an unsupervised manner to predict the next API call. The output of the hidden
layer of this RNN is then fed into the classifier after performing max-pooling on the feature vector to
prevent it from potentially reordering temporal events. To ensure there are temporal patterns present
in the features, the hidden state from the middle of the sequence and the final hidden state are used.
The TPR was 71.71%, and the FPR was 0.1%.

Kolosnjaji et al. [79] used CNNs and RNNs to identify malware. The list of call sequences to the
API kernel is converted into binary vectors using one-hot encoding. One-hot encoding is a scheme for
storing categorical data in form easier for machine learning. This data is used to train the DL algorithm,
which consists of a CNN and RNN (consisting of an LSTM, and a softmax layer). This model achieves
an accuracy of 89.4%, precision of 85.6%, and recall of 89.4%.

Tobiyama et al. [80] built a malware detector that fed the API calls time series data into an RNN
to perform feature extraction. These features are then converted into an image and a CNN is used
to classify it as either malicious or normal. The RNN uses an LSTM, and the CNN contains two
convolutional layers and two pooling layers. This is followed by two fully connected layers. Although
the dataset they used was relatively small, they were able to achieve an AUC of 0.96.

Ding, Chen, and Xu [81] created a DBN using the operational codes (opcodes in machine language)
by preprocessing the Windows Portable Executable (PE) files, to extract the n-grams. The DBN had
three hidden layers. The dataset contained 3000 benign files, 3000 malicious files, and 10,000 unlabeled
files. The DBN model outperforms SVMs, decision trees, and k-nearest neighbors clustering, when
pre-trained using unlabeled data. The accuracy of the best performing DBN was 96.7%.

McLaughlin et al. [82] also used the opcodes from malware files to build a detector that does not
require any feature selection or engineering. McLaughlin et al. [82] used an embedding layer to process
the raw opcode data, and fed this into a CNN with two convolution layers, one max pooling layer, and
a fully connected layer, followed by a classification layer. Their results varied on different datasets,
achieving accuracy of 98% and 80%, precision of 99% and 27%, recall of 95% and 85%, and an F1 Score
of 97% and 78%. The significant drop from the first and second datasets is likely due to a significant
increase in the variety of malware in the second dataset, and matches the drop in non-DL methods.

Hardy et al. [83] also used API calls to build a DL malware detector. They used autoencoders
coupled with a sigmoid classification layer for this task and achieved a 95.64% accuracy. Benchea
and Gavriluţ [84], Xu et al. [85], Hou et al. [86], Zhu et al. [87], and Ye et al. [88] used RBMs. Success
with these varied depending on the datasets and methods. Hardy et al. [83], Hou et al. [86], and

Information 2019, 10, 122 13 of 35

Ye et al. [88] all used the Comodo Cloud Security Center dataset 66 and 96.6% accuracy [86] or a 97.9%
TPR [88]. Benchea and Gavriluţ [84] used a custom dataset and achieved 99.72% accuracy with a
90.1% true positive rate. Xu et al. [85] achieved a 93.4% accuracy on a Google Play Store [63] and
VirusShare [68] dataset achieved. Zhu et al. [86] used a dataset combining Google Play Store [63],
Genome [67], DREBIN [69], and VirusTotal [64] data, and achieved an F1 Score of 95.05%. Alternatively,
the raw software binaries can be used as features. Saxe and Berlin [89] turned the software binaries into
2D histograms of entropy [90]; a vector of features based on the input binary file’s import address table;
and numerical fields extracted from the binary’s portable executable packaging. This was done without
filtering, unpacking, or manually categorizing the software. These features were then used to train a
standard DNN for classification. These features are used to train a four-layer neural network (input
layer, two hidden layers, and output layer) using parametric rectified linear or sigmoid activation
functions and dropout layers. Saxe and Berlin [89] followed this with a Bayesian calibration model to
provide a probability that a given file is malware. This is based on a prior of the ratio of malware to
benignware and the DNN’s error rate, using an Epanechnikov kernel for kernel density estimation,
because one cannot assume the classifier to have a standard distribution. They claim to achieve a level
of success that could be implemented in real life: a 95% detection rate and a 0.1% FPR.

To detect sophisticated malware, network behavior-based methods are needed as they key on the
synchronous command and control (C2) traffic from the malware. Analyzing all new malware samples
by humans for a long period of time is infeasible because of the resource demands. In response,
Shibahara et al. [91] proposed a method for determining whether network-based dynamic analysis
should be applied to network data, and when it should be suspended, based on network behavior,
specifically when the malware stops C2 activity. The key idea behind their method was focused on
two characteristics of malware communication: the change in the communication purpose and the
common latent function (i.e., the results that were unexpected or unintentional). These characteristics
of malware communications resemble those of natural language. For this reason, they applied the
recursive tensor neural network (RSTNN), which improved the performance of recursive neural networks
(RSNN) by using a tensor to enable calculation of high-order composition of input features to achieve
high classification performance. In the evaluation with 29,562 malware samples, their proposed method
reduced 67.1% of analysis time with a precision of 97.6%, recall of 96.2%, and F1 Score of 96.9%.

In addition, malware often has to communicate with C2 servers on external networks. Using the
HTTP headers of network traffic, Mizuno et al. [92] identified traffic produced by malicious software
with 97.1% precision and an FPR of 1.0%. This was achieved using a DNN with two hidden layers.

Mobile edge computing (MEC) has a number of significant benefits, which include enabling
cloud-computing capabilities and providing location awareness services. However, this new
computing paradigm comes with potential security concerns because the mobile device would be
vulnerable when connecting to an edge computing device. Using a dataset of 500 malicious and
5000 benign applications from an MEC environment, using static and dynamic analysis for features,
Chen, Zhang, and Maharjan [93] trained a DBN with one hidden layer of RBMs, trained in an
unsupervised manner, followed by a classification layer. This method outperforms softmax, decision
trees, SVMs, and random forests achieving between 91% and 96% accuracies, depending on the ratio
of normal to malicious. However, these numbers are hard to interpret without additional metrics such
as true positive and false positives rates.

Cryptovirology, or ransomware, is a growing problem because of the large number of variations
and the relative ease of creating new variations through small augmentations. To combat these
cryptovirological augmentations, Hill and Bellekens [94] used dynamic convolutional neural networks
(DCNNs) to perform classification on cryptographic primitives in compiled, binary executables.
A DCNN is similar to a standard CNN; however, instead of using a maximum pooling layer with
a specified dimension, it uses k-max pooling, such that k scales with the input length, allowing for
inputs of different lengths. Using a DCNN with an embedding layer, and 11 convolutions and k-max
pooling layers a 91.3% accuracy was achieved.

Information 2019, 10, 122 14 of 35

6.1.2. Classification

Autonomously classifying malware can provide important information about the source and
motives of an adversary without requiring analysts to devote significant amounts of time to malware
analysis. This is especially important with the number of new malware binaries and malware families
growing rapidly. Classification means assigning a class of malware to a given sample, whereas
detection (described in Section 6.1.1) only involves detecting malware, without indicating which class
of malware it is.

Dahl et al. [95] combined feature selection and random projections [96,97] to reduce the dimensionality
of their dataset to produce DNNs used for classifying malware. The original dataset was created using
a modified form of Microsoft’s production anti-malware engine; the same engine that powers Microsoft
Security Essentials [98] to extract features regarding null terminating patterns, tri-grams of API calls,
and distinct combinations of a single-system API call and one input parameter. All combinations
of parameters for feature collection resulted in 50 million features. This was reduced to 179,000
using feature selection. Then the sparse random projections technique reduced the feature space
to a few thousand. A variety of DNN architectures were tested, including using RBMs for the
hidden layers. The best performing architecture was the one-hidden–layer DNN without RBMs,
achieving a test error on malware type of 9.53% and FPR of 0.35% and a two-class test error of
0.49% and FPR of 0.83%. However, the two-layer without RBMs did not perform statistically worse.
Cordonsky et al. [99] performed a similar test of malware classification using a DNN with nine layers
with batch normalization and dropout between layers, achieved 97% accuracy on classifying malware
families, using features derived from static and dynamic analysis. Cordonsky et al. also found that a
two-dimensional visualization shows the potential to identify novel vs. known family types using the
output prior to the decision layer of the DNN.

Alternatively, CNNs can be used to classify malware. One approach is to transform the binary
files into a 2D gray-scale image and classify them using a 2D CNN [100]. Another approach is to treat
the operation code as words and perform classification using a 1D CNN with the possible addition of
an embedding layer [100]. The best performing CNN-based model was the CNN without a pre-trained
embedding layer, which achieved 99.52% accuracy.

David and Netanyahu [101] created a novel method for generating malware signatures using
DBN trained on unlabeled data and then classifying malware using DBNs and denoising autoencoders.
The signatures of the software were built by taking the logs from a sandbox, and processing them using
n-grams by taking the most common 20,000 unigrams that appear only in the malware, and creating a
20,000-feature vector that identifies whether a given unigram appeared. This data was then used to
pre-train an eight-layer DBN with denoising autoencoders. The final malware signature was a vector
of 30 numbers. The network was trained on the 1800 malware examples, obtained from C4 Security,
with six different types of malware, 300 examples for each type. After the features were computed,
the malware classifier was built using an SVM, with 1200 malware examples used for training. The
results were promising, showing 98.6% accuracy.

Wang and Yiu [102] advanced the work of David and Netanyahu [101] by using an RNN
autoencoder to transform the API call sequences into a low-dimensional feature vector, followed
by a classification layer to determine the malware family type. Using a bidirectional recurrent neural
network autoencoder layer, Wang and Yiu [102] achieved 99.1% classification accuracy. Furthermore,
they trained a second classifier to interpret file access patterns, so that zero-day attacks would be
classified correctly. The best model was a recurrent neural network autoencoder that achieved 99.2%
accuracy. Similarly, Yousefi-Azar et al. [103] built an autoencoder-based classifier using API calls and
tested various classification layers. They found that the best was an SVM classifier, achieving 96.3%
accuracy. However, a unigram classifier with Xgboost achieved 98.2% accuracy.

Huang and Stokes [104] relied only on dynamic analysis of software for their features. Features
were derived from the raw executable file, and the API and parameter stream. Using a DNN, they were

Information 2019, 10, 122 15 of 35

able to achieve a 0.36% error rate, in the binary malware detection problem, and a 2.94% error rate in
the malware classification problem.

Grosse et al. [105] developed a DL model to classify malicious Android applications and further tested
their model on adversarial samples, generated according to a method developed by Papernot et al. [106]
(that is different from GANs). The purpose of the work by Grosse et al. was to test the generalizability
of the DNN. They used the features derived from static analysis of the application from the DREBIN
dataset [69] containing 120,000 Android applications. The DNN had two hidden layers and a softmax
layer for classification. Their original DNN classifier had an accuracy that ranged from 95.93% to
98.35%, with FNR and FPR of 6.37% and 3.96%, and 9.73% and 1.29%, respectively, depending on
the ratio of malware to benignware in the training set. However, on the test dataset composed of
adversarial examples, the misclassification rate was between 63.08% and 69.35%, depending on the
ratio of malware to benignware in the training dataset. They then retrained the models with varying
numbers of adversarial samples and found that it decreased the misclassification rate, but only by a
small amount.

6.2. Domain Generation Algorithms and Botnet Detection

DGAs are commonly used malware tools that generate large numbers of domain names that can
be used for difficult-to-track communications with C2 servers. The large number of varying domain
names makes it difficult to block malicious domains using standard techniques such as blacklisting or
sink-holing. DGAs are often used in a variety of cyber-attacks, including spam campaigns, theft of
personal data, and implementation of distributed denial-of-service (DDoS) attacks.

One frequently-used method of establishing C2 connections is through the use of DGAs. DGAs
allow malware to generate any number of domain names daily, based on a seed that is shared by
the malware and the threat actor, allowing both to synchronize the generation of domain names.
Anderson et al. [107] used a GAN to produce domain names that current DGAs classifiers would have
difficulty identifying. The generator was then used to create synthetic data on which new models were
trained. This is done by building a neural language architecture, a method of encoding language in
a numerical format, using LSTM layers to act as an autoencoder. This is then repurposed such that
the encoder (which takes in domain names and outputs an embedding, which converts a language
into a numerical format) acts as the discriminator, and the decoder (which takes the embedding and
outputs the domain name) acts as the generator. A regularization layer is added as the first layer of the
generator, and a logistic regression layer is added at the last layer of the discriminator. The autoencoder
was pre-trained on 256,000 domains, and then fine-tuned. Newly generated domains were used to
train and test new models. The models that were trained on the newly generated domains showed an
overall improvement from 68% to 70% TPR.

Woodbridge et al. [108] developed a method of identifying malicious domain names generated by
DGAs that are associated with malware communication with C2 servers. Previously most work in
this area had been accomplished using handcrafted features. However, Woodbridge et al. used only
the domain name and GRU nodes in an RNN to classify domain names by treating each character in
the domain name as a feature and feeding it into an embedding layer, followed by an GRU layer and,
finally, a classification layer. The model demonstrated excellent results, achieving a TPR of 98% and an
FPR of 0.1%. Lison et al. [109] used a similar approach, replacing the LSTM layer with a GRU layer,
achieving an AUC of 0.996. Mac et al. [110] also took a similar approach, but used embedding and
an LSTM combined with an SVM and a bidirectional LSTM and achieved AUCs of 0.9969 and 0.9964,
respectively, on similar datasets. Yu et al. [111] performed the same experiment with CNN and an
LSTM, with an embedding layer, to perform real-time DGA detection. These methods achieved AUCs
of 0.9918 and 0.9896, respectively.

Similar to Woodbridge et al. [100] and Lison et al. [109], Zeng et al. [112] attempted to detect
and identify domain names generated by DGA using only the domain names. They used multiple
pre-trained CNNs built on ImageNet data (i.e., pictures). This involved reshaping the data after the

Information 2019, 10, 122 16 of 35

embedding layer and treating the output of the image classifier as features to be fed into a decision
tree classifier. They were able to achieve a 99.86% TPR and a 1.13% FPR using Inception V4 [113]
(a pre-trained image classifier). Mac et al. [110], in addition to an LSTM-SVM and bidirectional
LSTM, placed a CNN layer before an LSTM layer and achieved an AUC of 0.9959 on a similar
dataset. All of these methods had a limited ability to identify domains from DGAs that formed
domain names by combining words from a dictionary. Tran et al. [114] also used raw domain
names and LSTMs. They noted that LSTMs can be susceptible to problems arising from multiclass
imbalance (MI). Class imbalance refers to situations in which the classes are not represented equally
in the dataset thus making classification difficult. Tran et al. [114] developed a novel LSTM.MI
algorithm that combines both binary and multiclass classification models, where the original LSTM is
adapted to be cost sensitive. This is done by introducing the cost of misclassifying the items into the
back-propagation procedure to account for the importance of identification among classes. The authors
applied this method to a real-world dataset and demonstrated that LSTM.MI provided a minimum 7%
improvement of macro-averaging recall and precision as compared to the original LSTM and other
state-of-the-art cost-sensitive methods. The authors were also able to preserve the high accuracy on
the non-DGA–generated class (0.9849 F1 Score), while helping recognize five additional bot families.

Botnets are common tools used for cyber-attacks and are currently detected using behavioral
detection approaches (i.e., identifying common patterns in the behaviors of botnets over their lifecycle).
However, rule-based behavioral models have problems that complicate their use because these
behaviors often occur over long time scales. That is why Torres et al. [115] used an LSTM with
one hot encoding of the features to build a botnet detector. Furthermore, it was built with 128 nodes
and used dropout to prevent overfitting. The model was built using stratified 10-fold cross validation,
from data selected using three different methods: no sampling corrections, under sampling, and
oversampling. The results of these three sampling techniques were compared, and the oversampling
and under sampling performed better than no corrective sampling—achieving a comparable TPR and
a lower FPR. Using only TCP data, the results on the under sampling and oversampling data were
TPR of 96.8% and 96.01% and an FPR of 1.95% and 1.11%, respectively.

The detection of botnets within IoT devices and networks is a growing problem. To tackle this,
McDermott et al. [116] trained a bidirectional LSTM to identify four different attack vectors of the
Mirai botnet [117]. In addition, a word-embedding layer was used prior to the LSTM, with the string
data in the captured packets as input to the embedding layer. They created their own dataset of
Mirai botnet traffic, consisting of scan, infect, control, and attack, and normal traffic generated in a
laboratory, from IoT cameras. The four flood attack types were User Datagram Protocol (UDP) flood,
Acknowledgment (ACK) flood, Domain Name System (DNS), and Synchronize (SYN), all of which
are used by Mirai. They also tested multi-vector attacks. The bidirectional LSTM achieved accuracies
ranging from 91.95% accuracy and 99.999% accuracy by type of attack.

6.3. Drive-By Download Attacks

Attackers often exploit browser vulnerabilities. By exploiting flaws in plugins, an attacker can
redirect users away from commonly used websites, to websites where exploit code forces users to
download and execute malware. These types of attacks are called drive-by download attacks. To detect
and prevent these attacks, Shibahara et al. [118] proposed a modified CNN called an event de-noising
convolutional neural network (EDCNN). The EDCNN’s main feature is its capability to reduce the
negative effects of benign URLs that are both included within compromised websites and redirected
from compromised websites included in the training datasets. The authors compared the performance
of two existing methods to their proposed EDCNN and used two types of features to increase the
detection performance in their EDCNN. First, they used historic domain features, characterized by a
correspondence-based approach monitoring activity between IP addresses in domains and IP addresses
in autonomous systems.

Information 2019, 10, 122 17 of 35

Second, Shibahara et al. [118] used momentary URL-based features, which are related to a
particular instance of a URL and depict the uniqueness of that URL. These included the following:
the length of a part of a URL; the presence of a malicious or benign trace in a URL, the presence of a
known malicious pattern in a file name, subdomain, IP address, and port number; and the information
related to a domain extracted from a URL (the presence in public blacklists, the number of IP addresses
corresponding to the domain, and TLD). Third, they employed information related to geographic
location of the IP address.

The Shibahara et al. system received URL sequences as input and output classification results.
Their evaluation showed that the resultant EDCNN lowered the operational cost of malware
infections by reducing 47% of the false alerts compared with a CNN detector, from 27.6% to 14.8%,
when analyzing cases when users access compromised websites but do not obtain exploit code due to
browser fingerprinting. It achieved a 90% detection rate, compared to the 97% of the CNNs.

Yamanish [119] also used EDCNNs, and related historic IP addresses (RHIPs), related historic
domain names (RHDNs), and URL-based features for classification. For multiple URLs, their results
showed a detection rate of 95%, an improvement over Shibahara et al. [118], but a higher false alarm
rate, i.e., as high as 39.1%. However, by creating an ensemble of EDCNN classifiers, they improve the
detection rate to 97.3% and reduce FPR to 19.6%.

6.4. Network Intrusion Detection

Network intrusion detection systems are essential for ensuring the security of a network from
various types of security breaches. There have been many approaches to intrusion detection using
DL. Gao et al. [120] used a DBN. The best performing algorithm was a DBN with four hidden layers
(six layers total), beating an SVM and DBNs with fewer layers. The accuracy was 93.49%, with a TPR
of 92.33%. Nguyen et al. [121] achieved similar accuracy using a similar architecture. Alrawashdeh
and Purdy [122] performed a similar experiment with a four-hidden-layer DBN and achieved an
accuracy of 97.9%. Alom et al. [123] built a similar model, but were able to achieve 97.5% accuracy,
training on 40% of the data. This outperformed previous SVMs and DBNs followed by an SVM
classifier. Dong and Wang [124] used RBMs, with a less sophisticated architecture than that used by
Gao et al. [120], and Alom et al. [123] achieved worse results although they found that the ability
to detect attacks was highly dependent on the type of attack, ranging from 82% to 41% accuracy.
Li, Ma, and Jiao [125] used an autoencoder to reduce the dimensionality of the data, followed by a
DBN with RBM layers that achieved a TPR of 92.2% with a FPR of 1.58%. Yousefi-Azar el al. [103]
used an autoencoder with four hidden layers, followed by a Gaussian naive Bayes classifier and
achieved an accuracy of 83.34%. Alom and Taha [126] implemented both autoencoders and RBMs to
perform dimensionality reduction on the KDD-1999 dataset, reducing it to nine features, and then
performed K-means clustering on the data, achieving detection accuracies of 91.86% and 92.12%
accuracy, respectively. Both of these methods outperformed K-means clustering alone, dimensionality
reduction to three features using autoencoders and RBMs with K-means clustering, and unsupervised
extreme machine learning, a two-layer neural network in which only the second layer is trained. Using
the Coburg Intrusion Detection Dataset-001 [127], Abdulhammed et al. [128] trained a variational
autoencoder, a specific type of autoencoder, as well as other machine learning algorithms, to perform
intrusion detection. Abdulhammed et al. [128] found that the variational autoencoder achieved
97.59% accuracy, which was lower than some of the other methods, which were trained using class
imbalance correction techniques. The best method was majority voting classifiers, which achieved
99.99% accuracy. Mirsky et al. [129] created an ensemble of autoencoders, ranging in number from two to
48, that were tasked with reconstructing subsets of features, determined using clustering with correlation
as the distance metric. The root-mean-square errors (RMSE) of reconstruction from each autoencoder is
then used to train a new autoencoder, in which the RMSE represents the anomaly score. Mirsky et al.
found that their algorithm performed comparably to or better than algorithms such as isolation forests
and Gaussian mixture models.

Information 2019, 10, 122 18 of 35

Wang et al. [130] built an intrusion detection algorithm using raw network traffic data from
two existing datasets: the CTU-13 dataset [59] and the IXIA dataset [131] (that the authors called the
USTC-TFC2016 dataset), which contained 10 types of normal data and 10 types of malicious data,
and appeared to be relatively balanced between malicious and normal. A preprocessing step took
the raw network traffic data and converted it into images, which were then fed into a CNN with
a similar architecture to the well-established CNN LeNet-5 (LeCun et al. [132]). Because there was
no engineering of the preprocessing stage that produced the images, this method handled the raw
data directly. The classification was done in two different ways. The first method involved a 20-class
classifier, and the goal was to identify which type of normal or malicious the traffic was. The second
was a binary classifier which fed into one of two CNNs trained to identify the type of malicious
traffic or binary traffic. The 20-class classifier achieved an accuracy of 99.17%. The binary classifier
achieved 100% whereas the 10-class normal classifier achieved 99.4% and the 10-class malicious
classifier achieved 98.52%.

Javaid et al. [133] proposed a deep-learning–based IDS using sparse autoencoder layers, followed
by several supervised softmax layers to develop two different models. The first model classifies
network traffic as either normal or malicious. The second model classifies the network traffic as either
normal, or one of four attack types. The sparse autoencoder part of the model contains two hidden
layers. The output of this is fed into three softmax layers, and the result is a DNN with four hidden
layers. The two-class classifier outperformed the five-class classifier: 88.4% accuracy versus 79.1%
accuracy. In addition, Ma et al. [134] and Aminanto and Kim [135] used similar approaches and
achieved similarly good results.

Additionally, RNNs [136–141] and DNNs [142,143] have been applied to intrusion detection.
These methods proved successful in detecting intrusions. Staudemeyer 136, Kim and Kim 137,
Krishnan and Raajan 140, and Roy et al. 142 all used the KDD-1999 datasets, and Kim et al. 138 used
KDD-1999 with additional data they generated. The best of method was Kim and Kim 137, which
achieved a 100% detection rate with a 2.3% false alarm rate. Yin et al. 141 used the NSL-KDD dataset
and achieved 83.28% accuracy on the test data, and 68.55% on a harder subset of the test data. Tang et al.
143 used a dataset generated from a Cooja network simulator to simulate a software-defined network
(SDN). They achieved an accuracy of 75.75%, which was outperformed by J48 (81.05%), naive Bayes Tree
(82.02%), random forests (81.59%), and a multilayer perceptron (77.41%). However, there was significant
evidence of overfitting to the data, meaning that regularization techniques could improve results.

Chawla [144] used a five-layer deep belief network (DBN) intrusion detection model specifically
for the IoT. In the proposed model, each hidden layer is the encoding layer from an autoencoder.
The features used were collected in an experiment by the author and contained information from the
IPv6 header, as well as metadata about the packet. The malicious data was represented by 12 different
attack types. The model resulted in a TPR of 95.4%, and an overall accuracy of 95.03%. Diro and
Chilamkurti [145] performed a similar experiment with a different dataset, and an autoencoder with
three hidden layers; they achieved 99.2% accuracy on a binary classification problem, and 98.27%
accuracy on a four-class problem.

Diro and Chilamkurti [146] tested a DL algorithm’s ability to detect intrusion detection in IoT
with a fog ecosystem, which is an architectural style in which computation is shifted from the cloud to
the edge of the network routed over the network backbone closer to the user and devices. Using the
NSL-KDD dataset, they built a DNN with three hidden layers and achieved an accuracy of 99.2% with
a detection rate of 99.27% and a false alarm rate of 0.85%, outperforming shallow learning models.
Diro and Chilamkurti [147] replicated this same experiment; however, they used stacked autoencoders
with two hidden layers and achieved almost identical results.

Nadeem et al. [148] performed intrusion detection on the KDD 1999 dataset using a semi-supervised
machine learning technique called ladder networks. Ladder networks are a relatively new technique
developed by Rasmus et al. [149] and can be viewed as nested denoising autoencoders that share
lateral connections between the encoder and decoder at each layer, with noise introduced at every

Information 2019, 10, 122 19 of 35

stage of the encoder. There is a cost function that attempts to minimize the difference between the
layers of the noisy (corrupted) input and uncorrupted input. The output ladder network proved to be
a very good classifier, achieving an excess of 90% accuracy with 1000 samples per class, and 99.03%
with 5000 examples per class.

Yu et al. [150] developed a network intrusion detection algorithm using dilated convolutional
autoencoders (DCAEs) to identify normal and malicious traffic. Dilated convolutions are similar to
regular convolutions, but there are gaps in between the applications of the kernel. This can be very
useful because the receptive field can grow more quickly and spatial information can be merged much
more aggressively. Using a data preprocessing module, raw network traffic data (.pcap) is converted
into 2D numeric vectors. Unlabeled data is then used to train the DCAE, which is an autoencoder that
uses convolutional layers instead of fully connected layers. Like standard autoencoders, these can
be stacked to make deep networks. However, Yu et al. [150] found that adding more than one hidden
layer did not significantly improve performance, which they found was the best with one convolution
layer, and a fully connected layer with an ReLU, followed by a classification layer. Using two datasets,
CTU-UNB (CTU-13 59; UNB-ISCX 2012 [151]; Shiravi et al. [152]) and Contagio-CTU-UNB, Yu et al. [153]
were able to achieve accuracies exceeding 98.5% on two-, six-, and eight-class problems.

Kang and Kang [154] developed a DL method to perform intrusion detection for in-vehicle
network security. The focus on in-vehicle intrusion detection was deemed important because of the
growing number of electronic control units (ECUs) in cars that are replacing mechanical devices to
improve energy efficiency and reduce noise and vibration. In addition, there is a growing potential
for intra-vehicular and inter-vehicular communications. Ensuring that these communications remain
secure is essential to pedestrian and passenger safety. To do this, Kang and Kang propose a DBN, built
using RBMs. Features representing the statistical behavior of the network are generated from controller
area network (CAN) packets, which is the standard protocol for in-vehicle network communication.
The best performing DBN had 11 layers and outperformed an ANN and an SVM, achieving an accuracy
of 97.8% and a false positive rate of 1.6%.

Kang and Kang were limited to generic command injection attacks. This accounts for only a small
subset of the attack space in vehicles. Using an LSTM, Loukas et al. [155] achieved a 86.9% accuracy
across all attack types including DDoS, command injection, and network malware. This accuracy rate
was better than that achieved with the other standard machine learning methods. They also tested
the LSTM against malware attacks it had not been trained on, and it again outperformed the other
machine learning methods.

With the growing availability of wireless fidelity (WiFi) networks, one vulnerability is the potential
for impersonation attacks. These attacks forge activities to take advantage of others, disguising a
malicious device as a legitimate device in a WiFi network. Using the Aegean WiFi Intrusion Dataset
(AWID) [156], a comprehensive WiFi network benchmark dataset, Aminanto and Kim [157] trained
an unsupervised stacked autoencoder with two hidden layers as a feature extractor, which is fed into a
k-means clustering algorithm with two centroids. This method proved to be accurate at detecting these
impersonation attacks with a detection rate of 92.18%, false alarm rate of 4.40%, and precision of 86.15%.

The introduction of fifth-generation (5G) mobile technology may very well make existing intrusion
detection defenses obsolete. Maimó et al. [158] proposes a novel way of quickly adapting to new data
while using minimal computation resources. For their experiment, they used the CTU dataset [159] of
different, real botnet attacks and labels. The features used for this are taken by aggregating in both 30-
and 60-second batches of network flow data. Their detector is composed of two classifiers. The first
stage takes the features and performs anomaly detection using a DBN to conduct a quick classification.
If the packet is deemed malicious by the first classifier, it is sent to the second classifier, which is an
RNN that accepts these suspicious packets as input and determines which attack category, if any,
it belongs to. The best stage one classifier was a DBN with two hidden layers, which achieved precision
of 81.26%, and recall of 99.34% on a training dataset that contained all types of botnets. The model
performed significantly less well on a second training dataset that contained a subset of the botnets,

Information 2019, 10, 122 20 of 35

and testing on new botnets achieved precision of 68.63% and a recall of 70.95%. The hope is that the
second stage of the classifier will refine the results; however, that was not tested.

6.5. File Type Identification

Generally, humans are not very effective at identifying data that is being exfiltrated once it
has been encrypted. Signature-based approaches are similarly unsuccessful at this task. Therefore,
Cox et al. [160] applied DL to identify and classify file types using DBNs by taking a signal processing
approach. Three feature types are generated from the data. The first is to take the Shannon entropy over
a 256-byte window with a 50% overlap. The Shannon entropy values are then cubically interpolated
onto a uniform grid of 256 points, giving it a fixed length. The second feature set is generated by
treating the byte sequence as a signal and then transforming it into frequency space. The third feature
set is a histogram of the bytes. The classifier was a four-layer DBN, pre-trained using stacked denoising
autoencoders. The dataset was comprised of a total of 4500 files, 500 files each of nine different types
and 100 files from each type were set aside for testing. The overall accuracy in classifying the nine
different file types was 97.44%.

6.6. Network Traffic Identification

Wang [161] used DL to perform traffic type identification, using stacked autoencoders combined
with a sigmoid layer to perform classification. The dataset Wang used was TCP flow data from an
internal network and the payload bytes of each session. Within this dataset, there were 58 different
protocol types; however, HTTP was excluded because it is easy to identify and represented a large
majority of the data. A three-layer stacked autoencoder performs feature extraction, and the features
are then fed into a sigmoid layer that performs classification. On the 25 most common remaining
protocols, excluding HTTP, this network had a precision between 91.74% and 100% and a recall
between 90.9% and 100%, depending on the protocol type.

Lotfollahi et al. [162] extended Wang’s work by exploring traffic characterization and application
identification. Traffic characterization includes classifying the type of network traffic (e.g., FTP).
Application identification recognizes what type of application is being used. Lotfollahi et al. [162] note
that their method is capable of discerning encrypted traffic and distinguishing between virtual private
network (VPN) and non-VPN traffic. They were able to achieve this using an autoencoder paired with
a CNN and a classification layer. The application identification task had an F1 score of 98%, and the
traffic categorization had an F1 score of 93%.

Wang et al. [163] built a 1D CNN end-to-end encrypted traffic classifier. By using feature extraction
and feature selection, they were able to build a model that could classify on various levels. They used
the ISCX VPN–non-VPN dataset [164]. In terms of classifying non-VPN versus VPN, it achieved
100% and 99% precision, and 99% and 100% recall, respectively. VPN traffic classification in 6-class
and 12-class problems achieved 94.9% and 97.3% precision, and 92.0% and 95.2% recall, respectively.
Performance on non-VPN classification in the 6-class and 12-class problems was not as good, with 85.5%
and 85.8% precision, and 85.8% and 85.9% recall, respectively.

6.7. SPAM Identification

Tzortzis and Likas [165] performed one of the first studies in using DL for classifying spam emails.
They extracted features based on common words contained in the body of the emails and used a
DBN with three hidden layers built from RBM units. The accuracy of the DBN was higher than the
accuracy of an SVM, by a marginal amount. The DBN achieved accuracies of 99.45%, 97.5%, and
97.43%, whereas the SVM had accuracies of 99.24%, 97.32%, and 96.92%.

Mi et al. [166] used autoencoders with five hidden layers and a final classification layer for spam
identification. This method was compared to six other machine learning algorithms, including a DNN
using features collected from Bag of Words. The autoencoder response was superior to the other
methods, achieving accuracies above 95% on multiple datasets.

Information 2019, 10, 122 21 of 35

6.8. Insider Threat Detection

One of the major cyber security challenges today is insider threat, which results in the theft of
information or the sabotaging of systems. The motivations and behaviors of insider threats vary
widely; however, the damage that insiders can inflict is significant.

As a first step of identifying insider threats Tuor et al. [167] used an unsupervised DL network on
system log data for filtering out normal data. They tested two types of networks: a DNN and an RNN.
For both of these networks, a feature vector comprising a summary of the system logs for each user
was created for each day and fed into a DNN or LSTM created for each user with the target output
being the next day’s feature vector. When a prediction differs dramatically from a given day’s data,
an anomaly occurs. Using separate models for each user means the models do not have to account
for the wide-ranging normal behavior of all users. These models seem to perform relatively well,
with the DNN outperforming the LSTM, principal component analysis (PCA), SVM, and isolation
forests (Liu, Ting, and Zhou [168]), an anomaly detection algorithm similar in construction to random
forests, placing the threat events above the 95th percentile of anomaly scores.

6.9. Border Gateway Protocol Anomaly Detection

The Border Gateway Protocol (BGP) is an internet protocol that allows for the exchange of routing
and reachability information among autonomous systems. This capability is essential to the functioning
of the internet, and exploitation of BGP flaws can result in DDoS attacks, sniffing, rerouting, theft of
network topology data, etc. It is therefore essential to identify anomalous BGP events in real time
to mitigate any potential damages. Cheng et al. [169] extracted 33 features from the data, and used
an LSTM, combined with logistic regression to identify anomalous BGP traffic with 99.5% accuracy,
a dramatic improvement over non-DL methods.

6.10. Verification If Keystrokes Were Typed by a Human

Keystroke dynamics is a biometric technique that collects the timing information of each keystroke.
Kobojek and Saeed [170] developed a method to perform this study. Keystroke data was collected
from six people, with 12 to 20 samples per person, and negative samples were generated by adding
noise to the human-generated data. This data was fed into an RNN unit followed by a sigmoid unit for
classification. Both GRUs and LSTMs were tried. There are significant limitations with this experiment
because the dataset was small and there were no real negative examples, only synthetic examples.
However, the authors were able to achieve 80% accuracy when there were zero false positives, in a
model with two LSTMs and a sigmoid classification layer, demonstrating there is potential in this area
of research.

6.11. User Authentication

Shi et al. [171] were able to use WiFi signals generated by IoT devices to detect human
behavioral and physiological features based on their daily activity patterns using an autoencoder.
The human behaviors that they explored included common daily activity, such as walking, and
stationary behaviors. By extracting channel state information (CSI) measurements from WiFi signals,
an autoencoder could identify each individual user and assign a “fingerprint” that would encapsulate
their behaviors. The three-layer autoencoder was designed such that each layer performed a task. The first
layer performs activity separation, where it separates out different activities. The second layer was able to
classify actions. The third layer performed individual identification. Then, an SVM layer performed spoof
detection. They achieved 91% authentication accuracy with a small number of subjects.

6.12. False Data Injection Attack Detection

Cyber-physical systems play an important role in critical infrastructure systems, because of
their relationship to the smart grid. Smart grids leverage cyber-physical systems to provide services

Information 2019, 10, 122 22 of 35

with high reliability and efficiency, with a focus on consumer needs. These smart grids are capable
of adapting to power demands in real time, allowing for an increase in functionality. However,
these devices rely on information technology, and that technology is susceptible to cyber-attack.
One such attack is false data injection (FDI), whereby false information is injected into the network
to reduce its functionality or even break it entirely. To address this issue, He et al. [172] developed a
real-time FDI detection algorithm using an extended DBN composed of RBMs that utilize Conditional
Gaussian-Bernoulli RBMs (CGBRBMs), which they call a Conditional Deep Belief Network (CDBN)
with four hidden layers. The CGBRBM is a variation on the traditional RBM that allows for real values,
not just binary values. They were able to achieve accuracies greater than 93% on various tests.

7. Observations and Recommendations

DL can provide new approaches for addressing cyber security problems. It has shown significant
improvements over traditional signature-based and rule-based systems as well as classic machine-
learning-based solutions. Table 2 lists the DL papers applied to cyber security that were reviewed in
Section 3. This table lists the methods used, the number of citations each paper had as of 10/8/2018, and
the data set they used. Of the 75 papers reviewed in this survey, most efforts have focused on applying
DL to malware detection and network intrusion detection. Cyber-physical systems (e.g., vehicles) and
behavioral biometrics (e.g., keystrokes) are new and growing areas for DL security applications. As our
reliance on network-enabled devices increases, we will have an increasing number of cyber-physical
systems and behavior-based systems, each with unique threat spaces, due to varying baselines. RBMs
were the most popular DL method and most often used for malware detection and intrusion detection.
RNNs were another popular method and used to address the broadest set of cyber security threats
(i.e., malware, malicious domain names, network intrusions, host intrusions, and cyber-physical intrusions).
The significant usage of RBMs and autoencoders, approximately 50%, is likely because there is a dearth of
labeled data, and RBMs and autoencoders can be pre-trained on unlabeled data and fine-tuned on a small
amount of labeled data. RNNs are likely popular because many cyber-security–related tasks or the data
can be treated as a time series problem. This lends itself well to RNNs.

It is difficult to draw conclusions about the performance of any particular approach because
different authors used different datasets and different metrics. However, some trends are noteworthy.
Performance varied greatly across the different security domains. Of the domains with multiple
approaches, DL appeared to have the most consistent performance for identifying malicious domain
names generated by DGAs, where TPR varied between 96.01% and 99.86%, FPR ranged between 01%
and 1.95%, and accuracy ranged between 0.9959 and 0.9969. In contrast, the performance of approaches
for network intrusion detection had wider ranges in performance with TPR between 92.33% and 100%,
FPR between 1.58% and 2.3%, and accuracy between 44% and 99%. The ability to detect network
intrusions was highly dependent on the type of attack and number of classes when performing attack
classification. Another critical factor that impacted performance across all domains was the ratio of
benign data to malicious data in the training set. This problem arises from the fact that it is difficult to
obtain legitimately malicious data. Often, data is created from simulations and reverse engineering of
malware because real data can be hard to obtain.

The cyber domain has large volumes of data from a variety of sources to which DL can be applied.
However, research in this space is hampered by the limited publicly available datasets that are either
small, old, or internally generated and not shared among researchers. To develop meaningful trust in
DL methods, large, regularly updated, benchmark datasets will be critical to advancing cyber security
solutions. Moreover, the ability to test proposed DL methods in real operational scenarios is needed
to compare detection rates, speed, memory usage, and other performance metrics. The cyber security
industry has just begun to appreciate the value of DL, and new datasets are emerging. Endgame [173] has
recently released an open-source dataset for static malware detection. It also includes an open-source
benchmark model that uses a gradient-boosted decision tree.

Information 2019, 10, 122 23 of 35

Table 2. List of Deep Learning approaches surveyed highlighting the DL method, cyber security application, and the dataset source.

DL Method Citation No. of Times Cited
(as of 10/8/2018) Cyber Security Application Dataset Used

Autoencoder Hardy et al. [83] 20 Malware Detection Comodo Cloud Security Center [66]

Autoencoder Wang and Yiu [102] 8 Malware Classification Public malware API call sequence dataset
[138]

Autoencoder Javaid et al. [130] 77 Intrusion Detection KDDCUP 1999 [57]

Autoencoder Ma et al. [134] 20 Intrusion Detection KDDCUP 1999 [57]

Autoencoder Aminanto and Kim [135] 1 Intrusion Detection KDDCUP 1999 [57]

Autoencoder Abeshu and Chilamkurti [145] 9 Intrusion Detection NSL-KDD [58]

Autoencoder Chawla [144] 0 Intrusion Detection (IoT) Simulated from Open Car Test-bed and
Network Experiments

Autoencoder Cox, James, and Aimone [160] 8 File Type Identification Internal Dataset

Autoencoder Wang [161] 58 Network Traffic Identification Honeypot dataset derived internally

Autoencoder Lotfollahi et al. [162] 12 Network Traffic Identification ISCX VPN-nonVPN traffic dataset [164]

Autoencoder Mi, Gao, and Tan [166] 12 Spam identification EnronSpam [73], PU1, PU2, PU3, PU4

Autoencoder Aminanto and Kim [155] 3 Impersonation Attacks AWID [156]

Autoencoder Diro and Chilamkurti [147] 9 Intrusion Detection NSL-KDD [58]

Autoencoder Shi et al. [171] 20 User Authentication Custom

Autoencoder Yousefi-Azar et al. [103] 11 Intrusion Detection Malware
Detection

NSL-KDD [58], Microsoft Malware
Classification Challenge [70]

Autoencoder Abdulhammed et al. [128] 0 Intrusion Detection CIDDS-001 [127]

Autoencoder
(Ladder Networks) Nadeem et al. [148] 3 Intrusion Detection KDD 1999 [57]

Autoencoder RBM Alom and Taha [126] 3 Intrusion Detection KDD 1999 [57]

Autoencoder Mirsky et al. [129] 12 Intrusion Detection Custom

CNN Gibert [100] 13 Malware Classification Microsoft Malware Classification
Challenge [70]

CNN Zeng, Chang, and Wan [112] 1 DGA Alexa [60], Private Dataset

CNN Yamanishi [119] 1 Drive-by Download Attack KDD 1999 [57]

CNN McLaughlin et al. [82] 24 Malware Detection Genome Project [67], McAfee Labs

Information 2019, 10, 122 24 of 35

Table 2. Cont.

DL Method Citation No. of Times Cited
(as of 10/8/2018) Cyber Security Application Dataset Used

CNN Wang et al. [130] 17 Intrusion Detection CTU-13 [59], IXIA [131]

CNN Wang et al. [163] 9 Traffic Identification ISCX VPN–non-VPN traffic dataset [164]

CNN Shibahara et al. [118] 3 Drive-by Download Attack Malware domain list, Malware Bytes,
Alexa [60], honeypot setup

CNN RNN Kolosnjaji et al. [79] 63 Malware Detection Virus Share [68], Maltrieve Private

CNN RNN Tobiyama et al. [80] 26 Malware Detection Unknown

CNN RNN Mac et al. [110] 1 DGA Alexa [60], OSINT [61]

CNN RNN Yu et al. [111] 5 DGA Alexa [60], DGArchive [62]

CNN (dilated)
Autoencoder Yu et al. [150] 4 Intrusion Detection CTU-UNB [59,151,152],

Contagio-CTU-UNB [152]

CNN (Dynamic) Hill and Bellekens [94] 1 Malware Detection Unknown

DNN Saxe and Berlin [89] 127 Malware Detection Jotti commercial malware feed Invincea‘s
private data

DNN Mizuno et al. [92] 2 Malware Infected Device
Detection

Traffic data from malware, verified by
TrendMicro or Kaspersky; campus network
traffic data; samples from Malwr, MalShare,

and VirusShare

DNN Dahl et al. [95] 163 Malware Classification Internal Microsoft dataset

DNN Grosse et al. [105] 96 Malware Classification DREBIN [69]

DNN Cordonsky et al. [99] 0 Malware Classification Unknown

DNN Huang and Stokes [104] 42 Malware Classification Microsoft corporation provided dataset

DNN Roy et al. [142] 14 Intrusion Detection KDDCUP 1999 [57]

DNN Tang et al. [143] 59 Intrusion Detection for SDN Generated from a Cooja network simulator

DNN Diro and Chilamkurti [146] 27 Intrusion Detection NSL-KDD [58]

DNN RNN Tuor et al. [166] 25 Insider Threat CERT Insider Threat Dataset v6.2 [71,72]

Autoencoders
(Denoising) David and Netanyahu [101] 39 Malware Classification C4 Security dataset

Information 2019, 10, 122 25 of 35

Table 2. Cont.

DL Method Citation No. of Times Cited
(as of 10/8/2018) Cyber Security Application Dataset Used

GAN Anderson, Woodbridge and Filar [107] 23 DGA Alexa [60]

RBM Alrawashdeh and Purdy [122] 16 Intrusion Detection KDDCUP 1999 [57]

RNN Pascanu et al. [78] 87 Malware Detection Internal Microsoft dataset

RNN Shibahara et al. [91] 11 Malware Detection Virus Total [64], Alexa [60]

RNN Woodbridge et al. [108] 16 DGA Alexa [60], OSINT [61]

RNN Lison and Mavroeidis [109] 4 DGA Alexa [60], DGArchive [62], OSINT [61]

RNN Tran et al. [114] 5 DGA Alexa [60], OSINT [61]

RNN Torres et al. [115] 17 DGA Malware Capture Facility Project Dataset

RNN Kim et al. [139] 47 Intrusion Detection KDDCUP 1999 [57]

RNN Kim and Kim [137] 11 Intrusion Detection KDDCUP 1998 [57], ADFA-LD, and UNM
data sets

RNN Kim et al. [138] 12 Intrusion Detection KDDCUP 1999 [57] and additional, original
data

RNN Loukas et al. [155] 2 Intrusion Detection (Vehicles) Custom

RNN Cheng et al. [169] 11 Border Gateway Protocol
Anomaly Detection Custom

RNN Kobojek and Saeed [170] 6 Keystroke Verification Custom

RNN McDermott, Majdani, and Petrovski [116] 0 Intrusion Detection (IoT) Custom

RNN Krishnan and Raajan [140] 11 Intrusion Detection KDD 1999 [57]

RNN Staudemeyer [136] 23 Intrusion Detection KDD 1999 [57]

RNN Yin et al. [141] 36 Intrusion Detection NSL-KDD [58]

RBM Yuan et al. [76] 104 Malware Detection Contagio [65] Google Play Store [63]

RBM Yuan et al. [77] 66 Malware Detection Contagio [65] Genome Project [67] Google
Play Store [63]

RBM Hou et al. [86] 12 Malware Detection Comodo Cloud [66], Security Center

RBM Xu et al. [85] 9 Malware Detection Google play store [63] Virus share [68]

RBM Benchea and Gavriluţ [84] 4 Malware Detection Self-generated dataset

Information 2019, 10, 122 26 of 35

Table 2. Cont.

DL Method Citation No. of Times Cited
(as of 10/8/2018) Cyber Security Application Dataset Used

RBM Zhu et al. [87] 5 Malware Detection Genome Project [67] VirusTotal [64]
DREBIN [69] Google Play [63]

RBM Ye et al. [88] 8 Malware Detection Comodo Cloud [66], Security Center

RBM Gao et al. [120] 46 Intrusion Detection NSL-KDD [58]

RBM Alom, Bontupalli, and Taha [123] 31 Intrusion Detection KDD 1999 [57]

RBM Dong and Wang [124] 22 Intrusion Detection NSL-KDD [58]

RBM Kang and Kang [154] 59 Intrusion Detection (Vehicles) Custom

RBM Nguyen et al. [121] 1 Intrusion Detection NSL-KDD [58] KDDCUP 1999 [57]
UNSW-NB15

RBM Tzortzis and Likas [165] 21 Spam Identification EnronSpam [73] SpamAssassin [74]
LingSpam [75]

RBM He, Mendis, and Wei [172] 34 False Data Injection Custom

RBM Chen et al. [93] 3 Malware Detection (Mobile
Edge Computing) Unknown

RBM Ding, Chen, and Xu [81] 6 Malware Detection Unknown

RBM Autoencoder Li, Ma, and Jiao [125] 28 Intrusion Detection KDD 1999 [57]

RBM RNN Maimó et al. [158] 4 Intrusion Detection (5G) CTU-13 [59]

Information 2019, 10, 122 27 of 35

There are a number of barriers to adopting DL–based security tools. One significant barrier is
the accuracy of these models. There is a general sense of risk aversion in adopting any new tool,
especially DL tools because they are inherently black boxes. Therefore, when errors occur, it is difficult
to diagnose the cause, and unlike DL applications to, for example, the marketing industry, there are
higher costs and risks associated with errors in cyber security. A cyber security analyst may waste
time triaging false alarms, or automated responses to DL intrusion detections could mistakenly block
access to critical services. Additionally, a DL tool might miss a cyber-attack entirely. Another barrier
to adoption is that many of the approaches proposed today focus on a specific threat, such as solely
detecting malware. For a more comprehensive solution, researchers should consider how to generalize
or integrate different DL approaches to cover a broader range of attack vectors. Multiple DL detection
schemes are needed in parallel and may also benefit from knowledge learned by different methods to
improve its performance locally. For example, if there is an increase in the number of DGA domains
being detected, it might be advantageous for that to inform the malware detectors. Conversely, if there
is a decline in detected attacks from a specific adversary, it could mean they have switched to a new
attack that can evade detectors and new action needs to be taken. This last scenario in particular needs
to be explored, as there is very little research on active learning in the cyber security domain.

Lastly, in designing DL solutions for cyber security, approaches need to consider the adversary.
In evaluating an approach, the susceptibility to data poisoning will be a valuable metric to measure.
Researchers should also consider how an adversary might also use DL to bypass deep-learning–based
detection systems. For example, Bahnsen et al. [174] examined how an attacker might use DNNs
to enhance their effectiveness rate of phishing attacks to bypass machine-learning–based phishing
detection systems. This generally falls under the adversarial examples, an emerging research area
that examines the weaknesses and susceptibilities of machine learning models. This will be crucial to
hardening systems against zero-day attacks by particularly sophisticated attackers.

8. Conclusions

Attacks against cyber networks continue to advance at a rate outpacing cyber defenders’ ability
to write and deploy new signatures to detect these new attacks. This, combined with advances in ML
algorithm development, offers a rich opportunity to apply neural network-based DL approaches to
cyber security applications to detect new variants of malware and zero-day attacks. In this survey paper,
we outlined the application of DL techniques to a wide variety of these cyber security attack types that
targeted networks, application software, host systems, and data. We also provided a comprehensive
review of the documented uses of DL methods to detect these cyber attacks. We discussed the DL
architecture and training process for a breath of popular and emerging methods ranging from RNNs to
GANs. Current approaches treated the different attack types in isolation. Future work should consider
the cascading connection of malicious activities throughout an attack lifecycle (e.g., breach, exploitation,
command and control, data theft, etc.). We also describe the various metrics used to evaluate DL
performance for cyber security applications. However, the use of different datasets for training and
testing did not allow for fair comparison across all of the different approaches. As such, the need for
benchmark datasets is critical for advancing DL in the cyber security domain. We identified future
research opportunities related to developing new datasets to motivate work in developing new DL
approaches for cyber security and identified the need for approaches to be developed that take the
adversary into consideration as to how they may use DL as a tool to subvert DL detection mechanisms.
As such, this survey aims to provide a useful body of work to motivate researchers to advance the
state of DL for cyber security systems.

Author Contributions: D.S.B. and A.L.B. conceived the idea for this study. D.S.B., A.L.B., J.S.C. and C.L.C. found
and reviewed papers, wrote the wrote the original manuscript, and revised the manuscript. All authors have
confirmed and approved the submitted manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Information 2019, 10, 122 28 of 35

References

1. Buczak, L.; Guven, E. A Survey of Data Mining and Machine Learning Methods for Cyber Security. IEEE
Commun. Surv. Tutor. 2016, 18, 1153–1176. [CrossRef]

2. Nguyen, T.T.T.; Armitage, G. A survey of techniques for internet traffic classification using machine learning.
IEEE Commun. Surv. Tutor. 2008, 10, 56–76. [CrossRef]

3. Garcia-Teodoro, P.; Diaz-Verdejo, J.; Maciá-Fernández, G.; Vázquez, E. Anomaly-based network intrusion
detection: Techniques, systems and challenges. Comput. Secur. 2009, 28, 18–28. [CrossRef]

4. Sperotto, A.; Schaffrath, G.; Sadre, R.; Morariu, C.; Pras, A.; Stiller, B. An overview of IP flow-based intrusion
detection. IEEE Commun. Surv. Tutor. 2010, 12, 343–356. [CrossRef]

5. Wu, S.X.; Banzhaf, W. The use of computational intelligence in intrusion detection systems: A review.
Appl. Soft Comput. 2010, 10, 1–35. [CrossRef]

6. Torres, J.M.; Comesaña, C.I.; García-Nieto, P.J. Machine learning techniques applied to cybersecurity. Int. J.
Mach. Learn. Cybern. 2019, 1–14.

7. Xin, Y.; Kong, L.; Liu, Z.; Chen, Y.; Li, Y.; Zhu, H.; Gao, M.; Hou, H.; Wang, C. Machine Learning and Deep
Learning Methods for Cybersecurity. IEEE Access 2018, 6, 35365–35381. [CrossRef]

8. Apruzzese, G.; Colajanni, M.; Ferretti, L.; Guido, A.; Marchetti, M. On the effectiveness of machine and deep
learning for cyber security. In Proceedings of the 2018 10th IEEE International Conference on Cyber Conflict
(CyCon), Tallinn, Estonia, 29 May–1 June 2018; pp. 371–390.

9. Wickramasinghe, C.S.; Marino, D.L.; Amarasinghe, K.; Manic, M. Generalization of Deep Learning for
Cyber-Physical System Security: A Survey. In Proceedings of the IECON 2018-44th Annual Conference of
the IEEE Industrial Electronics Society, Washington, DC, USA, 21–23 October 2018; pp. 745–751.

10. Al-Garadi, M.A.; Mohamed, A.; Al-Ali, A.; Du, X.; Guizani, M. A Survey of Machine and Deep Learning
Methods for Internet of Things (IoT) Security. arXiv 2018, arXiv:1807.11023.

11. McCulloch, W.S.; Pitts, W. A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys.
1943, 5, 115–133. [CrossRef]

12. Hebb, D.O. The Organization of Behavior; John Wiley Sons, Inc.: New York, NY, USA, 1949.
13. Rosenblatt, F. The perceptron: A probabilistic model for information storage and organization in the brain.

Psychol. Rev. 1958, 65, 386. [CrossRef]
14. Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning representations by back-propagating errors. Nature

1986, 323, 533. [CrossRef]
15. Deng, L.; Yu, D. Deep learning: Methods and applications. Found. Trends Signal Process. 2014, 7, 197–387.

[CrossRef]
16. Hinton, G.; Osindero, S.; Teh, Y.W. A fast learning algorithm for deep belief nets. Neural Comput. 2006, 18,

1527–1554. [CrossRef]
17. Fukushima, K. Cognitron: A self-organizing multilayered neural network. Biol. Cybern. 1975, 20, 121–136.

[CrossRef] [PubMed]
18. Jarrett, K.; Kavukcuoglu, K.; LeCun, Y. What is the best multi-stage architecture for object recognition?

In Proceedings of the 2009 IEEE 12th International Conference on Computer Vision, Kyoto, Japan, 29
September–2 October 2009; pp. 2146–2153.

19. Vincent, P.; Larochelle, H.; Lajoie, I.; Bengio, Y.; Manzagol, P.A. Stacked denoising autoencoders: Learning
useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 2010, 11,
3371–3408.

20. Ranzato, M.; Boureau, Y.L.; LeCun, Y. Sparse feature learning for deep belief networks. In Advances in Neural
Information Processing Systems; MIT Press: Cambridge, MA, USA, 2008; pp. 1185–1192.

21. Ranzato, M.; Huang, F.J.; Boureau, Y.L.; LeCun, Y. Unsupervised learning of invariant feature hierarchies
with applications to object recognition. In Proceedings of the CVPR’07 IEEE Conference on Computer Vision
and Pattern Recognition, Minneapolis, MN, USA, 17–22 June 2007; pp. 1–8.

22. Benigo, Y.; Lamblin, P.; Popovici, D.; Larochelle, H. Greedy layer-wise training of deep networks. In Advances
in Neural Information Processing Systems; MIT Press: Cambridge, MA, USA, 2007; pp. 153–160.

23. Mohamed, A.R.; Dahl, G.E.; Hinton, G. Acoustic modeling using deep belief networks. IEEE Trans. Audio
Speech Lang. Process. 2012, 20, 14–22. [CrossRef]

http://dx.doi.org/10.1109/COMST.2015.2494502
http://dx.doi.org/10.1109/SURV.2008.080406
http://dx.doi.org/10.1016/j.cose.2008.08.003
http://dx.doi.org/10.1109/SURV.2010.032210.00054
http://dx.doi.org/10.1016/j.asoc.2009.06.019
http://dx.doi.org/10.1109/ACCESS.2018.2836950
http://dx.doi.org/10.1007/BF02478259
http://dx.doi.org/10.1037/h0042519
http://dx.doi.org/10.1038/323533a0
http://dx.doi.org/10.1561/2000000039
http://dx.doi.org/10.1162/neco.2006.18.7.1527
http://dx.doi.org/10.1007/BF00342633
http://www.ncbi.nlm.nih.gov/pubmed/1203338
http://dx.doi.org/10.1109/TASL.2011.2109382

Information 2019, 10, 122 29 of 35

24. Sarikaya, R.; Hinton, G.E.; Deoras, A. Application of deep belief networks for natural language
understanding. IEEE/ACM Trans. Audio Speech Lang. Process. 2014, 22, 778–784. [CrossRef]

25. Lee, H.; Grosse, R.; Ranganath, R.; Ng, A.Y. Convolutional deep belief networks for scalable unsupervised
learning of hierarchical representations. In Proceedings of the 26th Annual International Conference on
Machine Learning, Montreal, QC, Canada, 14–18 June 2009; pp. 609–616.

26. Bengio, Y.; Simard, P.; Frasconi, P. Learning long-term dependencies with gradient descent is difficult. IEEE
Trans. Neural Netw. 1994, 5, 157–166. [CrossRef]

27. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
28. El Hihi, S.; Bengio, Y. Hierarchical recurrent neural networks for long-term dependencies. In Advances in

Neural Information Processing Systems; MIT Press: Cambridge, MA, USA, 1996; pp. 493–499.
29. Sutskever, I. Training Recurrent Neural Networks; University of Toronto: Toronto, ON, Canada, 2013.
30. Pascanu, R.; Mikolov, T.; Bengio, Y. On the difficulty of training recurrent neural networks. In Proceedings of

the International Conference Machine Learning, Atlanta, GA, USA, 15 February 2013; pp. 1310–1318.
31. Sutskever, I.; Vinyals, O.; Le, Q.V. Sequence to sequence learning with neural networks. In Advances in Neural

Information Processing Systems; MIT Press: Cambridge, MA, USA, 2014; pp. 3104–3112.
32. Cho, K.; van Merriënboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning

phrase representations using RNN encoder-decoder for statistical machine translation. arXiv 2014,
arXiv:1406.1078.

33. Bahdanau, D.; Cho, K.; Bengio, Y. Neural machine translation by jointly learning to align and translate. arXiv
2014, arXiv:1409.0473.

34. Graves, A.; Mohamed, A.R.; Hinton, G. Speech recognition with deep recurrent neural networks.
In Proceedings of the 2013 IEEE International Conference Acoustics, Speech and Signal Processing (ICASSP),
Vancouver, BC, Canada, 26–31 May 2013; pp. 6645–6649.

35. LeCun, Y.; Boser, B.E.; Denker, J.S.; Henderson, D.; Howard, R.E.; Hubbard, W.E.; Jackel, L.D. Handwritten
digit recognition with a back-propagation network. In Advances in Neural Information Processing Systems; MIT
Press: Cambridge, MA, USA, 1990; pp. 396–404.

36. LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition.
Proc. IEEE 1998, 86, 2278–2324. [CrossRef]

37. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent
neural networks from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.

38. Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015;
pp. 3431–3440.

39. Ning, F.; Delhomme, D.; LeCun, Y.; Piano, F.; Bottou, L.; Barbano, P.E. Toward automatic phenotyping of
developing embryos from videos. IEEE Trans. Image Process. 2005, 14, 1360–1371. [CrossRef]

40. Taigman, Y.; Yang, M.; Ranzato, M.A.; Wolf, L. Deepface: Closing the gap to human-level performance in face
verification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus,
OH, USA, 23–28 June 2014; pp. 1701–1708.

41. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks.
In Advances in Neural Information Processing Systems; MIT Press: Cambridge, MA, USA, 2012; pp. 1097–1105.

42. Waibel, A.; Hanazawa, T.; Hinton, G.; Shikano, K.; Lang, K.J. Phoneme recognition using time-delay neural
networks. In Readings in Speech Recognition; Elsevier: Amsterdam, The Netherlands, 1990; pp. 393–404.

43. Sainath, T.N.; Mohamed, A.R.; Kingsbury, B.; Ramabhadran, B. Deep convolutional neural networks for
LVCSR. In Proceedings of the 2013 IEEE International Conference Acoustics, Speech and Signal Processing
(ICASSP), Vancouver, BC, Canada, 26–31 May 2013; pp. 8614–8618.

44. Collobert, R.; Weston, J.; Bottou, L.; Karlen, M.; Kavukcuoglu, K.; Kuksa, P. Natural language processing
(almost) from scratch. J. Mach. Learn. Res. 2011, 12, 2493–2537.

45. Zhang, X.; LeCun, Y. Text understanding from scratch. arXiv 2015, arXiv:1502.01710.
46. Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y.

Generative adversarial nets. In Advances in Neural Information Processing Systems; MIT Press: Cambridge,
MA, USA, 2014; pp. 2672–2680.

http://dx.doi.org/10.1109/TASLP.2014.2303296
http://dx.doi.org/10.1109/72.279181
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.1109/TIP.2005.852470

Information 2019, 10, 122 30 of 35

47. Ledig, C.; Theis, L.; Huszár, F.; Caballero, J.; Cunningham, A.; Acosta, A.; Aitken, A.; Tejani, A.; Totz, J.;
Wang, Z.; et al. Photo-realistic single image super-resolution using a generative adversarial network. arXiv
2016, arXiv:1609.04802.

48. Reed, S.; Akata, Z.; Yan, X.; Logeswaran, L.; Schiele, B.; Lee, H. Generative adversarial text to image synthesis.
arXiv 2016, arXiv:1605.05396.

49. Dosovitskiy, A.; Fischer, P.; Ilg, E.; Hausser, P.; Hazirbas, C.; Golkov, V.; van der Smagt, P.; Cremers, D.;
Brox, T. Flownet: Learning optical flow with convolutional networks. In Proceedings of the 2015 IEEE
International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015; pp. 2758–2766.

50. Radford, A.; Metz, L.; Chintala, S. Unsupervised representation learning with deep convolutional generative
adversarial networks. arXiv 2015, arXiv:1511.06434.

51. Pollack, J.B. Recursive distributed representations. Artif. Intell. 1990, 46, 77–105. [CrossRef]
52. Goller, C.; Kuchler, A. Learning task-dependent distributed representations by backpropagation through

structure. Neural Netw. 1996, 1, 347–352.
53. Bottou, L. From machine learning to machine reasoning. arXiv 2011, arXiv:1102.1808.
54. Socher, R.; Lin, C.C.; Manning, C.; Ng, A.Y. Parsing natural scenes and natural language with recursive

neural networks. In Proceedings of the 28th International Conference Machine Learning (ICML-11), Bellevue,
WA, USA, 28 June–2 July 2011; pp. 129–136.

55. Socher, R.; Pennington, J.; Huang, E.H.; Ng, A.Y.; Manning, C.D. Semi-supervised recursive autoencoders
for predicting sentiment distributions. In Proceedings of the Conference Empirical Methods in Natural
Language Processing, Edinburgh, UK, 27–31 July 2011; pp. 151–161.

56. Socher, R.; Huang, E.H.; Pennin, J.; Manning, C.D.; Ng, A.Y. Dynamic pooling and unfolding recursive
autoencoders for paraphrase detection. In Advances in Neural Information Processing Systems; MIT Press:
Cambridge, MA, USA, 2011; pp. 801–809.

57. KDD Cup 99. Available online: http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html (accessed on
23 February 2019).

58. Tavallaee, M.; Bagheri, E.; Lu, W.; Ghorbani, A.A. A detailed analysis of the KDD CUP 99 data set.
In Proceedings of the IEEE Symposium on Computational Intelligence for Security and Defense Applications
(CISDA), Ottawa, ON, Canada, 8–10 July 2009; pp. 1–6.

59. The CTU-13 Dataset. Available online: https://stratosphereips.org/category/dataset (accessed on 23
February 2019).

60. Alexa Top Sites. Available online: https://aws.amazon.com/alexa-top-sites/ (accessed on 23 February 2019).
61. Bambenek Consulting—Master Feeds. Available online: http://osint.bambenekconsulting.com/feeds/

(accessed on 23 February 2019).
62. DGArchive. Available online: https://dgarchive.caad.fkie.fraunhofer.de/site/ (accessed on 23

February 2019).
63. Google Play Store. Available online: https://play.google.com/store (accessed on 23 February 2019).
64. VirusTotal. Available online: https://virustotal.com (accessed on 23 February 2019).
65. Contagio. Available online: http://contagiodump.blogspot.com/ (accessed on 23 February 2019).
66. Comodo. Available online: https://www.comodo.com/home/internet-security/updates/vdp/database.

php (accessed on 23 February 2019).
67. Zhou, Y.; Jiang, X. Dissecting android malware: Characterization and evolution. In Proceedings of the 2012

IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA, 20–23 May 2012; pp. 95–109.
68. VirusShare. Available online: http://virusshare.com/ (accessed on 23 February 2019).
69. Arp, D.; Spreitzenbarth, M.; Hubner, M.; Gascon, H.; Rieck, K.; Siemens, C.E.R.T. DREBIN: Effective and

Explainable Detection of Android Malware in Your Pocket. NDSS 2014, 14, 23–26.
70. Microsoft Malware Classification (BIG 2015). Available online: https://www.kaggle.com/c/malware-

classification/data (accessed on 23 February 2019).
71. Lindauer, B.; Glasser, J.; Rosen, M.; Wallnau, K.C.; ExactData, L. Generating Test Data for Insider Threat

Detectors. JoWUA 2014, 5, 80–94.
72. Glasser, J.; Lindauer, B. Bridging the gap: A pragmatic approach to generating insider threat data.

In Proceedings of the 2013 IEEE Security and Privacy Workshops (SPW), San Francisco, CA, USA, 23–24
May 2013; pp. 98–104.

http://dx.doi.org/10.1016/0004-3702(90)90005-K
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
https://stratosphereips.org/category/dataset
https://aws.amazon.com/alexa-top-sites/
http://osint.bambenekconsulting.com/feeds/
https://dgarchive.caad.fkie.fraunhofer.de/site/
https://play.google.com/store
https://virustotal.com
http://contagiodump.blogspot.com/
https://www.comodo.com/home/internet-security/updates/vdp/database.php
https://www.comodo.com/home/internet-security/updates/vdp/database.php
http://virusshare.com/
https://www.kaggle.com/c/ malware-classification/data
https://www.kaggle.com/c/ malware-classification/data

Information 2019, 10, 122 31 of 35

73. EnronSpam. Available online: https://labs-repos.iit.demokritos.gr/skel/i-config/downloads/enron-spam/
(accessed on 23 February 2019).

74. SpamAssassin. Available online: http://www.spamassassin.org/publiccorpus (accessed on 23
February 2019).

75. LingSpam. Available online: https://labs-repos.iit.demokritos.gr/skel/i-config/downloads/lingspam_
public.tar.gz (accessed on 23 February 2019).

76. Yuan, Z.; Lu, Y.; Wang, Z.; Xue, Y. Droid-sec: Deep learning in android malware detection. ACM SIGCOMM
Comput. Commun. Rev. 2014, 44, 371–372. [CrossRef]

77. Yuan, Z.; Lu, Y.; Xue, Y. Droiddetector: Android malware characterization and detection using deep learning.
Tsinghua Sci. Technol. 2016, 21, 114–123. [CrossRef]

78. Pascanu, R.; Stokes, J.W.; Sanossian, H.; Marinescu, M.; Thomas, A. Malware classification with recurrent
networks. In Proceedings of the 2015 IEEE International Conference Acoustics, Speech and Signal Process,
(ICASSP), Brisbane, Australia, 19–24 April 2015; pp. 1916–1920.

79. Kolosnjaji, B.; Zarras, A.; Webster, G.; Eckert, C. Deep learning for classification of malware system call
sequences. In Proceedings of the Australasian Joint Conf. on Artificial Intelligence, Hobart, Australia, 5–8
December 2016; pp. 137–149.

80. Tobiyama, S.; Yamaguchi, Y.; Shimada, H.; Ikuse, T.; Yagi, T. Malware detection with deep neural network
using process behavior. In Proceedings of the IEEE 40th Annual Computer Software and Applications
Conference (COMPSAC), Atlanta, GA, USA, 10–14 June 2016; Volume 2, pp. 577–582.

81. Ding, Y.; Chen, S.; Xu, J. Application of Deep Belief Networks for opcode based malware detection.
In Proceedings of the 2016 International Joint Conference on Neural Networks (IJCNN), Vancouver, BC,
Canada, 24–29 July 2016; pp. 3901–3908.

82. McLaughlin, N.; del Rincon, J.M.; Kang, B.; Yerima, S.; Miller, P.; Sezer, S.; Safaei, Y.; Trickel, E.; Zhao, Z.;
Doupe, A.; et al. Deep android malware detection. In Proceedings of the 7th ACM on Conference on Data
and Application Security and Privacy, Scottsdale, AZ, USA, 22–24 March 2017; pp. 301–308.

83. Hardy, W.; Chen, L.; Hou, S.; Ye, Y.; Li, X. DL4MD: A deep learning framework for intelligent malware
detection. In Proceedings of the International Conference Data Mining (ICDM), Barcelona, Spain, 12–15
December 2016; p. 61.

84. Benchea, R.; Gavriluţ, D.T. Combining restricted Boltzmann machine and one side perceptron for malware
detection. In Proceedings of the International Conference on Conceptual Structures, Iasi, Romania, 27–30
July 2014; pp. 93–103.

85. Xu, L.; Zhang, D.; Jayasena, N.; Cavazos, J. HADM: Hybrid analysis for detection of malware. In Proceedings
of the SAI Intelligent Systems Conference, London, UK, 21–22 September 2016; pp. 702–724.

86. Hou, S.; Saas, A.; Ye, Y.; Chen, L. Droiddelver: An android malware detection system using deep belief
network based on API call blocks. In Proceedings of the International Conference Web-Age Information
Manage, Nanchang, China, 3–5 June 2016; pp. 54–66.

87. Zhu, D.; Jin, H.; Yang, Y.; Wu, D.; Chen, W. DeepFlow: Deep learning-based malware detection by mining
Android application for abnormal usage of sensitive data. In Proceedings of the 2017 IEEE Symposium
Computers and Communications (ISCC), Heraklion, Greece, 3–6 July 2017; pp. 438–443.

88. Ye, Y.; Chen, L.; Hou, S.; Hardy, W.; Li, X. DeepAM: A heterogeneous deep learning framework for intelligent
malware detection. Knowl. Inf. Syst. 2018, 54, 265–285. [CrossRef]

89. Saxe, J.; Berlin, K. Deep neural network based malware detection using two dimensional binary program
features. In Proceedings of the 10th International Conference Malicious and Unwanted Software
(MALWARE), Washington, DC, USA, 20–22 October 2015; pp. 11–20.

90. Weber, M.; Schmid, M.; Schatz, M.; Geyer, D. A toolkit for detecting and analyzing malicious software.
In Proceedings of the 18th Annual Computer Security Applications Conference, Las Vegas, NV, USA, 9–13
December 2002; pp. 423–431.

91. Shibahara, T.; Yagi, T.; Akiyama, M.; Chiba, D.; Yada, T. Efficient dynamic malware analysis based on
network behavior using deep learning. In Proceedings of the 2016 IEEE Global Communications Conference
(GLOBECOM), Washington, DC, USA, 4–8 December 2016; pp. 1–7.

92. Mizuno, S.; Hatada, M.; Mori, T.; Goto, S. BotDetector: A robust and scalable approach toward detecting
malware-infected devices. In Proceedings of the 2017 IEEE International Conference Communications (ICC),
Paris, France, 21–25 May 2017; pp. 1–7.

https://labs-repos.iit.demokritos.gr/skel/i-config/downloads/enron-spam/
http://www.spamassassin.org/publiccorpus
https://labs-repos.iit.demokritos.gr/skel/i-config/downloads/lingspam_ public.tar.gz
https://labs-repos.iit.demokritos.gr/skel/i-config/downloads/lingspam_ public.tar.gz
http://dx.doi.org/10.1145/2740070.2631434
http://dx.doi.org/10.1109/TST.2016.7399288
http://dx.doi.org/10.1007/s10115-017-1058-9

Information 2019, 10, 122 32 of 35

93. Chen, Y.; Zhang, Y.; Maharjan, S. Deep learning for secure mobile edge computing. arXiv 2017,
arXiv:1709.08025.

94. Hill, G.D.; Bellekens, X.J.A. Deep learning based cryptographic primitive classification. arXiv 2017,
arXiv:1709.08385.

95. Dahl, G.E.; Stokes, J.W.; Deng, L.; Yu, D. Large-scale malware classification using random projections and
neural networks. In Proceedings of the 2013 IEEE International Conference Acoustics, Speech and Signal
Processing (ICASSP), Vancouver, BC, Canada, 26–31 May 2013; pp. 3422–3426.

96. Li, P.; Hastie, T.J.; Church, K.W. Very sparse random projections. In Proceedings of the 12th ACM SIGKDD
International Conference Knowledge Discovery and Data Mining, Philadelphia, PA, USA, 20–23 August
2006; pp. 287–296.

97. Li, P.; Hastie, T.J.; Church, K.W. Margin-constrained random projections and very sparse random projections.
In Proceedings of the Conference on Learning Theory (COLT), Pittsburgh, PA, USA, 22–25 June 2006;
pp. 635–649.

98. Microsoft Security Essentials Product Information. Applies to: Windows 7. Available online: https://
support.microsoft.com/en-us/help/18869/windows-7-security-essentials-product-information (accessed
on 23 February 2019).

99. Cordonsky, I.; Rosenberg, I.; Sicard, G.; David, E.O. DeepOrigin: End-to-end deep learning for detection
of new malware families. In Proceedings of the 2018 International Joint Conference on Neural Networks
(IJCNN), Rio de Janeiro, Brazil, 8–13 July 2018; pp. 1–7.

100. Gibert, D. Convolutional Neural Networks for Malware Classification; Universitat Politècnica de Catalunya:
Barcelona, Spain, 2016.

101. David, O.E.; Netanyahu, N.S. Deepsign: Deep learning for automatic malware signature generation and
classification. In Proceedings of the 2015 International Joint Conference Neural Networks (IJCNN), Killarney,
Ireland, 12–17 July 2015; pp. 1–8.

102. Wang, X.; Yiu, S.M. A multi-task learning model for malware classification with useful file access pattern
from API call sequence. arXiv 2016, arXiv:1610.05945.

103. Yousefi-Azar, M.; Varadharajan, V.; Hamey, L.; Tupakula, U. Autoencoder-based feature learning for cyber
security applications. In Proceedings of the 2017 International Joint Conference Neural Networks (IJCNN),
Anchorage, AK, USA, 14–19 May 2017; pp. 3854–3861.

104. Huang, W.; Stokes, J.W. MtNet: A multi-task neural network for dynamic malware classification.
In Proceedings of the International Conference Detection of Intrusions and Malware, and Vulnerability
Assessment, Donostia-San Sebastián, Spain, 7–8 July 2016; pp. 399–418.

105. Grosse, K.; Papernot, N.; Manoharan, P.; Backes, M.; McDaniel, P. Adversarial perturbations against deep
neural networks for malware classification. arXiv 2016, arXiv:1606.04435.

106. Papernot, N.; McDaniel, P.; Jha, S.; Fredrikson, M.; Celik, Z.B.; Swami, A. The limitations of deep learning
in adversarial settings. In Proceedings of the 2016 IEEE European Symposium on Security and Privacy
(EuroS&P), Saarbrücken, Germany, 21–24 March 2016; pp. 372–387.

107. Anderson, H.S.; Woodbridge, J.; Filar, B. DeepDGA: Adversarially-tuned domain generation and detection.
In Proceedings of the 2016 ACM Workshop on Artificial Intelligence and Security, Vienna, Austria, 28 October
2016; pp. 13–21.

108. Woodbridge, J.; Anderson, H.S.; Ahuja, A.; Grant, D. Predicting domain generation algorithms with long
short-term memory networks. arXiv 2016, arXiv:1611.00791.

109. Lison, P.; Mavroeidis, V. Automatic Detection of Malware-Generated Domains with Recurrent Neural Models.
arXiv 2017, arXiv:1709.07102.

110. Mac, H.; Tran, D.; Tong, V.; Nguyen, L.G.; Tran, H.A. DGA Botnet Detection Using Supervised Learning
Methods. In Proceedings of the 8th International Symposium on Information and Communication
Technology, Nhatrang, Vietnam, 7–8 December 2017; pp. 211–218.

111. Yu, B.; Gray, D.L.; Pan, J.; de Cock, M.; Nascimento, A.C.A. Inline DGA detection with deep networks.
In Proceedings of the 2017 IEEE International Conference Data Mining Workshops (ICDMW), New Orleans,
LA, USA, 18–21 November 2017; pp. 683–692.

112. Zeng, F.; Chang, S.; Wan, X. Classification for DGA-Based Malicious Domain Names with Deep Learning
Architectures. Int. J. Intell. Inf. Syst. 2017, 6, 67–71. [CrossRef]

https://support.microsoft.com/en-us/help/18869/windows-7-security-essentials-product-information
https://support.microsoft.com/en-us/help/18869/windows-7-security-essentials-product-information
http://dx.doi.org/10.11648/j.ijiis.20170606.11

Information 2019, 10, 122 33 of 35

113. Szegedy, C.; Ioffe, S.; Vanhoucke, V.; Alemi, A.A. Inception-v4, inception-ResNet and the impact of residual
connections on learning. AAAI 2012, 4, 4278–4284.

114. Tran, D.; Mac, H.; Tong, V.; Tran, H.A.; Nguyen, L.G. A LSTM based framework for handling multiclass
imbalance in DGA botnet detection. Neurocomputing 2018, 275, 2401–2413. [CrossRef]

115. Torres, P.; Catania, C.; Garcia, S.; Garino, C.G. An Analysis of Recurrent Neural Networks for Botnet Detection
Behavior. In Proceedings of the 2016 IEEE Biennial Congress of Argentina (ARGENCON), Buenos Aires,
Argentina, 15–17 June 2016; pp. 1–6.

116. McDermott, C.D.; Majdani, F.; Petrovski, A. Botnet detection in the internet of things using deep learning
approaches. In Proceedings of the 2018 International Joint Conference on Neural Networks (IJCNN),
Rio de Janeiro, Brazil, 8–13 July 2018; pp. 1–8.

117. Kolias, C.; Kambourakis, G.; Stavrou, A.; Voas, J. Ddos in the iot: Mirai and other botnets. Computer 2017, 50,
80–84. [CrossRef]

118. Shibahara, T.; Yamanishi, K.; Takata, Y.; Chiba, D.; Akiyama, M.; Yagi, T.; Ohsita, Y.; Murata, M. Malicious
URL sequence detection using event de-noising convolutional neural network. In Proceedings of the 2017
IEEE International Conference Communications (ICC), Paris, France, 21–25 May 2017; pp. 1–7.

119. Yamanishi, K. Detecting Drive-By Download Attacks from Proxy Log Information Using Convolutional Neural
Network; Osaka University: Osaka, Japan, 2017.

120. Gao, N.; Gao, L.; Gao, Q.; Wang, H. An intrusion detection model based on deep belief networks.
In Proceedings of the 2014 2nd International Conference Advanced Cloud and Big Data (CBD), Huangshan,
China, 20–22 November 2014; pp. 247–252.

121. Nguyen, K.K.; Hoang, D.T.; Niyato, D.; Wang, P.; Nguyen, P.; Dutkiewicz, E. Cyberattack detection in mobile
cloud computing: A deep learning approach. In Proceedings of the 2018 IEEE Wireless Communications
and Networking Conference (WCNC), Barcelona, Spain, 15–18 April 2018; pp. 1–6.

122. Alrawashdeh, K.; Purdy, C. Toward an online anomaly intrusion detection system based on deep learning.
In Proceedings of the 15th IEEE International Conference Machine Learning and Applications (ICMLA),
Miami, FL, USA, 9–11 December 2015; pp. 195–200.

123. Alom, M.Z.; Bontupalli, V.; Taha, T.M. Intrusion detection using deep belief networks. In Proceedings of
the 2015 National Aerospace and Electronics Conference (NAECON), Dayton, OH, USA, 15–19 June 2015;
pp. 339–344.

124. Dong, B.; Wang, X. Comparison deep learning method to traditional methods using for network intrusion
detection. In Proceedings of the 8th IEEE International Conference Communication Software and Networks
(ICCSN), Beijing, China, 4–6 June 2016; pp. 581–585.

125. Li, Y.; Ma, R.; Jiao, R. A hybrid malicious code detection method based on deep learning. Methods 2015, 9,
205–216. [CrossRef]

126. Alom, M.Z.; Taha, T.M. Network intrusion detection for cyber security using unsupervised deep learning
approaches. In Proceedings of the 2017 IEEE National Aerospace and Electronics Conference (NAECON),
Dayton, OH, USA, 27–30 June 2017; pp. 63–69.

127. Coburg Intrusion Detection Dataset-001. Available online: https://www.hs-coburg.de/forschung-
kooperation/forschungsprojekte-oeffentlich/ingenieurwissenschaften/cidds-coburg-intrusion-detection-
data-sets.html (accessed on 23 February 2019).

128. Abdulhammed, R.; Faezipour, M.; Abuzneid, A.; AbuMallouh, A. Deep and machine learning approaches
for anomaly-based intrusion detection of imbalanced network traffic. IEEE Sens. Lett. 2018. [CrossRef]

129. Mirsky, Y.; Doitshman, T.; Elovici, Y.; Shabtai, A. Kitsune: An ensemble of autoencoders for online network
intrusion detection. arXiv 2018, arXiv:1802.09089.

130. Wang, W.; Zhu, M.; Zeng, X.; Ye, X.; Sheng, Y. Malware traffic classification using convolutional neural
network for representation learning. In Proceedings of the IEEE 2017 International Conference on Information
Networking (ICOIN), Da Nang, Vietnam, 11–13 January 2017; pp. 712–717.

131. Ixia Corporation, Ixia Breakpoint Overview and Specifications. 2016. Available online: https://www.
ixiacom.com/products/breakingpoint (accessed on 23 February 2019).

132. LeCun, Y.A.; Jackel, L.D.; Bottou, L.; Brunot, A.; Cortes, C.; Denker, J.S.; Drucker, H.; Guyon, I.; Muller, U.A.;
Sackinger, E.; et al. Learning algorithms for classification: A comparison on handwritten digit recognition.
In Neural Networks; World Scientific: London, UK, 1995; pp. 261–276.

http://dx.doi.org/10.1016/j.neucom.2017.11.018
http://dx.doi.org/10.1109/MC.2017.201
http://dx.doi.org/10.14257/ijsia.2015.9.5.21
https://www.hs-coburg.de/forschung-kooperation/forschungsprojekte-oeffentlich/ingenieurwissenschaften/cidds-coburg-intrusion-detection-data-sets.html
https://www.hs-coburg.de/forschung-kooperation/forschungsprojekte-oeffentlich/ingenieurwissenschaften/cidds-coburg-intrusion-detection-data-sets.html
https://www.hs-coburg.de/forschung-kooperation/forschungsprojekte-oeffentlich/ingenieurwissenschaften/cidds-coburg-intrusion-detection-data-sets.html
http://dx.doi.org/10.1109/LSENS.2018.2879990
https://www.ixiacom.com/products/breakingpoint
https://www.ixiacom.com/products/breakingpoint

Information 2019, 10, 122 34 of 35

133. Javaid, A.; Niyaz, Q.; Sun, W.; Alam, M. A deep learning approach for network intrusion detection system.
In Proceedings of the 9th EAI International Conference Bio-inspired Information and Communications
Technologies (Formerly BIONETICS), New York, NY, USA, 3–5 December 2015; pp. 21–26.

134. Ma, T.; Wang, F.; Cheng, J.; Yu, Y.; Chen, X. A Hybrid Spectral Clustering and Deep Neural Network
Ensemble Algorithm for Intrusion Detection in Sensor Networks. Sensors 2016, 16, 1701. [CrossRef]

135. Aminanto, M.E.; Kim, K. Deep Learning-Based Feature Selection for Intrusion Detection System in Transport
Layer. Available online: https://pdfs.semanticscholar.org/bf07/e753401b36662eee7b8cd6c65cb8cfe31562.
pdf (accessed on 23 February 2019).

136. Staudemeyer, R.C. Applying long short-term memory recurrent neural networks to intrusion detection.
S. Afr. Comput. J. 2015, 56, 136–154. [CrossRef]

137. Kim, J.; Kim, H. Applying recurrent neural network to intrusion detection with hessian free optimization.
In Proceedings of the International Conference on Information Security Applications, Jeju Island, Korea,
20–22 August 2015; pp. 357–369.

138. Kim, G.; Yi, H.; Lee, J.; Paek, Y.; Yoon, S. LSTM-Based System-Call Language Modeling and Robust Ensemble
Method for Designing Host-Based Intrusion Detection Systems. arXiv 2016, arXiv:1611.01726.

139. Kim, J.; Kim, J.; Thu, H.L.T.; Kim, H. Long Short Term Memory Recurrent Neural Network Classifier for
Intrusion Detection. In Proceedings of the 2016 International Conference Platform Technology and Service
(PlatCon), Jeju, Korea, 15–17 February 2016; pp. 1–5.

140. Krishnan, R.B.; Raajan, N.R. An intellectual intrusion detection system model for attacks classification using
RNN. Int. J. Pharm. Technol. 2016, 8, 23157–23164.

141. Yin, C.L.; Zhu, Y.F.; Fei, J.L.; He, X.Z. A deep learning approach for intrusion detection using recurrent neural
networks. IEEE Access 2017, 5, 21954–21961. [CrossRef]

142. Roy, S.S.; Mallik, A.; Gulati, R.; Obaidat, M.S.; Krishna, P.V. A Deep Learning Based Artificial Neural
Network Approach for Intrusion Detection. In Proceedings of the International Conference Mathematics
and Computing, Haldia, India, 17–21 January 2017; pp. 44–53.

143. Tang, T.A.; Mhamdi, L.; McLernon, D.; Zaidi, S.A.R.; Ghogho, M. Deep learning approach for network
intrusion detection in software defined networking. In Proceedings of the 2016 International Conference
Wireless Networks and Mobile Communication (WINCOM), Fez, Morocco, 26–29 October 2016; pp. 258–263.

144. Chawla, S. Deep Learning Based Intrusion Detection System for Internet of Things; University of Washington:
Seattle, WA, USA, 2017.

145. Diro, A.A.; Chilamkurti, N. Deep learning: The frontier for distributed attack detection in Fog-to-Things
computing. IEEE Commun. Mag. 2018, 56, 169–175. [CrossRef]

146. Diro, A.A.; Chilamkurti, N. Distributed attack detection scheme using deep learning approach for internet
of things. Future Gener. Comput. Syst. 2018, 82, 761–768. [CrossRef]

147. Diro, A.A.; Chilamkurti, N. Leveraging LSTM Networks for Attack Detection in Fog-to-Things
Communications. IEEE Commun. Mag. 2018, 56, 124–130. [CrossRef]

148. Nadeem, M.; Marshall, O.; Singh, S.; Fang, X.; Yuan, X. Semi-Supervised Deep Neural Network for Network
Intrusion Detection. Available online: https://digitalcommons.kennesaw.edu/ccerp/2016/Practice/2/
(accessed on 23 February 2019).

149. Rasmus, A.; Berglund, M.; Honkala, M.; Valpola, H.; Raiko, T. Semi-supervised learning with ladder
networks. In Advances in Neural Information Processing Systems; MIT Press: Cambridge, MA, USA, 2015;
pp. 3546–3554.

150. Yu, Y.; Long, J.; Cai, Z. Network intrusion detection through stacking dilated convolutional autoencoders.
Secur. Commun. Netw. 2017, 2017, 4184196. [CrossRef]

151. The UNB ISCX 2012 Intrusion Detection Evaluation Dataset. Available online: http://www.unb.ca/cic/
research/datasets/ids.html (accessed on 23 February 2019).

152. Shiravi, A.; Shiravi, H.; Tavallaee, M.; Ghorbani, A.A. Toward developing a systematic approach to generate
benchmark datasets for intrusion detection. Comput. Secur. 2012, 31, 357–374. [CrossRef]

153. Yu, Y.; Long, J.; Cai, Z. Session-Based Network Intrusion Detection Using a Deep Learning Architecture.
In Modeling Decisions for Artificial Intelligence; Lecture Notes in Computer Science; Springer: Cham, Germany,
2017; Volume 10571, pp. 144–155.

154. Kang, M.J.; Kang, J.W. Intrusion detection system using deep neural network for in-vehicle network security.
PLoS ONE 2016, 11, e0155781. [CrossRef] [PubMed]

http://dx.doi.org/10.3390/s16101701
https://pdfs.semanticscholar.org/bf07/e753401b36662eee7b8cd6c65cb8cfe31562.pdf
https://pdfs.semanticscholar.org/bf07/e753401b36662eee7b8cd6c65cb8cfe31562.pdf
http://dx.doi.org/10.18489/sacj.v56i1.248
http://dx.doi.org/10.1109/ACCESS.2017.2762418
http://dx.doi.org/10.1109/MCOM.2018.1701270
http://dx.doi.org/10.1016/j.future.2017.08.043
http://dx.doi.org/10.1109/MCOM.2018.1701270
https://digitalcommons.kennesaw.edu/ccerp/2016/Practice/2/
http://dx.doi.org/10.1155/2017/4184196
http://www.unb.ca/cic/research/datasets/ids.html
http://www.unb.ca/cic/research/datasets/ids.html
http://dx.doi.org/10.1016/j.cose.2011.12.012
http://dx.doi.org/10.1371/journal.pone.0155781
http://www.ncbi.nlm.nih.gov/pubmed/27271802

Information 2019, 10, 122 35 of 35

155. Loukas, G.; Vuong, T.; Heartfield, R.; Sakellari, G.; Yoon, Y.; Gan, D. Cloud-based cyber-physical intrusion
detection for vehicles using Deep Learning. IEEE Access 2018, 6, 3491–3508. [CrossRef]

156. Kolias, C.; Kambourakis, G.; Stavrou, A.; Gritzalis, S. Intrusion detection in 802.11 networks: Empirical
evaluation of threats and a public dataset. IEEE Commun. Surv. Tutor. 2015, 18, 184–208. [CrossRef]

157. Aminanto, M.E.; Kim, K. Improving detection of Wi-Fi impersonation by fully unsupervised deep learning.
In Proceedings of the International Conference on Information Security Applications, Jeju Island, Korea,
24–26 August 2017; pp. 212–223.

158. Maimó, L.F.; Gómez, A.L.P.; Clemente, F.J.G.; Pérez, M.G. A self-adaptive deep learning-based system for
anomaly detection in 5G networks. IEEE Access 2018, 6, 7700–7712. [CrossRef]

159. Garcia, S.; Grill, M.; Stiborek, J.; Zunino, A. An empirical comparison of botnet detection methods. Comput.
Secur. 2014, 45, 100–123. [CrossRef]

160. Cox, J.A.; James, C.D.; Aimone, J.B. A signal processing approach for cyber data classification with deep
neural networks. Procedia Comput. Sci. 2015, 61, 349–354. [CrossRef]

161. Wang, Z. The Applications of Deep Learning on Traffic Identification; BlackHat: Washington, DC, USA, 2015.
162. Lotfollahi, M.; Shirali, R.; Siavoshani, M.J.; Saberian, M. Deep Packet: A Novel Approach for Encrypted

Traffic Classification Using Deep Learning. arXiv 2017, arXiv:1709.02656.
163. Wang, W.; Zhu, M.; Wang, J.; Zeng, X.; Yang, Z. End-to-end encrypted traffic classification with

one-dimensional convolution neural networks. In Proceedings of the 2017 IEEE International Conference
Intelligence and Security Informatics (ISI), Beijing, China, 22–24 July 2017; pp. 43–48.

164. ISCX VPN-nonVPN Encrypted Network Traffic Dataset. 2017. Available online: http://www.unb.ca/cic/
research/datasets/vpn.html (accessed on 23 February 2019).

165. Tzortzis, G.; Likas, A. Deep Belief Networks for Spam Filtering. in Tools with Artificial Intelligence.
In Proceedings of the 2007 19th IEEE International Conference on ICTAI, Patras, Greece, 29–31 October 2007;
Volume 2, pp. 306–309.

166. Mi, G.; Gao, Y.; Tan, Y. Apply stacked auto-encoder to spam detection. In Proceedings of the International
Conference in Swarm Intelligence, Beijing, China, 26–29 June 2015; pp. 3–15.

167. Tuor, A.; Kaplan, S.; Hutchinson, B.; Nichols, N.; Robinson, S. Deep learning for unsupervised insider threat
detection in structured cybersecurity data streams. arXiv 2017, arXiv:1710.00811.

168. Liu, F.T.; Ting, K.M.; Zhou, Z.H. Isolation forest. In Proceedings of the 8th IEEE International Conference on
Data Mining, Pisa, Italy, 15–19 December 2008; pp. 413–422.

169. Cheng, M.; Xu, Q.; Lv, J.; Liu, W.; Li, Q.; Wang, J. MS-LSTM: A multi-scale LSTM model for BGP anomaly
detection. In Proceedings of the IEEE 24th International Conference Network Protocols (ICNP), Singapore,
8–11 November 2016; pp. 1–6.

170. Kobojek, P.; Saeed, K. Application of recurrent neural networks for user verification based on keystroke
dynamics. J. Telecommun. Inf. Technol. 2016, 3, 80–90.

171. Shi, C.; Liu, J.; Liu, H.; Chen, Y. Smart user authentication through actuation of daily activities leveraging
WiFi-enabled IoT. In Proceedings of the 18th ACM International Symposium on Mobile Ad Hoc Networking
and Computing, Chennai, India, 10–14 July 2017; ACM: New York, NY, USA, 2017; p. 5.

172. He, Y.; Mendis, G.J.; Wei, J. Real-time detection of false data injection attacks in smart grid: A deep
learning-based intelligent mechanism. IEEE Trans. Smart Grid 2017, 8, 2505–2516. [CrossRef]

173. Roth, P. Introducing Ember: An Open Source Classifier and Dataset. 16 April 2018. Available online: https://
www.endgame.com/blog/technical-blog/introducing-ember-open-source-classifier-and-dataset (accessed
on 23 February 2019).

174. Bahnsen, A.C.; Torroledo, I.; Camacho, L.D.; Villegas, S. DeepPhish: Simulating Malicious AI. In Proceedings
of the Symposium on Electronic Crime Research, San Diego, CA, USA, 15–17 May 2018.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/ACCESS.2017.2782159
http://dx.doi.org/10.1109/COMST.2015.2402161
http://dx.doi.org/10.1109/ACCESS.2018.2803446
http://dx.doi.org/10.1016/j.cose.2014.05.011
http://dx.doi.org/10.1016/j.procs.2015.09.156
http://www.unb.ca/cic/research/datasets/vpn.html
http://www.unb.ca/cic/research/datasets/vpn.html
http://dx.doi.org/10.1109/TSG.2017.2703842
https://www.endgame.com/blog/technical-blog/introducing-ember-open-source-classifier-and-dataset
https://www.endgame.com/blog/technical-blog/introducing-ember-open-source-classifier-and-dataset
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Shallow Learning vs. Deep Learning
	Deep Learning Methods Used in Cyber Security
	Deep Belief Networks
	Deep Autoencoders
	Restricted Boltzmann Machines
	DBNs or RBMs or Deep Autoencoders Coupled with Classification Layers

	Recurrent Neural Networks
	Convolutional Neural Networks
	Generative Adversarial Networks
	Recursive Neural Networks

	Metrics
	Cybersecurity Datasets for Deep Learning
	Cyber Applications of Deep Learning Methods
	Malware
	Detection
	Classification

	Domain Generation Algorithms and Botnet Detection
	Drive-By Download Attacks
	Network Intrusion Detection
	File Type Identification
	Network Traffic Identification
	SPAM Identification
	Insider Threat Detection
	Border Gateway Protocol Anomaly Detection
	Verification If Keystrokes Were Typed by a Human
	User Authentication
	False Data Injection Attack Detection

	Observations and Recommendations
	Conclusions
	References

