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Abstract: We present a generalization of the Youla—Kučera parametrization to obtain all stabilizing
controllers for single-input and single-output plants. This uses three parameters and can be applied to
plants that may not admit coprime factorizations. In this generalization, at most two rational expressions
of plants are required, while the Youla–Kučera parametrization requires precisely one rational expression.
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1. Introduction

So far, the coprime factorization has played a central role to obtain stabilizing controllers in the
factorization approach [1]. The factorization approach to control systems has the advantage that it includes,
within a single framework, numerous linear systems such as continuous-time as well as discrete-time
systems, lumped as well as distributed systems, one-dimensional as well as multidimensional systems,
etc. [1,2]. A transfer function of this approach is considered as the ratio of two stable causal transfer
functions. One of the attractive points of the factorization approach is the fact that all stabilizing controllers
can be obtained by the Youla–Kučera parametrization with coprime factorization [3–5]. This Youla–Kučera
parametrization has been used in a wide variety of applications for a long time (e.g., [6–10]).

Unfortunately, the Youla–Kučera parametrization cannot be applied to the plants that do not
admit coprime factorizations. Mori, so far, gave the method to obtain part of stabilizing controllers
by some different factorizations [11,12]. The objective of this paper is to generalize the Youla–Kučera
parametrization to be applicable even for single-input single-output plants that may not admit the coprime
factorization. This generalization employs three parameters and requires at most two rational expressions
of plant, while the Youla–Kučera parametrization requires only one parameter and one rational expression
of plant. The generalization will be expressed with an extension of Bézout identity. We will show
that this generalization is equivalent to the parameterization method of [13], which does not require
coprime factorization.

This paper is started with preliminaries from Section 2 to recall the notion of the factorization approach.
We next state the main results of this paper, generalization of the Bézout identity and the Youla–Kučera
parametrization, in Section 3. Then we review, in Section 4, the parametrization of stabilizing controllers
of plants which may not admit coprime factorizations [13]. The proofs of the main results are given in
Section 5. In Section 6, we give examples for the main results of Section 3. First example will be the plants
that admit coprime factorizations. The next one will be Anantharam’s example [14]. Third one will be the
discrete-time systems without the unit-delay element.
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2. Preliminaries

The stabilization problem considered in this paper follows that of [15,16], shown in Figure 1. In the
figure, u1 and u2 are inputs, y1 and y2 outputs, and e1 and e2 errors. We employ the symbols used in [13,15]
in general. For further details, the reader is referred to [1–13].

Figure 1. Feedback System.

We consider that the set of stable causal transfer functions is an integral domain with identity, denoted
by A. The total field of fractions of A is denoted by F ; that is, F = {n/d | n, d ∈ A, d 6= 0}. This F is
considered as the set of all possible transfer functions. Let Z be a prime ideal of A with Z 6= A. Define the
subsets P and Ps of F as follows: P = {a/b ∈ F | a ∈ A, b ∈ A\Z}, Ps = {a/b ∈ F | a ∈ Z , b ∈ A\Z}.
Then, a transfer function in P (Ps) is called causal (strictly causal).

Throughout the paper, the plant we consider has single-input and single-output, and its transfer
function, which is also called a plant itself simply, is denoted by p and belongs to P (that is, p is causal).

For p ∈ P and c ∈ F , a matrix H(p, c) ∈ F 2×2 is defined as

H(p, c) =

[
(1 + pc)−1 −p(1 + pc)−1

c(1 + pc)−1 (1 + pc)−1

]
(1)

provided that 1 + pc is nonzero. This H(p, c) is the transfer matrix from [ u1 u2 ]
t to [ e1 e2 ]

t of the feedback
system of Figure 1. If 1 + pc is nonzero and H(p, c) ∈ A2×2, then we say that the plant p is stabilizable,
p is stabilized by c, and c is a stabilizing controller of p. In the definition above, we do not mention the
causality of the stabilizing controller. Even so, it is known that if a causal plant is stabilizable, there always
exists a causal stabilizing controller of the plant, and further if a strictly causal plant is stabilizable, any
stabilizing controller of the plant is causal [16] [Propositions 6.1 and 6.2].

We denote by S(p) the set of all stabilizing controllers of the plant p, and byH(p) the set of H(p, c)’s
with all stabilizing controllers c of p. The relationship between S(p) andH(p) is as follows [17]:

H(p) ={H(p, c) ∈ A2×2 | c ∈ S(p)}, (2)

S(p) =

{
h−1

11 h21 ∈ F
∣∣∣∣∣
[

h11 h12

h21 h11

]
∈ H(p)

}
. (3)

Thus, obtaining S(p) and obtainingH(p) are equivalent to each other.
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3. Main Results

We present three main results. The first one is a generalization of the notions of Bézout identity and
coprime factorization. The others are generalizations of the Youla–Kučera parametrization that can be
applied to stabilizable plants even with no coprime factorization.

Theorem 1. Let p be a causal plant (p ∈ P). Then p is stabilizable if and only if there exist n1 and n2 of A, and d1

and d2 of A− {0} such that

p = n1/d1 = n2/d2, (4)

y1n1 + x1d1 + y2n2 + x2d2 = 1 (5)

with y1, x1, y2, x2 of A.

Theorem 2. Let p be a stabilizable causal plant of P with symbols in Theorem 1 satisfying (4) and (5). Then the set
S(p) of all stabilizing controllers of p is given as

S(p) =
{

y1d1 + y2d2 + rd2
1 + sd1d2 + td2

2
x1d1 + x2d2 − rn1d1 − sn1d2 − tn2d2∣∣∣∣ r, s, t ∈ A, (x1d1 + x2d2 − rn1d1 − sn1d2 − tn2d2) is nonzero

}
. (6)

Theorem 3. Let p be a stabilizable causal plant of P and c its stabilizing controller. Denote[
h11 h12

h21 h11

]
= H(p, c).

Then the set S(p) of stabilizing controllers of p is given as

S(p) =
{

h21 + h2
11r + h11h21s + h2

21t
h11 + h11h12r + h12h21s− (1− h11)h21t∣∣∣∣ r, s, t ∈ A, (h11 + h11h12r + h12h21s− (1− h11)h21t) is nonzero

}
. (7)

Remark 1. The fraction in (6) can be rewritten as

(y1 + rd1 + sd2)d1 + (y2 + td2)d2

(x1 − rn1)d1 + (x2 − tn2 − sn1)d2
(8)

and, by noting that n1d2 = n2d1,

(y1 + rd1)d1 + (y2 + td2 + sd1)d2

(x1 − rn1 − sn2)d1 + (x2 − tn2)d2
. (9)

Observing the fractions above, we might add new parameter s′ of A as follows:

(y1 + rd1 + sd2)d1 + (y2 + td2 + s′d1)d2

(x1 − rn1 − s′n2)d1 + (x2 − tn2 − sn1)d2
,
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where s and s′ are s of (8) and (9), respectively. Even so, rearranging the numerator and denominator, we have

y1d1 + y2d2 + rd2
1 + (s + s′)d1d2 + td2

2
x1d1 + x2d2 − rn1d1 − (s + s′)n1d2 − tn2d2

.

Since s and s′ appear as in the form s + s′ only, we can remove the parameter s′ and consider s only.

Remark 2. Even without considering the coprimeness, any stabilizable plant must satisfy (4) and (5) of Theorem 1.
Otherwise, the plant is not stabilizable.

Remark 3. An attractive point of Theorem 2 is that the set of stabilizing controllers can be obtained in the
generalization form of the Youla–Kučera parametrization without the computation of coprime factorization, once the
Equations (4) and (5) are obtained. On the other hand, Theorem 3 has the same attractive point once exactly one
stabilizing controller is obtained.

Remark 4. Theorems 1 and 2 are generalizations of Corollary 3.1.11 and Theorem 3.1.13 of [1], respectively.

Remark 5. Suppose that a plant p ∈ P has two rational representations n1/d1 and n2/d2 with n1, n2, d1, d2 ∈ A.
Suppose further that we have found y1 and x2 of A such that

y1n1 + x2d2 = 1. (10)

In this case, we can apply Theorems 1 and 2 to the plant with y2 = x1 = 0 as special cases of Theorems 1 and 2, so
that a stabilizing controller can be obtained and the set of stabilizing controllers can also be obtained. See Sections 6.2
and 6.3 for examples.

Note that, in (10), we consider only numerator and denominator of (possibly) different rational expressions.
Also, (10) does not mean the coprimeness of the plant. Evan so, once we have (10), we can obtain all stabilizing
controllers.

4. Parametrization without Coprime Factorizability

Here, we briefly review the parameterization method of [13], which does not require coprime
factorization. This is used to give the proof of Theorem 2.

Theorem 4. (Single-input single-output version of Theorem 4 and Corollary 1 of [13]) Let p be a stabilizable causal
plant of P . Let H0 be H(p, c) ∈ A2×2, where c is a fixed stabilizing controller of p. Let Ω(Q) be a matrix defined as

Ω(Q) =

(
H0 −

[
1 0
0 0

])
Q

(
H0 −

[
0 0
0 1

])
+ H0 (11)

with a stable causal and square matrix Q in A2×2. Then we have the identity

H(p) = {Ω(Q) | Q ∈ A2×2 and det(Ω(Q)) is nonzero}. (12)

Then, any stabilizing controller has the form ω21ω−1
22 , where ω21 and ω22 are the (2,1)- and (2,2)-entries of Ω(Q),

provided that ω22 is nonzero.

This theorem gives the parameterization with a parameter matrix Q without coprime factorizability
of the plant. The parameterization by Ω(Q) is independent of the choice of stabilizing controller c.
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Decompose Q, Ω(Q), and H(p, c) in Theorem 4 as follows:[
q11 q12

q21 q22

]
= Q,

[
ω11 ω12

ω21 ω22

]
= Ω(Q),

[
h11 h12

h21 h11

]
= H(p, c). (13)

Then, by noting that −h12h21 = (1− h11)h11, we have

ω11 = ω22 = h11 + (h11 − 1)h11(q11 + q22) + (h11 − 1)h21q12 + h11h12q21,

ω12 = h12 + (h11 − 1)h12(q11 + q22) + (h11 − 1)2q12 + h2
12q21,

ω21 = h21 + h11h21(q11 + q22) + h2
21q12 + h2

11q21.

In the equations above, q11 and q22 appears always in the form (q11 + q22). Thus, the parameter q22 can be
removed with keeping the parameter q11 effective, so that ω11, ω12, ω21, and ω22 can be given as

ω11 = ω22 = h11 + (h11 − 1)h11q11 + (h11 − 1)h21q12 + h11h12q21, (14)

ω12 = h12 + (h11 − 1)h12q11 + (h11 − 1)2q12 + h2
12q21, (15)

ω21 = h21 + h11h21q11 + h2
21q12 + h2

11q21. (16)

Hence, noting that ω11 = ω22, we can expressH(p) and S(p) as follows:

H(p) =

{[
ω11 ω12

ω21 ω11

] ∣∣∣∣∣ ω11, ω12, ω21 are of (14), (15), (16), respectively,

and ω11 is nonzero.

}
, (17)

S(p) =

{
ω21

ω11

∣∣∣∣ ω11, ω21 are of (14), (16), respectively, and ω11 is nonzero.
}

, (18)

in which the parameters are q11, q12, and q21. In the proof of Theorem 2, we will show that the
parametrization of (17) is equal to the set of H(p, c)’s based on the right-hand side of (6).

5. Proofs of Theorems 1, 2 and 3

Proof of Theorem 1. (Only If). Suppose that p is stabilizable. Then, there exists a stabilizing controller c.
Thus, H(p, c) of (1) is over A. Let[

h11 h12

h21 h11

]
:= H(p, c) =

[
(1 + pc)−1 −p(1 + pc)−1

c(1 + pc)−1 (1 + pc)−1

]
(19)

((1,1)- and (2,2)-entries of H(p, c) are identical).
If c is zero, then p is in A because of −h12 = p. Letting n1 = n2 = p, y1 = y2 = x2 = 0, d1 = d2 =

x1 = 1, we have (4) and (5).
In the case where c is nonzero, both h11 and h21 are nonzero. Letting n1 = −h12, d1 = h11, n2 = ph21

(= 1− h11), d2 = h21, x1 = y2 = 1, y1 = x2 = 0, we have (4) and (5).

(If). Suppose that there exist n1, d1, y1, x1, n2, d2, y2, x2 of A with (4) and (5).
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Consider the case where x1d1 + x2d2 is zero. This is equal to 1− (y1n1 + y2n2), so that y1n1 + y2n2 = 1.
It follows that at least one of y1n1 and y2n2 is nonzero. Assume, without loss of generality, that y1n1 is
nonzero, which means that both y1 and n1 are nonzero. Because d1 is nonzero, n1d1 is a nonzero. Thus,
x1d1 + x2d2 + n1d1 is nonzero.

From the previous paragraph, we observe that the expression

x1d1 + x2d2 + r0n1d1 + t0n2d2 (20)

is nonzero by appropriate choice of (r0, t0) from (0, 0), (1, 0), (0, 1). In the following, we suppose that (20)
is nonzero with (r0, t0) being one of (0, 0), (1, 0), (0, 1).

From now, we show that the following c is a stabilizing controller of p:

c =
y1d1 + y2d2 − r0d2

1 − t0d2
2

x1d1 + x2d2 + r0n1d1 + t0n2d2
. (21)

This is done by showing that H(p, c) with c of (21) is over A, which consists of h11, h12, h21 of (19).
Observe that

h11 = x1d1 + x2d2 + r0n1d1 + t0n2d2,

h12 = −(x1n1 + x2n2 + r0n2
1 + t0n2

2),

h21 = y1d1 + y2d2 − r0d2
1 − t0d2

2,

which are all in A, so that H(p, c) is over A. Further, 1 + pc is 1/(x1d1 + x2d2 + r0n1d1 + t0n2d2), which is
nonzero. Hence, c is a stabilizing controller of p. Therefore, p is stabilizable.

Remark 6. Analogously to the construction of (20), we can make x1d1 + x2d2 + r0n1d1 + t0n2d2 not in Z with
(r0, t0) being one of (0, 0), (1, 0), (0, 1), so that c of (21) is causal. This fact can be shown by discussion analogous
to the proof above.

Proof of Theorem 2. Suppose that p is stabilizable.
We denote by S(p) the right-hand side of (6). We also introduceH(p), by virtue of the relation (2),

as follows:
H(p) = {H(p, c) | c ∈ S(p)}.

ThisH(p) is expressed as follows:

H(p) =

{[
x1d1 + x2d2 − rn1d1 − sn1d2 − tn2d2 −(x1n1 + x2n2 − rn2

1 − sn1n2 − tn2
2)

y1d1 + y2d2 + rd2
1 + sd1d2 + td2

2 x1d1 + x2d2 − rn1d1 − sn1d2 − tn2d2

]
∣∣∣∣∣ r, s, t ∈ A, x1d1 + x2d2 − rn1d1 − sn1d2 − tn2d2 is nonzero

}
(22)

(The determinant of the matrix in (22) is equal to x1d1 + x2d2 − rn1d1 − sn1d2 − tn2d2).
Thus, the proof of Theorem 2 is achieved by showing H(p) = H(p), which is done by showing

H(p) ⊃ H(p) andH(p) ⊂ H(p).
In the following, based on the proof of Theorem 1, we assume, without loss of generality, that

x1d1 + x2d2 + r0n1d1 + t0n2d2 is nonzero, where (r0, t0) is one of (0, 0), (1, 0), (0, 1).
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(H(p) ⊃ H(p)). Let

c =
y1d1 + y2d2 − r0d2

1 − t0d2
2

x1d1 + x2d2 + r0n1d1 + t0n2d2
,

which is a stabilizing controller of p. Then H(p, c) is as follows:

H(p, c) =

[
h11 h12

h21 h11

]
=

[
x1d1 + x2d2 + r0n1d1 + t0n2d2 −(x1n1 + x2n2 + r0n2

1 + t0n2
2)

y1d1 + y2d2 − r0d2
1 − t0d2

2 x1d1 + x2d2 + r0n1d1 + t0n2d2

]
. (23)

Based on this c, we consider an element ofH(p), that is, a matrix below in the set of the right-hand side
of (17) with the equations of (14), (15), and (16):[

ω11 ω12

ω21 ω11

]
. (24)

Now we let

q11 = (d1n1 + d2
1n1(x1 + r0n1) + d2

1n2(x2 + t0n2))(r + r0) + 2d1n2s

+ (d2n2 + d2
2n1(x1 + r0n1) + d2

2n2(x2 + t0n2))(t + t0), (25)

q12 = (n2
1 + d1n2

1(x1 + r0n1) + d1n1n2(x2 + t0n2))(r + r0) + n1n2s

+ (n2
2 + d2n1n2(x1 + r0n1) + d2n2

2(x2 + t0n2))(t + t0), (26)

q21 = d2
1(r + r0) + d1d2s + d2

2(t + t0). (27)

Then, a straightforward but tedious computation shows that the matrix of (24) becomes equal to the matrix
in the right-hand side of (22). Hence we haveH(p) ⊃ H(p).

(H(p) ⊂ H(p)). Suppose an element ofH(p) of (22). Then we let

r = (y1 − r0d1)(x1 + r0n1)q11 + (y1 − r0d1)
2q12 + (x1 + r0n1)

2q21 − r0, (28)

s = ((y1 − r0d1)(x2 + t0n2) + (y2 − t0d2)(x1 + r0n1))q11

+ 2(y1 − r0d1)(y2 − t0d2)q12 + 2(x1 + r0n1)(x2 + t0n2)q21, (29)

t = (y2 − t0d2)(x2 + t0n2)q11 + (y2 − t0d2)
2q12 + (x2 + t0n2)

2q21 − t0. (30)

By a straightforward but tedious computation again, the matrix in the right-hand side of (22) becomes
equal to Ω(Q) of (11) with

Q =

[
q11 q12

q21 0

]
,

c =
y1d1 + y2d2 + r0d2

1 + t0d2
2

x1d1 + x2d2 + r0n1d1 + t0n2d2
, and

H0 = H(p, c).

Therefore, we haveH(p) ⊂ H(p).

Proof of Theorem 3. We consider two cases: c = 0 and c 6= 0.
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(c = 0). In this case, p is in A. Then, h11 = 1, h12 = −p, and h21 = 0. The fraction in (7) is expressed as
r

1−rp provided 1− rp is nonzero. This is just the Youla–Kučera parametrization of the plant p in A by
noting that the coprime factorization of p ∈ A is p = n/d with n = p, d = 1, and the Bézout identity
0 · n + 1 · d = 1.

(c 6= 0). As in the proof of Theorem 1, letting n1 = −h12, d1 = h11, n2 = 1− h11, d2 = h21, x1 = y2 = 1,
y1 = x2 = 0, we obtain (4) and (5). Applying Theorem 2 to them, we have (7).

6. Example

6.1. Coprime Factorization

Suppose that a plant admits a coprime factorization, say p = n/d and yn + xd = 1 with n, d, y, x ∈ A.
Letting n1 = n2 = n, d1 = d2 = d, y1 = y, x1 = x, y2 = x2 = 0, one can apply Theorems 1 and 2 to the
plant in order to obtain stabilizing controllers. The expression in the right-hand side of (6) is expressed as

y + (r + s + t)d
x− (r + s + t)n

.

By replacing (r + s + t) by new parameter u of A, we have

y + ud
x− un

,

which is equivalent to the Youla–Kučera parametrization.

6.2. Anantharam’s Example

Let us consider an example given by Anantharam in [14]. He considered the case A = Z[
√
−5] =

{u + v
√
−5 | u, v ∈ Z}, where Z denotes the set of integers. We also let Z be {0}. The ringA is isomorphic

to Z[x]/(x2 + 5) and is an integral domain but not a unique factorization domain [18] [pp. 134–135].
In fact, 6 ∈ A has two factorizations, 2 · 3 and (1 +

√
−5) · (1−

√
−5). He showed, in [14], that a plant

p = (1 +
√
−5)/2 does not admit a coprime factorization but is stabilizable and c = (1−

√
−5)/(−2) is

a stabilizing controller. Then, H(p, c) is as follows:

H(p, c) =

[
−2 1 +

√
−5

1−
√
−5 −2

]
.

Based on Theorem 3, the set of stabilizing controllers of p, S(p) of (7), is given as

S(p) =
{
(1−

√
−5) + 4r− 2(1−

√
−5)s− 2(2 +

√
−5)t

−2− 2(1 +
√
−5)r + 6s− 3(1−

√
−5)t∣∣∣∣ r, s, t ∈ A, (−2− 2(1 +

√
−5)r + 6s− 3(1−

√
−5)t) is nonzero

}
. (31)

By replacing r → −u, s→ −u, t→ −u with new parameter u of A, we have

S(p) =
{

2u + (1−
√
−5)

−(1 +
√
−5)u− 2

∣∣∣∣ u ∈ A, (−(1 +
√
−5)u− 2) is nonzero

}
,

which is the same result as one shown in [19].
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We can also obtain alternative parametrization from Theorem 2 based on Note 5. The plant
p = (1 +

√
−5)/2 has alternative representation 3/(1−

√
−5). From 3 and 2, which are the numerator of

3/(1−
√
−5) and the denominator of (1 +

√
−5)/2, respectively, we can see 1 · 3 + (−1) · 2 = 1, so that

letting n1 = 3, n2 = (1 +
√
−5), d1 = (1−

√
−5), d2 = 2, y1 = 1, x1 = 0, y2 = 0, x2 = −1, we have (4) and

(5). Thus, (6) results

{
(1−

√
−5)− 2(2 +

√
−5)r + 2(1−

√
−5)s + 4t

−2− 3(1−
√
−5)r− 6s− 2(1 +

√
−5)t∣∣∣∣ r, s, t ∈ A, (−2− 3(1−

√
−5)r− 6s− 2(1 +

√
−5)t) is nonzero

}
. (32)

This set (32) is equal to (31) by appropriate changes of parameters r, s, t.

6.3. Discrete-Time Systems without Unit-Delay Element

Mori [16] considered the case A = R[z2, z3], where R denotes the set of real numbers. We also let
Z be { f ∈ A | f has zero constant term.}. This ring is an integral domain but not a unique factorization
domain. In fact, z6 ∈ A has two factorizations, z2 · z2 · z2 and z3 · z3.

Let us consider the plant p = (1− z2)/(1− z3) ∈ P . Now we let

n1 = 1− z2, d1 = 1− z3, n2 = 1 + z3, d2 = 1 + z2 + z4

of A with p = n1/d1 = n2/d2. Then we have y1 = (2 + z2)/3, x1 = 0, y2 = 0, and x2 = 1/3 with
n1y1 + d1x1 + n2y2 + d2x2 = 1. Thus, the plant p is stabilizable by Theorem 1.

Based on Theorem 2, the set of stabilizing controllers of p, S(p) of (6), is given as

S(p) = {nc/dc | r, s, t ∈ A, dc is nonzero},

where

nc =
1
3 (2 + z2)(1− z3) + (1− z3)2r + (1− z3)(1 + z2 + z4)s + (1 + z2 + z4)2t,

dc =
1
3 (1 + z2 + z4)− (1− z2)(1− z3)r− (1− z6)s− (1 + z3)(1 + z2 + z4)t.

7. Conclusions and Future Work

This paper has presented a generalization of the Youla–Kučera parametrization to obtain all stabilizing
controllers without coprime factorization. This is based on two rational expressions of a given plant.
Alternative parametrization is also given by one stabilizing controller.

As future work, we will aim to investigate further generalization of the Youla–Kučera parametrization
for multi-input multi-output plants with no coprime factorizations as well. Also, the possibility to extend
Theorems 1–3 will be investigated.

Funding: This research received no external funding.

Conflicts of Interest: The author declares no conflict of interest.

References

1. Vidyasagar, M. Control System Synthesis: A Factorization Approach; MIT Press: Cambridge, MA, USA, 1985.
2. Mori, K. Parametrization of All Strictly Causal Stabilizing Controllers. IEEE Trans. Automat. Contr. 2009,

AC-54, 2211–2215.



Information 2019, 10, 120 10 of 10

3. Youla, D.; Jabr, H.; Bongiorno, J., Jr. Modern Wiener-Hopf design of optimal controllers, Part I: The single-input
case. IEEE Trans. Automat. Contr. 1976, AC-21, 3–14.
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5. Kučera, V. A Method to Teach the Parameterization of All Stabilizing Controllers. Proc. IFAC World Congr.
2011, 44, 6355–6360.

6. Landau, I.; Airimţoaie, T.; Alma, M. IIR Youla–Kučera Parameterized Adaptive Feedforward Compensators for
Active Vibration Control With Mechanical Coupling. IEEE Trans. Control Syst. Technol. 2013, 21, 765–779.
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